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Background: The main challenge in diagnosing and treating ulcerative colitis

(UC) has prompted this study to discover useful biomarkers and understand the

underlying molecular mechanisms.

Methods: In this study, transcriptomic data from intestinal mucosal biopsies

underwent Robust Rank Aggregation (RRA) analysis to identify differential genes.

These genes intersected with UC key genes fromWeighted Gene Co-expression

Network Analysis (WGCNA). Machine learning identified UC signature genes,

aiding predictive model development. Validation involved external data for

diagnostic, progression, and drug efficacy assessment, along with ELISA testing

of clinical serum samples.

Results: RRA integrative analysis identified 251 up-regulated and 211 down-

regulated DEGs intersecting with key UC genes in WGCNA, yielding 212 key

DEGs. Subsequently, five UC signature biomarkers were identified by machine

learning based on the key DEGs—THY1, SLC6A14, ECSCR, FAP, and GPR109B. A

logistic regression model incorporating these five genes was constructed. The

AUC values for the model set and internal validation data were 0.995 and 0.959,

respectively. Mechanistically, activation of the IL-17 signaling pathway, TNF

signaling pathway, PI3K-Akt signaling pathway in UC was indicated by KEGG

and GSVA analyses, which were positively correlated with the signature

biomarkers. Additionally, the expression of the signature biomarkers was

strongly correlated with various UC types and drug efficacy in different

datasets. Notably, ECSCR was found to be upregulated in UC serum and

exhibited a positive correlation with neutrophil levels in UC patients.
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Conclusions: THY1, SLC6A14, ECSCR, FAP, and GPR109B can serve as potential

biomarkers of UC and are closely related to signaling pathways associated with

UC progression. The discovery of these markers provides valuable information

for understanding the molecular mechanisms of UC.
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Introduction

Ulcerative colitis (UC) is a chronic inflammatory bowel disease

(IBD) that commonly affects individuals in their young and middle-

aged years. Clinical symptoms encompass abdominal cramps, pus,

mucus, and bloody diarrhea (1–3). The global incidence of UC

ranges from 10.5 to 14 cases per 100,000 people annually, with a

prevalence of approximately 246.7 cases per 100,000 individuals (4).

Nevertheless, a consistent increase in UC incidence is observed in

Western countries, coupled with significant surges in South

America and East Asia. Furthermore, UC onset is occurring at

younger ages, with both developed and developing countries

experiencing a rise in UC cases among children (5). Given the

challenges associated with curing UC, its propensity for recurrence,

and the heightened risk of cancer (6), early initiation of treatment

for remission and long-term maintenance to prevent recurrence

constitute crucial strategies. A comprehensive understanding of the

disease’s pathogenesis and the identification of new biomarkers may

offer insights for early diagnosis and monitoring disease

progression, ultimately contributing significantly to the

improvement of overall health outcomes.

Endoscopy and tissue biopsy continue to serve as the exclusive

methods for confirming a diagnosis of UC and evaluating disease

activity and severity, albeit causing significant discomfort for

patients with UC (7). Furthermore, the reluctance of patients to

undergo this technique can lead to delayed diagnosis (8). The

development of UC is due to a complex interaction between the

host’s genetic background, microbial changes, and environmental

factors, resulting in improper and chronic activation of the mucosal

immune system (9–13). The identification of biomarkers could play

a crucial role in facilitating precise diagnosis and selecting

therapeutic approaches for UC patients. Combining C-reactive

protein and fecal calreticulin levels may provide some benefits in

the ongoing evaluation and monitoring of UC progression;

however, their efficacy is limited (14). Therefore, the urgent need

to identify distinctive markers of UC is paramount for facilitating

early diagnosis, assessing disease progression, uncovering new

pathogenic mechanisms, and enabling the prediction and

development of therapeutic strategies for UC. Moreover,

Aminosalicylates (5-ASA) and corticosteroids are fundamentally

used in treating and controlling mild to moderate UC (15, 16).
02
Immunomodulators and biologic therapies, such as anti-TNF-alpha

agents (infliximab, adalimumab, golimumab), are effective in

reducing UC inflammation and improving disease prognosis (11).

