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TCR-H: explainable machine
learning prediction of T-cell
receptor epitope binding on
unseen datasets
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and Jeremy C. Smith1,2,3*

1UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN,
United States, 2Department of Biochemistry and Cellular and Molecular Biology, University of
Tennessee, Knoxville, TN, United States, 3Biosciences Division, Oak Ridge National Laboratory, Oak
Ridge, TN, United States
Artificial-intelligence and machine-learning (AI/ML) approaches to predicting T-

cell receptor (TCR)-epitope specificity achieve high performance metrics on test

datasets which include sequences that are also part of the training set but fail to

generalize to test sets consisting of epitopes and TCRs that are absent from the

training set, i.e., are ‘unseen’ during training of the MLmodel. We present TCR-H, a

supervised classification Support Vector Machines model using physicochemical

features trained on the largest dataset available to date using only experimentally

validated non-binders as negative datapoints. TCR-H exhibits an area under the

curve of the receiver-operator characteristic (AUC of ROC) of 0.87 for epitope

‘hard splitting’ (i.e., on test setswith all epitopes unseen duringML training), 0.92 for

TCR hard splitting and 0.89 for ‘strict splitting’ in which neither the epitopes nor the

TCRs in the test set are seen in the training data. Furthermore, we employ the SHAP

(Shapley additive explanations) eXplainable AI (XAI) method for post hoc

interrogation to interpret the models trained with different hard splits, shedding

light on the key physiochemical features driving model predictions. TCR-H thus

represents a significant step towards general applicability and explainability of

epitope:TCR specificity prediction.
KEYWORDS

T-cell receptor, epitope, antigen, explainable machine learning, physicochemical
model, adaptive immunity T-cell receptor, machine learning, physicochemical features
Introduction

Cytotoxic T-cells are central to the adaptive immune response. Critical to adaptive

immune system activation is the specific binding of T-cell receptors (TCR) to peptide

epitopes presented by the Major Histocompatibility Complex (MHC) on the surface of

antigen-presenting cells. The remarkable diversity of TCRs, estimated at ~1015-1061 (1),
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results from a combinatorial explosion of genetic recombination

possibilities of somatic-cell DNA encoding V (variable), D

(diversity), and J (joining) segments (2, 3). T-cells are thus

capable of recognizing a large variety of epitopes, that can be

exogenous, such as from a pathogen, or derived from endogenous

mutated proteins (4).

A significant goal in immunology is the reliable prediction of

which epitopes bind to which T-cell receptors. Achieving this will

greatly aid in the design and development of vaccines and

immunotherapies and will help us understand how the immune

system distinguishes between self and non-self-antigens.

Furthermore, knowledge of TCR:epitope specificity can be used in

disease diagnosis, prognosis, and monitoring disease progression,

for example in the context of infectious diseases, where tracking T-

cell responses can provide insights into the immune system’s

response to pathogens.

The vast diversity in TCR sequences and potential epitopes

makes it challenging to develop a generalized and accurate

computational model for TCR:epitope binding prediction.

Moreover, prediction is further complicated by the fact that TCRs

can exhibit cross-reactivity, recognizing multiple epitopes. One

approach, in principle, to solving the TCR:epitope specificity

problem would be to develop accurate methods for predicting the

3D structures of TCR:epitope:MHC ternary complexes and then to

use the results to predict binding strength based on the physics

involved. However, predicting these 3D structures and interactions

accurately is challenging (5), as the 3D interactions of TCRs with

epitopes bound to MHC are highly variable and can be significantly

impacted by small changes in epitope sequence. Furthermore, the

binding of the ternary complex is very weak, in the micromolar

range, limiting both experimental and first-principles-physics-

based models (6, 7). Conformational flexibility of TCRs further

complicates this approach. Moreover, aside from the interactions

within the ternary structure in isolation, the binding in the ternary

structure is mechanosensitive, whereby the affinity is further

modulated by forces exerted on T-cells during motility

processes (8).

In recent work we demonstrated how 3D structure can be

incorporated into computational methods to improve prediction of

peptide binding to MHC (9), and how 3D MHC pocket structural

similarity correlates with the ability to bind to a given peptide

with similar binding affinity (10). Furthermore, we and others have

shown that certain 3D interactions are commonly found in epitope

binding to TCRs (3, 11–14). We therefore postulated that TCR:

epitope recognition algorithms would benefit from consideration of

physicochemical properties determining recognition.

TCRs are heterodimers consisting of two chains: a and b.
Binding primarily occurs through three complementarity-

determining regions (CDRs) found on each of these chains.

Although in 3D structures of TCR:epitope:MHC ternary

complexes significant contacts are made outside the CDR3 region,

this region most directly interacts with the peptide epitope, with

CDR3b, in particular, forming numerous direct contacts with the

epitopes and MHC while also displaying particularly high sequence

diversity (11, 12, 15–17). Hence, in computational approaches
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CDR3b has commonly been taken as an approximation to the

specificity-determining TCR sequence.

With the increasing availability in publicly available data

resources of CDR3b and epitope sequencing data from high-

throughput techniques (18), AI and ML approaches have been

able to be used to predict TCR CDR3b binding to epitopes

presented by MHC class 1 (MHC-I) (19). These tools apply

methods ranging from relatively simple ML algorithms such as

Random Forest and clustering (1, 18, 20, 21) to various forms of

deep learning-based AI techniques, including convolutional and

recurrent neural networks (18, 22–30).

Many existing AI/ML methods achieve impressive results on

“random split” test sets that include TCR and epitope sequences that

are also included in the training set. However, for general applicability

a model must be able to predict binding for a “strict split”with unseen

TCRs and epitopes, i.e., in which neither the TCRs nor the epitopes

tested are in the training set. Success in this endeavor would perhaps

indicate an algorithm has been discovered that has started to learn the

general principles of TCR:epitope recognition and would be a major

step towards a “holy grail” of immunology - the accurate

computational mapping of all TCRs to their cognate epitopes.