With the increasing incidence of UC, the number of patients with

refractory UC—who exhibit poor or no response to conventional

medications, prolonged disease duration, and recurrent

exacerbations—is also rising (17). Therefore, a thorough

investigation of biomarkers associated with therapy response in

UC patients is essential, along with the development of new

approaches to enhance response rates.

Gene chip assay technology, combined with second-generation

sequencing technology and bioinformatics analysis, is currently

widely employed for exploring the pathological characteristics of

various diseases and identifying potential novel biomarkers, including

UC (9, 10, 18). In this study, using transcriptomic data from a

substantial number of intestinal mucosal biopsies, differential genes

were identified through Robust Rank Aggregation (RRA) analysis

and intersected with UC key genes identified by Weighted Gene Co-

expression Network Analysis (WGCNA). Subsequently, machine

learning algorithms were employed to identify UC signature genes,

which were then utilized to develop predictive models. The diagnostic

performance of both the modeled genes and models, as well as their

relationship with disease progression and drug efficacy, were

validated using external data. The diagnostic efficacy of the

modeled genes for UC was further confirmed through ELISA

testing of clinical serum samples. The objective of this work is to

provide new insights into the early diagnosis of UC. The flow chart of

this study is illustrated in Figure 1.
Materials and methods

Data collection

The gene expression datasets for UC were retrieved from the

Gene Express ion Omnibus (GEO) database (https : / /

www.ncbi.nlm.nih.gov/). Six specific datasets, namely GSE92415,

GSE87473, GSE11223, GSE107499, GSE53306, and GSE206285

(Table 1), were selected for inclusion in our study. Subsequently,

both gene expression profiles and corresponding clinical

information were downloaded for further analysis.
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Identification of differentially expressed
genes (DEGs)

The GSE92415 and GSE87473 datasets were selected for

differential gene expression analysis. The R package “limma” was

used to identify DEGs using |log2fold change (FC)| > 0.5 and
Frontiers in Immunology 03
adjusted P < 0.05 as the cutoff criteria (19–21). The outcomes were

visualized using “ggplot2” R packages. Following this, both datasets

were amalgamated and subjected to an analysis of common DEGs

using the RRAmethod (22). The lists of up- and down-regulated genes

in each dataset were sorted based on logFC. Subsequently, all gene lists

were integrated utilizing the “RobustRankAggreg” package.
TABLE 1 Microarray information.

GEO Platform Tissue
Samples (number)

Attribute
Total UC Control

GSE92415 GPL13158 Colon 183 162 21 Training set

GSE87473 GPL13158 Colon 21 106 21 Validation set

GSE11223 GPL1708 Colon 202 129 73 Validation set

GSE107499 GPL15207 Colon 119 75 44 Validation set

GSE53306 GPL14951 Colon 40 28 12 Validation set

GSE206285 GPL13158 Colon 382 364 18 Validation set
FIGURE 1

Flow diagram of the analysis process.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1426875
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2024.1426875
Construction of the co-expression
network by WGCNA

The R package “WGCNA” was used for gene co-expression

network analysis. The WGCNA algorithm is a systems biology

approach for characterizing patterns of correlation between genes in

different samples (23). Initially, a hierarchical cluster analysis is

performed to filter the discrete samples. Subsequently, the optimal

soft threshold power (b) was chosen to calculated the adjacency

matrix, which was then transformed into a topological overlap

matrix (TOM). The identification of different modules was achieved

by the dynamic tree-cutting method, specifically filtering modules

containing more than 50 genes. Finally, Pearson correlation analysis

was used to calculate the correlation between modules and traits.

Modules with the most significant correlation coefficients were then

selected for further analysis. Intersecting genes identified through

both RRA and WGCNA methods were deemed key differential

genes for UC.
Functional enrichment analysis of
key genes

The R package “org.Hs.eg.db” was used to convert the gene

names of the DEGs into gene IDs. The R package “clusterProfiler”

was implemented to conduct Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) functional

enrichment analysis to assess gene-related biological processes

(BP), molecular functions (MF), cellular components (CC), and

signaling pathways (24, 25). The results were plotted using the R

packages “enrichplot” and “ggplot2”.
Screening signature genes by
machine learning

To further screen key differential genes, this study employed

two machine learning algorithms, support vector machine-recursive

feature elimination (SVM-RFE) and Random Forest (RF). SVM-

RFE was performed by “caret” package in R at 10-fold cross-

validation to determine the variables at the max accuracy (26). RF

algorithm was used to rank gene importance using the R package

“randomForest” (27). Finally, the intersection of the two machine

learning algorithms was identified as signature genes.
Construction and validation of a diagnostic
nomogram in UC

The signature genes were used to construct the nomogram in

training set (GSE92415) by the R package “rms” (28). The

nomoscore based on signature gene expression was calculated by

linearly combining coefficients from logistic regression and

expression levels. Subsequently, Receiver operating characteristic

(ROC) curves were plotted via the R “pROC” package to assess the
Frontiers in Immunology 04
diagnostic ability of the nomogram model (29). In addition, the

nomogram model was tested in the test set (GSE87473).

Nomoscore = Coef  +o
n

i=1
Expri � Coefi  

Coef is regression coefficient; Coefi stands for the coefficient of

genei; Expri is the expression of genei.
Gene set enrichment analysis

GSEA was performed to explore the possible function of signature

genes using the hallmark gene sets (h.all.v7.5.1.symbols), which were

obtained from the Molecular Signatures Database (https://www.gsea‐

msigdb.org/gsea/msigdb/index.jsp) (30). R package “GSVA” was

applied to compute a hallmark gene set score based on gene

expression levels for each sample.
Immune infiltration analysis

To analyze immune infiltration, the CIBERSORT algorithm

assessed differential immune cell presence in the colon mucosa of

both UC patients and healthy controls (31). Additionally, the

Spearman’s correlation analysis was performed to investigate the

relationship between immune cells and the identified signature

genes (32).
External validation of signature genes and
correlation with drug efficacy

GSE11223, GSE107499, GSE53306, and GSE206285 datasets

were downloaded for external validation. Differences in expression

levels of signature genes in different types of UC and drug efficacy

were validated using the Wilcoxon rank sum test, and the results

were visualized using the boxplot.
Enzyme-linked immunosorbent assay

Serum samples were collected from 40 UC patients and 25

normal controls from the First Affiliated Hospital of Soochow

University. Optical density (OD) was measured at 450 nm using a

microplate reader according to the manufacturer’s instructions, and

the concentration of ECSCR in the samples was calculated from a

standard curve. In this experiment, the detection limit for human

ECSCR was 0.1-5mg/ml. The medical Ethics Committee of the First

Affiliated Hospital of Soochow University approved this study.
Statistical analysis

All statistical analysis was performed using R (version4.3.1)

(https://www.r-project.org) and associated R packages. A
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significance level of P < 0.05 was used for all analyses to indicate

statistical significance.
Results

Identification of key differential genes and
functional enrichment analysis

The GSE92415 and GSE87473 datasets underwent separate

differential analyses, leading to the identification of 2761 and

3096 DEGs based on the criteria of logFC > 0.5 and adjusted P <

0.05, respectively (Figures 2A, B). Following this, RRA was

employed to integrate the results from the two cohort analyses,

revealing 251 up-regulated and 211 down-regulated DEGs. The

heatmap illustrates the degree of upregulation or downregulation

observed in the top 10 DEGs across both datasets (Figure 2C).

The GSE92415 dataset, in conjunction with the WGCNA

software package, was utilized to discern functional clusters

linked to UC patients. In the construction of gene co-expression

networks, a soft threshold of b=16 was selected, aligning with a

correlation coefficient nearing 0.85 (Figure 3A). Post-merging

comparable modules using a MEDissThres of 0.3, a total of 15

modules were generated (Figure 3B). An analysis of module-trait

relationships through a heatmap unveiled that the ivory modules

exhibited the most robust correlation with UC progression (r = 0.52,

P = 4e-14) (Figure 3C).

A total of 212 genes were identified as differentially expressed in

both the RRA and WGCNA analyses, designating them as key

differential genes through the application of a Venn diagram

(Figure 3D). To thoroughly elucidate the biological processes and

pathways associated with these DEGs, we conducted GO and KEGG
Frontiers in Immunology 05
enrichment analyses. In the GO analysis, DEGs exhibited significant

enrichment in the following processes: leukocyte migration,

humoral immune response, cell chemotaxis, leukocyte

chemotaxis, secretory granule membrane, external side of the

plasma membrane, collagen-containing extracellular matrix,

receptor ligand activity, G protein-coupled receptor binding,

cytokine activity, and cytokine receptor binding (Figure 3E). For

the KEGG analysis, genes displayed notable enrichment in

cytokine-cytokine receptor interaction, chemokine signaling

pathway, IL-17 signaling pathway, TNF signaling pathway, PI3K-

Akt signaling pathway, and rheumatoid arthritis (RA) (Figure 3F).
Using machine learning to identify the
signature gene of UC

Two machine learning algorithms, SVM-RFE and RF, were

employed to identify potential diagnostic biomarkers from DEGs.