The strict split goal can be approached stepwise. In a first step,

datasets can be derived with an epitope “hard split”, i.e., in which the

test set contains only unseen epitopes, or a TCR hard split in which

the test set contains only unseen CDR3bs. When using an epitope

hard split, current methods mostly fail, with scores falling to almost

random i.e., with the area under the curve of the receiver-operator

characteristic (AUC of ROC) ~0.5 (31, 32).. TCR hard splitting has

been performed in (23) with some success, with AUC values of 0.77

or below. Strict splitting attempts have also been published with AUC

of ROC values ranging between 0.5 and 0.7 (30, 33).

Given the above considerations, we attempted to address the

problem of unseen epitopes and TCRs by developing a supervised

binary classification ML model incorporating sequence-based

physicochemical descriptors of CDR3b and epitopes and using

the largest dataset of binding and non-binding data available to

date. Our approach possesses two particularly noteworthy

characteristics: the use of only experimentally validated non-

binders as negative datapoints in the training and testing sets and

the use of a highly diverse set of physicochemical features calculated

over entire peptide sequences.

Existing machine and deep learning methods vary in terms of

the datasets used, mostly relying on randomly generated data as the

negative/non-binding dataset. However, any given randomly

generated TCR: CDR3b sequence pair assumed to not bind might

actually bind. Furthermore, it has been shown that the use of

randomly generated sequences for negative binders leads to

overestimation of model accuracy (31, 32). Therefore, we include

in our dataset only negatives that have been experimentally

validated as non-binders.

The choice of supervised ML over deep learning was motivated

in part by the ability of the model to be based on explicit features

posited to be important for binding, which in turn may aid model

explainability and rationality. While understanding ML model

decisions is not always straightforward, advancements in
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eXplainable AI (XAI) methods enable us to pinpoint the

contributions of input features and identify those that influence

model predictions. Moreover, XAI offers insights into how the

model can be enhanced. Additionally, our preference for ML was

informed by previous observations suggesting that ML methods

outperform deep learning methods in molecular property

predictions when well-defined features are employed (34), and it

has been shown that the use of features that lend themselves to ML

models leads to better performance in TCR specificity

prediction (21).

Most ML models have hitherto been sequence-based, encoding

sequences using either the BLOSUM substitution matrix (21, 23–

25) and/or Atchley factors (35). The BLOSUM matrix applies a

score for amino-acid substitutions while Atchley factors are

multidimensional, composite features for each single amino acid

independently, derived using unsupervised ML on primarily

physicochemical features (26, 36, 37). Here, in contrast we use

physicochemical features calculated over entire epitope and CDR3b
sequences i.e., not just individual amino-acid residues.

Various ML methods are tested: Random Forest (RF), Gradient

Boosting trees (GBT), eXtreme Gradient Boosting (xGBT) and

Support Vector Machines (SVM). The best performing, an SVM

model, which we name TCR-H, exhibited area under the receiver-

operator characteristic curve (AUC of ROC) metrics of 0.87, 0.92

and 0.89 for the epitope hard split, TCR hard split and the epitope/

TCR strict split, respectively. These are significant improvements on

previously reported values, and TCR-H thus represents a

noteworthy step towards general applicability of computational

prediction of epitope:TCR specificity in biology and medicine.
Materials and methods

Dataset

The dataset used comprises positive binding data curated for

human MHC class 1 from the IEDB, VDJdb and McPAS-TCR

databases and negative binding data from IEDB and 10X Genomics

assays, sourced from TChard (32). The dataset includes CDR3b
sequence lengths ranging from 9 to 23 residues, while the epitope

sequences have lengths shorter than 16. The total dataset consists of

147,069 negative and 107,376 positive datapoints and was divided

into various training and test data sets of 80 and 20

percent, respectively.

Two different types of data split were considered: 1) Hard Split

2) Random Split. In the epitope hard split the test set consisted of

only unseen epitopes. The epitope hard split training dataset (total:

200,011) consisted of 124,598 negative data and 75,413 positive

datapoints, while the test dataset (total: 54,434) consisted of 22,471

negative data and 31,963 positive data points, with 65 unseen

epitopes. For the TCR hard split, again the training and test data

were split approximately in the ratio of 80:20 with the training set

consisting of 117,523 negative and 85,621 positive data points, while

in the test dataset there were 21,754 positive and 29,546 negative

data. In the strict split, the training data consisted of 65826 positive

data and 83697 negative data points whereas test dataset consisted
Frontiers in Immunology 03
of 22,471 negative data and 31,963 positive data. The training and

test data sets are detailed in the supporting information

(Supplementary Table 1).
Feature set

All sequence-based properties of the CDR3b loops and the

epitopes were calculated using the Peptides Python package

[https://github.com/althonos/peptides.py] (38), resulting in 96

features each for the CDR3b and epitope sequences. A complete

list of the features used is given in Table 1.

The features used are now very briefly outlined below.

BLOSUM Indices (BLOSUM 1-10): These are derived by using

the AAindex database and decomposing the BLOSUM62

substitution matrix into scales satisfying the VARIMAX

criterion (39).

Cruciani properties: These properties are derived from scaled

principal component scores, which encapsulate various descriptors

reflecting the interaction of each amino-acid residue with different

chemical groups. The average of the Cruciani properties (PP1, PP2,

PP3) is calculated for all residues within the peptide sequence (40).
TABLE 1 Sequence-based properties used as features (96 each for
epitope and CDR3b) in the present study are tabulated.

Sequence-based property Number of features

BLOSUM indices 10

Cruciani properties 8

FASGAI vectors 6

Kidera factors 10

MS-WHIM scores 3

PCP descriptors 5

Physical_descriptors 2

ProtFP descriptors 8

Sneath vectors 4

SVGER_descriptors 10

ST-scales 8

T-scales 5

VHSE-scales 8

Z-scales 5

Boman 1

Charge 1

Hydrophobic Moment 1

Hydrophobicity 1

Isoelectric Point 1

Molecular Weight 1

m/z(mass/charge) 1
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FASGAI vectors: FASGAI (Factor Analysis Scales of Generalized

Amino Acid Information) vectors are six numerical amino acid

descriptors that reflect hydrophobicity (F1), alpha and turn

propensities (F2), bulkiness (F3), compositional characteristics

(F4), local flexibility (F5), and electronic properties (F6) of the

sequence (41).