Utilizing the SVM-RFE algorithm, we pinpointed 43 genes with

distinct features, achieved by minimizing cross-validation error

(Figures 4A, B). Additionally, RF highlighted the top 15 genes

(Figure 4C) and identified a total of 5 UC signature biomarkers—

THY1, SLC6A14, ECSCR, FAP, and GPR109B—by taking the

intersection of the genes (Figure 4D).

To enhance our comprehension of the predictive value

associated with these signature genes for UC, an analysis was

undertaken on the five signature biomarkers across two datasets

(Figures 4E, F). The results unveiled a significant upregulation of

expression in UC patients for these 5 characterized genes. Following

this observation, a logistic regression model was constructed

utilizing these 5 characterized genes (refer to Figure 4G). The

Area Under the Curve (AUC) values were determined to be 0.995
B

CA

FIGURE 2

Identification of DEGs associated with UC. (A, B) Volcano plot shows DEGs in GSE92475 and GSE87473 datasets. (C) Heatmap of the top 10 up- and
down-regulated DEGs identified in the RRA analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1426875
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2024.1426875
and 0.959 in the model set and internal validation data, respectively.

This signifies that the model exhibited superior efficacy in

distinguishing between UC and healthy control samples

compared to the individual prediction of the 5 characterized

genes (as depicted in Figure 4H).
Investigation of specific signaling
mechanisms associated with the UC
signature gene

GSEA analysis was conducted to scrutinize the signaling

pathways implicated in the five signature genes and explore their
Frontiers in Immunology 06
impact on signaling pathways related to UC progression (Figure 5).

The results demonstrated that genes associated with elevated THY1

expression were notably enriched in primary immunodeficiency

and viral protein interaction with cytokine and cytokine receptor. In

contrast, genes linked to low THY1 expression showed significant

enrichment in ascorbate and aldarate metabolism, butanoate

metabolism and citrate cycle (TCA cycle). For genes associated

with high expression of SLC6A14, there was significant enrichment

in the IL-17 signaling pathway and RA. Conversely, genes related to

low SLC6A14 expression displayed enrichment in butanoate

metabolism and the citrate cycle (TCA cycle). Genes associated

with high ECSCR expression were significantly enriched in

hematopoietic cell lineage and viral protein interaction with
B

C D

E F

A

FIGURE 3

Construction of WGCNA network. (A) Soft threshold power screening and scale-free network construction. (B) Cluster dendrogram of the co-
expression network modules (1-TOM). (C) Heatmap shows the correlation between module eigengenes and UC. (D) Venn diagram of 212
overlapping genes between ivory module genes and RRA. (E) GO enrichment analysis of 212 overlapping genes. (F) KEGG enrichment analysis of 212
overlapping genes.
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cytokine and cytokine receptors, while genes linked to low ECSCR

expression showed significant enrichment in ascorbate and aldarate

metabolism, as well as butanoate metabolism. Similarly, genes

associated with high FAP expression exhibited significant

enrichment in Hematopoietic cell lineage and primary

immunodeficiency. In contrast, genes associated with low FAP

expression displayed significant enrichment in butanoate

metabolism and the citrate cycle (TCA cycle). Lastly, genes

associated with high GPR109B expression displayed significant
Frontiers in Immunology 07
enrichment in RA and viral protein interaction with cytokine and

cytokine receptors. Conversely, genes associated with low GPR109B

expression showed significant enrichment in butanoate metabolism

and the citrate cycle (TCA cycle).