Kidera factors: These are derived by applying multivariate

analysis to 188 physical properties of the 20 amino acids, utilizing

principal component analysis and factor analysis to reduce the

dimensionality of the features. The average of the ten Kidera factors

for a given protein sequence is obtained where the first four

represent purely physical properties. In contrast, the remaining

six factors are combinations of multiple physical properties, labeled

for convenience with the name of the most heavily weighted

component: KF1: helix/bend preference, KF2: side-chain size,

KF3: extended structure preference, KF4: hydrophobicity, KF5:

double-bend preference, KF6: partial specific volume, KF7: flat

extended preference, KF8: occurrence in alpha region, KF9: pK-C,

KF10: surrounding hydrophobicity (42).

MSWHIM scales: These scales use three components from a

PCA (principal component analysis) of 3D electrostatic properties

to represent residues. Component 1 (MSWHIM1) separates

positive/aromatic from negative/bulkier residues. Component 2

(MSWHIM2) differentiates Asp/Glu, and component 3

(MSWHIM3) distinguishes Arg/Lys (43).

PCP descriptors: These are constructed by performing

multidimensional scaling of 237 physicochemical properties (44, 45).

Physical Descriptors: Physical descriptors were constructed by

improving on existing PCA-derived descriptors (Z-scales, MS-

WHIM and T-scales) after correcting for the hydrophilicity of

methionine, asparagine and tryptophan. PD1 is related to volume

while PD2 is related to hydrophilicity (46, 47).

ProtFP descriptors: This descriptor set was formulated using an

extensive compilation of indices sourced from the AAindex

database for all naturally occurring amino acids (48, 49).

Sneath vectors: These vectors were obtained by running PCA on

the f coefficient to explain the dissimilarity between the 20 natural

amino acids based on binary state encoding of 134 physical and

chemical properties (such as presence/absence of a —CH₃ group,

step-wise optical rotation, etc) (50).

SVGER descriptors: These descriptors were constructed by

principal component analysis of 74 geometrical descriptors

(svger1 to svger6), 44 eigenvalue descriptors (svger7, svger8 and

svger9), and 41 Randić descriptors (svger10 and svger11) (51, 52).

ST-scales: These scales are obtained by consideration of 827

properties that primarily include constitutional, topological,

geometrical, hydrophobic, electronic, and steric properties of a

total set of 167 amino acids (53).

T-scales: These rely on 67 shared topological descriptors derived

from 135 amino acids. These descriptors stem solely from the

connectivity table of amino acids (54).

VHSE scales: These were generated through principal

component analysis (PCA) of 50 physicochemical variables

representing the 20 amino acids. These variables encompassed 18

hydrophobic properties, 17 steric properties, and 15 electronic

properties, each treated as independent families. Specifically,
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VHSE1 and VHSE2 pertain to hydrophobic properties, VHSE3

and VHSE4 to steric properties, and VHSE5 to VHSE8 to electronic

properties (55).

Z-scales: These are based on physicochemical properties of the

residues including NMR and thin-layer chromatography (TLC)

data. Each Z scale represents specific properties. Z1: lipophilicity,

Z2: steric bulk and polarizability, Z3: electronic properties (polarity/

charge), Z4 and Z5 relate electronegativity, heat of formation,

electrophilicity and hardness (56).

Boman Index: This index sums the solubility values for all

residues in the sequence and provides an estimate of the peptide’s

potential to bind to membranes or other proteins as receptors. To

normalize the index, it is divided by the number of residues in the

sequence (57).

Hydrophobic moment: This utilizes the standardized Eisenberg

scale (58).

Hydrophobicity: The hydrophobicity of the entire sequence is

obtained by summing the hydrophobicities of individual amino

acids and dividing by the length of the sequence (38).

Instability index: This indicates the stability of a protein based

on its amino acid composition (59)

Molecular weight: This is weighted with ExPASy’s “compute pI/

mw” tool (60).

Isoelectric point: It is the pH of the sequence at which the net

charge of the sequence is equal to zero (61).

m/z: The ratio of mass to charge.

Some features differ substantially in magnitude from one

another. In training ML models whose optimization is gradient-

based, the presence of features differing by an order of magnitude or

more can pose a numerical challenge and yield erroneous results. To

avoid this problem, features were normalized, or scaled, so that they

were all within the same order of magnitude. To achieve this, the

preprocessing.scale function in Scikit Learn was used, which centers

features to the mean and normalizes them to unit variance.
Machine learning methods

We tested four ML methods: Random Forest (RF), Gradient

Boosting trees (GBT), eXtreme Gradient Boosting, and Support

Vector Machines (SVM). All models were trained using the Scikit

Learn application programming interface.

Random Forest (RF) is an ensemble learning method, i.e., in

which the final model is a composite of multiple individual models.

RF operates by constructing multiple simple decision trees during

training. Each tree in the forest is constructed using a random

subset of the features. The final prediction is based on the

aggregated votes of individual trees. Here, the RF model was built

using default hyperparameters and scaled features. Gradient-

Boosting Trees (GBT) is another ensemble method. In contrast to

RF, whose trees are constructed independently of one another

during model training, GBT successively augments the model in

each iteration with a tree such that it minimizes a loss function

representing the discrepancy between the training targets and the

corresponding model predictions. eXtreme Gradient Boosting

(XGB) is similar to GBT in that it is based on minimizing a loss
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function with each tree that is successively added to the ensemble of

trees, but instead of optimizing using just the gradient it makes use

of the Hessian as well, in effect optimizing using a Newton-Raphson

type of approach.

In classification, SVM aims to find the hyperplane that best

separates the data into different classes, maximizing the margin

between the classes. SVM can be trained on the original set of

features (corresponding to a linear SVM model) or a projection of

the original set of features into a non-linear space using different

kernel functions. We used the Radial Basis Function (RBF) kernel,

also known as the Gaussian kernel, with the default hyperparameters.

All the prediction models were built with scaled features and

default hyperparameters. The use of default parameters does not

require hyperparameter optimization via cross-validation.
Explainable machine learning: SHAP

Explainable machine learning is a powerful technique that aids

in understanding the decision-making process of any given ML

model, thereby interpreting its predictions. The interpretability and

explainability of a model allow us to discern which features are

important and to what extent each feature contributes to the

model’s predictions. In this study, we utilized SHapley Additive

exPlanations (SHAP), an approach to interrogate ML models post

hoc that employs Shapley values and cooperative game theory (62).

We opted for SHAP over other approaches, such as LIME (63) and

permutation importance, because it is model-agnostic and offers

both global and local interpretability. This means that SHAP can

elucidate how features contribute to predictions across the entire

dataset or for a single prediction, unlike LIME, which only provides

information on a region of feature-ML target space, providing a

linear model proxy in that region. The Python SHAP package was
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utilized for KernelSHAP calculations, with the n_samples

parameter, controlling the number of Monte Carlo samples used

for approximation, set to 100. A summary plot of SHAP values for

all features across different subsets of the hard split and random

split test datasets was generated to visualize the important features

contributing to binding prediction.
Results

The modeling workflow is shown as a schematic in Figure 1.

The binary classification is the prediction of binding or non-

binding. The performance of the models was evaluated in terms

of the AUC of ROC, the accuracy, the precision (the ratio of true

binders to the total number predicted to be binders, also called

positive predictive value), the recall (also called the sensitivity or

true positive rate), the specificity (true negative rate), and the F1

score. These terms are defined for convenience in the SI. The AUC

of ROC, which is most commonly reported, illustrates the trade-off

between the recall (true positive rate) and the specificity (true

negative rate), quantifying the ability of the model to distinguish

between the two classes. A classifier with perfect performance yields

an AUC of ROC of 1.0, while a random classifier would yield an

AUC of 0.5 or less.

We first present ML performance results on epitope hard split

data, i.e., in which all epitopes in the test set are unseen. The

performance metrics on the test set for RF, GBT, XGB and SVM are

presented in Table 2 and Figure 2. Taking all the metrics into

consideration, it is evident that the ensemble models RF, GBT and

XGB do not perform particularly well, especially for the AUC of

ROC and specificity. Only in terms of recall and the F1-score do

these models perform somewhat decently; however, it should be

noted that the F1-score, a composite metric that is a function of
FIGURE 1

Schematic work flow of ML modeling. For each pair of TCR CDR3b and epitope sequences in the training data, labelled as binding and non-binding,
physicochemical features are calculated and provided as input features for the different ML models tested. The trained models predict whether or
not given CDR3b and epitope sequences of the test data bind. Models are evaluated based on a variety of performance metrics and are interpreted
using SHAP analysis.
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both precision and recall, is elevated here only by the recall, with the

precision being relatively poor. In contrast, for the model trained

with SVM, the performance is much better across the board, with

the AUC of ROC, accuracy, and precision—all poor in the ensemble

tree models—improved dramatically. The AUC of ROC is 0.80, an

improvement on previously reported efforts.

In an attempt to further improve the SVM performance, we

examined correlations between pairs of features. We found that by

removing one of any pair that had a correlation > 0.8 (we selected

the feature to be removed from the correlated pair at random), the

model’s performance improved, leading to a model (named “TCR-

HE”; “HE”=“hard epitope” split) with an AUC of ROC of 0.87 as

well as improving most other statistical metrics. This model has

very high sensitivity, i.e., a large fraction of the true positives is

predicted positive. The specificity (true negative rate) is also high

(this metric has improved to great extent upon consideration of

uncorrelated features). To further test the robustness of the model’s

performance, we conducted three other epitope hard splits while

also stress testing by introducing imbalanced numbers of negative

and positive data points. The resulting performance metrics are

detailed in the supporting information (Supplementary Table 2).

The AUC for these scenarios ranged between 0.72 and 0.853,

maintaining high, if not quite as high, performance.
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Next, we trained the model that uses SVM and the set of

uncorrelated features with a hard split of the TCR CDR3bs (a model

referred to as TCR-Hb). The results on the independent test set,

provided in Table 3, show that again the model performs very well,

with an AUC of ROC of 0.92 with other metrics also being high.

Again, to test dataset robustness we conducted three additional hard

splits for TCR CDR3b and also three for the strict split

(Supplementary Table 2). The performance metrics consistently

demonstrated an AUC of ROC of 0.92 for the different TCR hard

splits. This model appears to be particularly stable to dataset

variation, which may arise from there being ~150k unique TCR

sequences in the dataset as compared to ~800 unique

epitope sequences.

Finally, we report metrics on the test set that perhaps most

closely represents a typical situation that will be found in general

applications – the strict split, TCR-HbE. This was found to also be

very successful, with an AUC of ROC of 0.89 and the other metrics

again also high (Table 3). The strict splits with imbalanced data

yielded AUC of ROC values ranging between 0.71 and 0.83

(Supplementary Table 2), again with excellent performance.

Figure 3 shows all the performance metrics on the independent

test sets of epitope hard split, TCR hard split, strict split and random

split. All the performance metrics are observed to be equal to, or

greater than, 0.8.

For completeness, and to compare against what has been

typically performed in previous predictive model development

studies, we also performed a benchmark of TCR-H using the

commonly employed random split (TCR-RS). We recall that in a

random split the entire dataset is split randomly into training and

test sets and that, because the dataset contains instances where a

TCR or epitope is represented multiple times, a random split of the

data can lead to the same epitope or TCR being in both the training

and test sets. For TCR-RS, the AUC of ROC of TCR-Hmodel is 0.92

(Table 3) which is comparable to previously published methods.