We conducted an analysis to compare GSVA scores in the

Hallmark pathway between normal controls and UC patients. The

results revealed a significant and predominant upregulation of the

Hallmark pathway in UC patients. Specifically, upregulation was

observed in KRAS signaling, IL2-STAT5 signaling, interferon
B

C D

E F

G H

A

FIGURE 4

Screening for signature genes. (A, B) SVM-RFE algorithm was used to select the genes. (C) The genes were selected based on the RandomForest. (D)
Venn diagram for two algorithmic. (E, F) Signature genes expression in GSE92415 dataset and GSE87473 dataset. (G) Nomogram for signature genes.
(H) The ROC curve of the nomogram in the model set (GSE92415) and internal validation data (GSE87473). ***P < 0.001.
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gamma response, interferon alpha response, IL6-JAK-STAT3

signaling, and TNFA signaling via NFKB. Conversely, bile acid

metabolism, oxidative phosphorylation, and fatty acid metabolism

were significantly downregulated (Figure 6A). Furthermore, we

explored the correlation between genes in our model and GSVA

scores for the Hallmark pathway. The analysis demonstrated a

positive correlation between gene expression in the model and the

Hallmark pathway upregulated in UC patients, as well as a negative

correlation with the Hallmark pathway downregulated in UC

patients (Figure 6B). These findings provide additional support
Frontiers in Immunology 08
for the involvement of genes in our model in the progression of UC

through various pathways.
Immune infiltration and correlation

To more precisely identify the colon immune cells associated

with UC, the levels of 22 immune cell types were assessed in colon

samples using CIBERSORT (Figure 7A). In comparison to healthy

controls, UC patients exhibited elevated levels of M0 and M1
B

C D

E F

G H

I J

A

FIGURE 5

GSEA analysis of signature genes. (A, B) ECSCR, (C, D) FAP, (E, F) GPR109B, (G, H) SLC6A14, (I, J) THY1.
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macrophages, along with decreased levels of resting CD4+ T

memory cells and activated dendritic cells.

The association between immune cells and gene expression

levels in the model was examined using Pearson correlation analysis

(Figure 7B). The genes demonstrated a negative correlation with

CD8+ T cells, resting memory CD4+ T cells, regulatory T cells, and

M2 macrophages. Conversely, they exhibited a positive correlation

with activated memory CD4+ T cells, M0 macrophages, M1

macrophages, activated mast cells, and neutrophils. This indicates

that the varied expression of biomarkers has an impact on immune

infiltration in UC.
Signature gene expression is strongly
associated with different types of UC and
drug efficacy

In the GSE11223 dataset, UC patients were stratified based on

the duration of illness. Among the genes examined, namely THY1,

SLC6A14, and FAP, significantly higher expression levels were

observed in long-term UC (≥ 10 years). Conversely, in short-term

UC (< 10 years), only THY1 exhibited elevated expression. Notably,

ECSCR demonstrated increased expression in short-term UC but

not in long-term UC (Figure 8A).
Frontiers in Immunology 09
In the GSE107499 dataset, variations in the expression of

colonic tissues were identified between inflamed and uninflamed

states in UC (Figure 8B). The inflamed tissues exhibited a

significant upregulation of signature genes compared to

uninflamed tissues.

The GSE53306 dataset explores changes in gene expression

among normal, active, and inactive colon tissues in patients with

UC (Figure 8C). THY1, SLC6A14, and ECSCR exhibited a

significant increase in both active and inactive UC tissues

compared to normal tissue. However, there was no significant

difference in their expression levels between active and inactive UC.

GSE206285 was to assess the expression profile of baseline

biopsy samples from patients with moderate-to-severe UC treated

with the IL-12/IL-23 inhibitor ustekinumab (Ust). THY1 levels

were significantly lower in the responsive and mucosal healed UC

patients compared to the non-responsive group before treatment

with Ust. There was a slight decrease in SLC6A14 and ECSCR levels

(Figures 8D, E).

The GSE92415 dataset comprises expression profiles from

biopsy samples of UC patients treated with golimumab (GLM).

Before the initiation of GLM treatment, patients with active UC

exhibited higher expression levels of THY1, SLC6A14, and ECSCR

compared to healthy controls. Following GLM treatment, although

the expression of THY1 was reduced in the clinical remission group,
BA

FIGURE 6

Correlation between UC signature genes and Hallmark pathway. (A) Comparison of GSVA scores in the Hallmark pathway between normal control and
UC patients. (B) Correlation between signature genes and GSVA scores for the Hallmark pathway. ns, no significance. *P < 0.05, **P < 0.01, ***P < 0.001.
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the expression levels of THY1, SLC6A14, and ECSCR did not fully

revert to those observed in healthy controls (Figures 8F–H).