Additionally, three other TCR-RS random splits employed also

showed an AUC of ROC of 0.92, again indicating model robustness.
Comparison with previous models

The field of computational epitope-TCR binding prediction is

very active and rapidly evolving. However, it is incumbent on us to

compare the performance of TCR-H with models hitherto reported
TABLE 2 Comparison of ML models for epitope hard split test set.

Model AUC
of ROC

TP TN FP FN Accuracy Precision Recall Specificity F1-
score

XGB 0.51 31859 654 21817 104 0.597 0.593 0.996 0.029 0.744

GBT 0.54 31248 2329 20142 715 0.617 0.608 0.977 0.104 0.749

RF 0.5 31963 0 22471 0 0.587 0.587 1.00 0.0 0.739

SVM 0.80 30403 14593 7878 1560 0.826 0.794 0.951 0.649 0.865

TCR-HE 0.87 29567 18297 4174 2396 0.879 0.876 0.925 0.814 0.9
fron
TP, number of true positives; TN, number of true negatives; FP, number of false positives; FN, number of false negatives. TCR-HE has correlations removed.
FIGURE 2

Performance metrics for epitope hard split test set of ML models.
Random Forest (RF), Gradient Boosting trees (GBT), eXtreme
Gradient Boosting (XGB), Support Vector Machines (SVM) and SVM
with uncorrelated features (TCR-HE).
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in the literature (23, 25, 26, 36, 37, 64). Metrics other than the AUC

of ROC are important in potential applications of these

methodologies but are not always calculated. However, data exist

allowing us to compare the performance of TCR-HE with some

reported data for epitope hard-split AUC of ROC, precision, and

recall. Figure 4 shows metrics for various methods taken from (23)

all of which were evaluated on the same independent epitope hard

split data set, together with the present TCR-HE results. TCR-HE

exhibits the highest values in all three metrics. Some methods,

including Pan-Peptide and epiTCR, have, in some epitope hard-

split tests, shown significant improvement over random, with AUC

of ROC scores of ~0.75. Notwithstanding, TCR-HE performed

significantly better. Furthermore, the pitfalls of negative data bias

in the TCR epitope specificity challenge have recently been

emphasized, with, for example, the performance of Pan-peptide

reduced to random (AUC of ROC = 0.49) depending on the method

of choosing the negative data points (31).

Published data on TCR hard splitting and strict splitting are

rarer. However, Cai et al. (2022) (23) reported TCR hard split

metrics for four models (NetTCR, ERGO-LSTM, ERGO-AE and

ATM-TCR), with the AUC of ROC varying between 0.72 and 0.77,

recall between 0.71 and 0.77 and precision between 0.63 and 0.70,

again lower than the values obtained with TCR-Hb (Table 2)

whereas TITAN (30) achieved an AUC of ROC of 0.87 using a
Frontiers in Immunology 07
semi-frozen pretrained model with augmentation. A strict split

employed by TITAN achieved an AUC of ROC of 0.62.
Explainable AI: SHAP analysis for
model interpretation

Figure 5 depicts representative summary plots of the SHAP

analysis for the epitope and TCR hard splits, revealing the

importance of the features. The figure displays the top 50

features. Interestingly, for all models with different hard splits, a

similar list of features contributing most to the model predictions

was found. These include hydrophobic moments, molecular

weights, instability index, BLOSUM indices, Kidera factors,

SVGER, FASGAI vectors, MSWHIM scales, ProtFP descriptors,

and the Z-scales of both epitope and CDR3b sequences. This

finding was observed to be consistent across different training and

test splits performed in the present study. The significance of

BLOSUM indices is consistent with the relative success of

previously reported models based solely on these substitution

matrices (21, 23, 25, 64). However, the improved results in the

present model underscore the usefulness of considering additional

physico-chemical features as well as composite features to enhance

model performance. Specifically, for both epitopes and CDR3b
sequences Kidera factors KF3, KF5, KF7, KF9, and KF10,

corresponding to preferences for structures that are extended,

double-bend or flat , the pK-C, and the surrounding

hydrophobicity, respectively, are found to be important. Also

FASGAI vectors F1, F2, F4, F5, and F6, corresponding to the

hydrophobicity, alpha and turn propensities, compositional

characteristics (F4), local flexibility (F5), and electronic properties

(F6) of the sequences, and MSWHIM scales differentiating Asp/Glu

and Arg/Lys are also found to be significant.

The CDR3b molecular weight, identified as an important

feature, suggests that the length of the CDR3b sequence may play

a role in epitope recognition and binding, aligning with previous

observations indicating length complementarity between CDR3b
and epitope sequences (1). The feature corresponding to

hydrophobicity, playing a crucial role in binding prediction,

supports previous studies suggesting that enriched hydrophobicity

of epitopes aids T cell receptors in discriminating immunogenic

epitopes and self-peptides (65). Furthermore, features

corresponding to extended structure preference, local flexibility,

and electronic properties contributing to binding prediction are

consistent with both structural and dynamical properties being

important for binding.
TABLE 3 Performance metrics of TCR-H trained and tested on TCR hard split (TCR-Hb), strict split (TCR-HbE) and random split (TCR-RS).

Model AUC
of ROC

TP TN FP FN Accuracy Precision Recall Specificity F1-
score

TCR-Hb 0.92 18760 28780 766 2994 0.93 0.96 0.86 0.97 0.91

TCR-HbE 0.89 29570 19143 3328 2393 0.89 0.898 0.92 0.85 0.91

TCR-RS 0.92 18382 28771 691 3045 0.93 0.96 0.86 0.98 0.91
fro
These results represent the ML trained on the uncorrelated features.
FIGURE 3

Performance metrics on the independent test sets for the TCR-HE
(epitope hard split), TCR-Hb (TCR hard split), TCR-HbE (strict split)
and TCR-RS (random split).
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Discussion

Building on our previous work on 3D structural and

physicochemical approaches to studies of MHC:epitope:TCR

interactions (9, 11), we present here a set of ML models capable

of predicting TCR and epitope binding for cases in which epitopes

and/or TCR sequences are not included in data used to train the

model. The approach is even found to work well for ‘strict split’

cases in which neither the epitopes nor the TCR sequences in the

test set are in the training set. Our approach to this was stepwise, in
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which the performance of TCR-H was first tested on hard splits of

epitopes (TCR-HE) and TCRs (TCR-Hb). Both of these produced

excellent metric results that were robust to training/testing dataset

variation, with the TCR-Hb being particularly impressive. The strict

split TCR-HbE achieved an AUC of ROC of 0.89, with other

metrics such as precision and recall also excellent.