The GSE92415 cohort contains information on the Mayo score

for all samples. The results showed that according to the Mayo score

> 5 was the high scoring group and the rest was the low scoring

group, in the high scoring group the gene expression was

significantly upregulated in the model. Correlation analysis

further confirmed that gene expression in the model was

positively correlated with Mayo score (Supplementary Figure S1).
Frontiers in Immunology 10
ELISA of clinical serum samples showed that ECSCR was

upregulated in the serum of UC patients and positively correlated

with neutrophil levels (Figures 8I, J).
Discussion

UC is characterized by a chronic, recurring IBD with a higher

incidence rate (33). The low early diagnosis rate of UC, attributed to
B

A

FIGURE 7

Immune infiltration and correlation. (A) Differences in infiltrating immune cells between normal control and UC. (B) Correlation of signature genes
and 22 immune cell types. *P < 0.05, **P < 0.01.
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the absence of reliable biomarkers, leads to a delay in achieving initial

remission of the disease (34). In order to enhance mucosal healing and

remission rates, the identification of novel and effective diagnostic

biomarkers accurately reflecting UC is imperative. This study employs

RRA, WGCNA, and machine learning techniques to identify key
Frontiers in Immunology 11
signature genes. Validation of these signature genes is conducted using

multiple patient datasets, encompassing disease onset and medication

details, along with clinical samples. The outcomes of this research are

anticipated to contribute significantly to the discovery of new

biomarkers for the diagnosis and treatment of UC.
B

C D

E F

G H

I J

A

FIGURE 8

External validation of signature genes. (A) Differential expression of signature genes in normal control, long duration UC and short duration UC. (B)
Differential expression of signature genes in lesional and non-lesional colonic tissues of UC patients. (C) Differential expression of signature genes in
normal control, inactive and active UC. (D, E) Differential expression of signature genes in the colonic mucosal of HC (healthy control), Ust_CR (UC
patients in clinical remission before ustekinumab therapy), Ust_NR (UC patients not responding before ustekinumab therapy), and Ust_MH (UC
patients in mucosal healing before ustekinumab therapy). (F–H) Differential expression of signature genes in the colonic mucosa of healthy controls,
UC patients in the non-response and response groups before and after GLM treatment. (I) Contents of ECSCR in serum of normal and UC patients
were determined by ELISA. (J) Correlation between ECSCR and neutrophil levels. *P < 0.05, **P < 0.01, ***P < 0.001.
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In this study, 212 intersecting genes were identified through

RRA and WGCNA analyses. Subsequent GO analysis revealed that

these DEGs were associated with leukocyte migration, humoral

immune response, cytotaxis, and leukocyte chemotaxis, suggesting a

pivotal role of leukocytes in the progression of UC. Neutrophils,

crucial leukocyte cells, were observed in the epithelium, indicating

histological UC activity and serving as an early core event in UC

(35). These neutrophils coexisted with inflammation. The KEGG

analysis demonstrated significant enrichment of genes related to the

IL-17 signaling pathway, TNF signaling pathway, PI3K-Akt

signaling pathway, RA and other immune-related pathways.

Similarly, GSVA analysis indicated a significant activation of

these pathways in UC patients, consistent with previous studies

(7, 18). Intriguingly, these intersecting genes are not only associated

with UC pathogenesis but also with RA. A large-sample meta-

analysis suggested that individuals with inflammatory bowel

inflammation are at a higher risk of developing RA (36, 37),

indicating shared pathogenic factors for both UC and RA at the

molecular level.

Five biomarkers (THY1, SLC6A14, ECSCR, FAP, and

GPR109B) significantly associated with UC have been identified

through machine learning analysis. A prediction model was

developed, and ROC analysis demonstrated the model’s and its

UC signature gene ’s excellent discriminatory ability in

distinguishing UC samples from healthy control samples.