AI/ML methods can be subject to biases in the data sets used for

training and testing. We therefore paid special attention here to the

quality of the datasets used. In particular, we only considered

experimentally validated data, as opposed to using negative data
FIGURE 4

AUC of ROC, Precision and Recall of TCR-HE compared with that of previously reported epitope hard split models (21, 23, 25, 36).
FIGURE 5

Representative summary plots of SHAP for Epitope split and TCR split showing top 50 features contributing to the model predictions. The length of
the horizontal bar corresponding to each significant feature represents the magnitude of its SHAP value, while the color indicates the direction of its
impact. Red bars denote higher predicted probabilities for the positive class, whereas blue bars represent the negative class. Longer bars against a
feature indicate a greater impact on the model’s prediction.
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that is randomly generated. Notwithstanding, the testing of a given

model on different specific epitope hard split data sets can lead to

significantly different AUC values. For example, Supplementary

Figure 1 shows significant dataset dependency of previously

reported models on epitope hard split AUC of ROC data. Here,

we examined the performance of the TCR-H class of models upon

dataset variation. We find good performance even when the test

data are burdened with significant positive and negative data

imbalance. Notwithstanding, although the dataset used has

>200,000 entries, as for most models the approach taken here will

need continual further testing and refining. In particular, the

addition of experimental data expanding the number of unique

epitopes would be expected to further improve model performance.

Furthermore, as stated in (64) there is room for improvement in the

accuracy of the negative experimental data generated. When

considering the unseen elements within the test datasets, it is

possible that some epitopes/TCRs are unseen yet still share some

sequence similarity – this might lead to enhanced performance

metrics, in contrast to cases where epitope/TCR sequences are

entirely dissimilar and unseen in the test dataset. Regardless of

the epitopes or TCRs sequences with or without sequence similarity,

our results showcase that the performance is much higher than that

of previous studies.

The excellent performance of the TCR-H models suggests that

supervised SVM, when applied to a feature set consisting of

physicochemical features derived from whole sequences of TCR

CDR3bs and epitopes, may be able to capture complex feature

dependencies and interdependencies underlying accurate binding

classification. It is interesting that ensemble tree-based methods did

not perform as well as SVM, suggesting that to achieve accurate

binding prediction, a complex function of the full set of features is

advantageous, as opposed to an ensemble of simple, nonparametric

“functions”, as represented by the simple individual trees. This was

also evident from our analysis of two different dimension reduction

techniques in the feature space, namely, PCA (Principal

Component Analysis) and t-SNE (t-distributed Stochastic

Neighbor Embedding). The datapoints were projected onto the

plane formed by the two major reduced dimensions, and the

datapoints were labeled according to their class. Both these

dimension reduction techniques indeed showed that there is some

overlap between the two classes (shown in the Supplementary

Figure 2) and may explain why the classes are separable using

only a supervised ML algorithm that performs a nonlinear

projection of the feature vectors.

Also, the utilization of SHapley Additive exPlanations (SHAP)

has provided insight into the significant physico-chemical features of

both TCRs and epitopes that are pivotal in determining the binding

of TCRs to epitopes. Furthermore, the SHAP analysis reveals the

importance of pure physico-chemical features as well as composite

features that are themselves functions of these pure features, the latter

revealing the fact that there is a complex interdependency among

physico-chemical properties that govern binding.

For general applicability, a TCR:epitope recognition model

must be able to predict binding for TCRs and epitopes for any

given TCR:epitope pair. This should include cases in which neither
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the TCRs nor the epitopes queried are in the training set nor are

close in sequence to members in the training set, i.e., the “strict

split” scenario. The success in this endeavor reported here may

indicate that algorithms are beginning to learn general principles of

TCR:epitope recognition. TCR-H is a significant step in this

direction, and towards making the vast universe of potential

epitope and TCR sequences amenable to the computational

prediction of functional TCR/epitope pairs.

At this point, it is incumbent upon us to recognize certain

caveats of our model that will inform future work. First, our model

is strictly a binary prediction and therefore cannot quantitatively

predict the affinity. Furthermore, TCR-pMHC interactions have

affinities in micromolar range (6, 7) and are therefore very weak,

rendering development of quantitatively accurate regression-based

ML models challenging. Affinity prediction may be useful in the

future but would require a dedicated regression-based model

trained/tested only on data points for which affinities are

reported. In the training data used here affinities were only

reported for a very small fraction of the total number of

datapoints (572 out of ca. 100,000 datapoints) and then only for

formation of the ternary complex. Here we train a classification

model to make a bind vs. does not bind prediction of TCR:

epitope pairs.

Aside from the limitation listed above, TCR binding is

modulated and finely tuned by the microenvironmental context.

One such effect is the CD8 cell-surface glycoprotein. Class I

interactions can be stabilized by CD8 and taking this into account

in future studies may be useful once the appropriate experimental

data become available (8). Furthermore, it has been realized that the

TCR is much more than a binary receptor, as it must interpret and

respond to a range of ligand strengths throughout T-cell

development and phenotypic differentiation. The TCR is highly

specific (66–70), while remaining versatile, allowing TCR

interaction with a range of pMHC, corresponding to virtually any

foreign antigen. Moreover, the TCR-pMHC complex is modulated

by its microenvironmental context, including soluble factors (e.g.,

cytokines, growth factors, and nutrients) and sessile molecular cues

in the tissue microenvironment, facilitating a range of diverse and

specific responses by T-cells (71). In addition to these effects, the

affinity of the TCR-pMHC complex is also modulated by external

forces by virtue of the fact that the TCR is mechanosensitive, a

property arising from the motility of lymphocytes (6, 72–76). The

above properties enable T cells to tailor responses to pathogens

while avoiding autoimmune disease. Clearly the delineation of such

effects is way beyond the abilities of a simple CDR3beta:epitope

machine learning model as is presented here. However, there is

some suggestion from our results that elements of the fundamental

epitope:receptor interaction, aside from the context-specific

modulatory effects, are indeed being captured.
Code availability

TCR-H is available on Github at https://github.com/rajitha-

tatikonda/TCR-H.
frontiersin.org

https://github.com/rajitha-tatikonda/TCR-H
https://github.com/rajitha-tatikonda/TCR-H
https://doi.org/10.3389/fimmu.2024.1426173
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


T. et al. 10.3389/fimmu.2024.1426173
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material, further inquiries can be

directed to the corresponding authors.
Author contributions

RRT: Data curation, Formal analysis, Investigation,

Methodology, Software, Visualization, Writing – original draft,

Writing – review & editing. OD: Conceptualization, Investigation,

Methodology, Software, Supervision, Writing – original draft,

Writing – review & editing. JS: Conceptualization, Investigation,

Project administration, Supervision, Writing – original draft,

Writing – review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

This research used resources of the Compute and

Data Environment for Science (CADES) at the Oak Ridge
Frontiers in Immunology 10
National Laboratory, which is supported by the Office of

Science of the U.S. Department of Energy under Contract No.

DE-AC05-00OR22725. The authors thank Mohan Mood for

useful discussions.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.

1426173/full#supplementary-material
References
1. Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, et al.
Quantifiable predictive features define epitope-specific T cell receptor repertoires.
Nature. (2017) 547:89–93. doi: 10.1038/nature22383

2. Bradley P, Thomas PG. Using T cell receptor repertoires to understand the
principles of adaptive immune recognition. Annu Rev Immunol. (2019) 37:547–70.
doi: 10.1146/annurev-immunol-042718-041757

3. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and
coreceptors . Annu Rev Immuno l . (2006) 24 :419–66 . do i : 10 .1146/
annurev.immunol.23.021704.115658

4. Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, et al.
Antigen-specificity measurements are the key to understanding T cell responses. Front
Immunol. (2023) 14:1127470. doi: 10.3389/fimmu.2023.1127470

5. Bradley P. Structure-based prediction of T cell receptor: peptide-MHC
interactions. Elife. (2023) 12:e82813. doi: 10.7554/eLife.82813

6. Wang J-H. T cell receptors, mechanosensors, catch bonds and immunotherapy.
Prog Biophysics Mol Biol. (2020) 153:23–7. doi: 10.1016/j.pbiomolbio.2020.01.001

7. Dhusia K, Su Z, Wu Y. A structural-based machine learning method to classify
binding affinities between TCR and peptide-MHC complexes. Mol Immunol. (2021)
139:76–86. doi: 10.1016/j.molimm.2021.07.020

8. Gao GF, Jakobsen BK. Molecular interactions of coreceptor CD8 and MHC class
I: the molecular basis for functional coordination with the T-cell receptor. Immunol
Today. (2000) 21:630–6. doi: 10.1016/S0167-5699(00)01750-3

9. Aranha MP, Jewel YS, Beckman RA, Weiner LM, Mitchell JC, Parks JM, et al.
Combining three-dimensional modeling with artificial intelligence to increase
specificity and precision in peptide–MHC binding predictions. J Immunol. (2020)
205:1962–77. doi: 10.4049/jimmunol.1900918

10. Shen Y, Parks JM, Smith JC. HLA class I supertype classification based on
structural similarity. J Immunol. (2023) 210:103–14. doi: 10.4049/jimmunol.
2200685
11. Rajeshwar RT, Smith JC. Structural patterns in class 1 major histocompatibility
complex-restricted nonamer peptide binding to T-cell receptors. Proteins-Structure
Funct Bioinf. (2022) 90:1645–54. doi: 10.1002/prot.26343

12. Szeto C, Lobos CA, Nguyen AT, Gras S. TCR recognition of peptide–MHC-I:
Rule makers and breakers. Int J Mol Sci. (2020) 22:68. doi: 10.3390/ijms22010068

13. Mazza C, Auphan-Anezin N, Gregoire C, Guimezanes A, Kellenberger C,
Roussel A, et al. How much can a T-cell antigen receptor adapt to structurally
distinct antigenic peptides? EMBO J. (2007) 26:1972–83. doi: 10.1038/sj.emboj.7601605

14. Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, et al. Identifying
specificity groups in the T cell receptor repertoire. Nature. (2017) 547:94–8.
doi: 10.1038/nature22976

15. Dai S, Huseby ES, Rubtsova K, Scott-Browne J, Crawford F, Macdonald WA,
et al. Crossreactive T cells spotlight the germline rules for ab T cell-receptor
interactions with MHC molecules. Immunity. (2008) 28:324–34. doi: 10.1016/
j.immuni.2008.01.008

16. Christopher Garcia K, Adams JJ, Feng D, Ely LK. The molecular basis of TCR
germline bias for MHC is surprisingly simple. Nat Immunol. (2009) 10:143–7.
doi: 10.1038/ni.f.219

17. Morris GP, Allen PM. How the TCR balances sensitivity and specificity for the
recognition of self and pathogens. Nat Immunol. (2012) 13:121–8. doi: 10.1038/ni.2190

18. Jokinen E, Dumitrescu A, Huuhtanen J, Gligorijević V, Mustjoki S, Bonneau R,
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30. Weber A, Born J, Rodriguez Martıńez M. TITAN: T-cell receptor specificity
prediction with bimodal attention networks. Bioinformatics. (2021) 37:i237–i44.
doi: 10.1093/bioinformatics/btab294