Furthermore, it is suggested that the UC signature gene may be

closely linked to UC, providing a foundation for understanding the

disease’s etiology and discovering potential new therapies. THY1 is

highly expressed in synovial fibroblasts in RA, which can invade

and degrade cartilage by secreting inflammatory cytokines and

chemokines, while stimulating osteoclasts, leading to bone erosion

(38). A correlation between RA and UC (OR 1.082; 95% CI 1.002–

1.168; P = 0.044) was found by Mendelian randomization analysis

(39). In addition, THY1, implicated in cell adhesion during

inflammation, exhibits aberrant methylation associated with UC

(40). These findings suggest that THY1 may be involved in the co-

morbid processes of RA and UC. SLC6A14, also known as a Na+/

Cl− driven amino acid transporter B, is up-regulated in both rectal

and caecal mucosa in UC patients (41). Studies indicate that

SLC6A14 expression is upregulated in UC patients, potentially

contributing to colonic inflammation by regulating glutamine and

nitric oxide synthase 2 and may also contribute to UC via the C/

EBPb-PAK6 axis Iron death in epithelial cells (42–44). Moreover,

there has been a suggestion that SLC6A14 contributes to the death

of UC cells by controlling NLRP3 (45). FAP is a significant marker

of cancer-associated fibroblasts and is closely linked to colorectal

cancer invasion and metastasis. Additionally, the extent, duration,

and severity of inflammation in UC are tied to a higher risk of

colitis-associated colorectal cancer (CAC) (13). Furthermore, FAP

levels are unusually high in UC. Further investigation is needed to

determine if FAP plays a crucial role in the progression of UC to

CAC. GPR109B, abundantly expressed in human neutrophils, plays

a role in inflammatory processes, including UC. Targeting

GPR109B in therapeutic strategies may prove beneficial in
Frontiers in Immunology 12
diseases characterized by inflammation, such as UC (46).

Furthermore, the five aforementioned biomarkers are positively

associated with UC activation pathways and negatively correlated

with UC down-regulated signaling pathways, supporting their

significance in UC development and progression.

Furthermore, notable variations in the composition of immune

cells were observed between UC and control samples. UC patients

exhibited a higher abundance of M1 macrophages compared to

controls, while there was no difference in M2 macrophages. This

observation aligns with the understanding that UC is primarily

associated with the presence of pro-inflammatory M1macrophages,

but not anti-inflammatory M2 macrophages (47). Additionally, it

was found that resting CD4+ T memory cells and activated dendritic

cells were significantly lower in UC patients, contradicting previous

findings (48). These differences may be attributed to the utilization

of different datasets or the presence of unbalanced data in prior

studies. Surprisingly, five biomarkers were found to have a

significant positive correlation with macrophage M0 and M1

infiltration in the model. However, there is a scarcity of studies

investigating the impact of these genes on immune cells in UC

patients. Moreover, the genes in the model are positively correlated

with neutrophils. It has been demonstrated that large numbers of

neutrophils infiltrate the UC colonic mucosa, releasing serine

proteases, matrix metalloproteinases, and myeloperoxidases

through the production of reactive oxygen species, which directly

cause tissue damage and produce typical crypt abscesses (13).

Additionally, ELISA of clinical serum samples showed that

ECSCR was upregulated in the serum of UC patients and

positively correlated with neutrophil levels. These findings suggest

that genes in the model are closely associated with neutrophil

infiltration in UC. Our findings offer novel insights into the

potential role of these genes in UC immunomodulation.

Therefore, further investigation into the function of immune cells

in the progression of UC is warranted.

Characterized gene expression has been confirmed to be

strongly associated with various types of UC and the effectiveness

of drugs in different datasets. Additionally, the diagnostic efficacy of

ECSCR for UC has been further validated using clinical samples.

Our hope is that these findings will present novel strategies for the

diagnosis and treatment of UC. However, it is important to

recognize certain limitations in this study. Firstly, the clinical data

used were obtained from public databases, and the clinical

information of the samples was incomplete, which hindered the

exploration of the correlation between these characterized genes

and clinical features. Secondly, no in vivo or in vitro experiments

were conducted for validation. Therefore, further studies will be

necessary to provide compelling evidence for our results.

In summary, novel targets such as THY1, SLC6A14, ECSCR,

FAP, and GPR109B have been discovered in our findings, which

could potentially play a role in the development of UC and serve as

reliable diagnostic biomarkers for UC. Additionally, these new

targets exhibit strong associations with various signaling pathways

and immune cells involved in UC, thereby offering fresh insights

into the underlying mechanisms of this condition.
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