31. Dens C, Laukens K, Bittremieux W, Meysman P. The pitfalls of negative data
bias for the T-cell epitope specificity challenge. Nat Mach Intelligence. (2023) 5:1060–2.
doi: 10.1038/s42256-023-00727-0

32. Grazioli F, Mösch A, Machart P, Li K, Alqassem I, O’Donnell TJ, et al. On TCR
binding predictors failing to generalize to unseen peptides. Front Immunol. (2022)
13:1014256. doi: 10.3389/fimmu.2022.1014256

33. Korpela D, Jokinen E, Dumitrescu A, Huuhtanen J, Mustjoki S, Lähdesmäki H.
EPIC-TRACE: predicting TCR binding to unseen epitopes using attention and
contextualized embeddings. Bioinformatics. (2023) 39:btad743. doi: 10.1093/
bioinformatics/btad743

34. Mastropietro A, Feldmann C, Bajorath J. Calculation of exact Shapley values for
explaining support vector machine models using the radial basis function kernel. Sci
Rep. (2023) 13:19561. doi: 10.1038/s41598-023-46930-2

35. Atchley WR, Zhao J, Fernandes AD, Drüke T. Solving the protein sequence
metric problem. Proc Natl Acad Sci. (2005) 102:6395–400. doi: 10.1073/
pnas.0408677102

36. Moris P, De Pauw J, Postovskaya A, Gielis S, De Neuter N, Bittremieux W, et al.
Current challenges for unseen-epitope TCR interaction prediction and a new
perspective derived from image classification. Briefings Bioinf. (2021) 22:bbaa318.
doi: 10.1093/bib/bbaa318

37. Lu T, Zhang Z, Zhu J, Wang Y, Jiang P, Xiao X, et al. Deep learning-based
prediction of the T cell receptor–antigen binding specificity. Nat Mach intelligence.
(2021) 3:864–75. doi: 10.1038/s42256-021-00383-2

38. Osorio D, Rondón-Villarreal P, Torres R. Peptides: a package for data mining of
antimicrobial peptides. Small. (2015) 12:44–444.

39. Georgiev AG. Interpretable numerical descriptors of amino acid space. J Comput
Biol. (2009) 16:703–23. doi: 10.1089/cmb.2008.0173

40. Cruciani G, Baroni M, Carosati E, Clementi M, Valigi R, Clementi S. Peptide
studies by means of principal properties of amino acids derived fromMIF descriptors. J
Chemometrics. (2004) 18:146–55. doi: 10.1002/cem.856

41. Liang G, Li Z. Factor analysis scale of generalized amino acid information as the
source of a new set of descriptors for elucidating the structure and activity relationships
of cationic antimicrobial peptides. QSAR Combinatorial Science. (2007) 26:754–63.
doi: 10.1002/qsar.200630145

42. Kidera A, Konishi Y, Oka M, Ooi T, Scheraga HA. Statistical analysis of the
physical properties of the 20 naturally occurring amino acids. J Protein Chem. (1985)
4:23–55. doi: 10.1007/BF01025492

43. Zaliani A, Gancia E. MS-WHIM scores for amino acids: a new 3D-description
for peptide QSAR and QSPR studies. J Chem Inf Comput Sci. (1999) 39:525–33.
doi: 10.1021/ci980211b

44. Mathura VS, Paris D, Mullan MJ. A novel physico-chemical property based
model for studying the effects of mutation on the aggregation of peptides. Protein Pept
Letters. (2009) 16:991–8. doi: 10.2174/092986609788923220
Frontiers in Immunology 11
45. Venkatarajan MS, Braun W. New quantitative descriptors of amino acids based
on multidimensional scaling of a large number of physical–chemical properties. J Mol
Model. (2001) 7:445–53. doi: 10.1007/s00894-001-0058-5

46. Barley MH, Turner NJ, Goodacre R. Improved descriptors for the quantitative
structure–activity relationship modeling of peptides and proteins. J Chem Inf modeling.
(2018) 58:234–43. doi: 10.1021/acs.jcim.7b00488

47. Feng X, Sanchis J, Reetz MT, Rabitz H. Enhancing the efficiency of directed
evolution in focused enzyme libraries by the adaptive substituent reordering algorithm.
Chemistry–A Eur J. (2012) 18:5646–54. doi: 10.1002/chem.201103811

48. vanWesten GJ, Swier RF, Wegner JK, IJzerman AP, van Vlijmen HW, Bender A.
Benchmarking of protein descriptor sets in proteochemometric modeling (part 1):
comparative study of 13 amino acid descriptor sets. J cheminformatics. (2013) 5:1–11.
doi: 10.1186/1758-2946-5-41

49. vanWesten GJ, Swier RF, Cortes-Ciriano I, Wegner JK, Overington JP, IJzerman
AP, et al. Benchmarking of protein descriptor sets in proteochemometric modeling
(part 2): modeling performance of 13 amino acid descriptor sets. J cheminformatics.
(2013) 5:1–20. doi: 10.1186/1758-2946-5-42

50. Sneath P. Relations between chemical structure and biological activity in
peptides. J Theor Biol. (1966) 12:157–95. doi: 10.1016/0022-5193(66)90112-3

51. Tong J, Li L, Bai M, Li K. A new descriptor of amino acids-SVGER and its
applications in peptide QSAR. Mol Inf. (2017) 36:1501023. doi: 10.1002/minf.201501023

52. Randic M. Molecular shape profiles. J Chem Inf Comput Sci. (1995) 35:373–82.
doi: 10.1021/ci00025a005

53. Yang L, Shu M, Ma K, Mei H, Jiang Y, Li Z. ST-scale as a novel amino acid
descriptor and its application in QSAM of peptides and analogues. Amino Acids. (2010)
38:805–16. doi: 10.1007/s00726-009-0287-y

54. Tian F, Zhou P, Li Z. T-scale as a novel vector of topological descriptors for
amino acids and its application in QSARs of peptides. J Mol structure. (2007) 830:106–
15. doi: 10.1016/j.molstruc.2006.07.004

55. Mei H, Liao ZH, Zhou Y, Li SZ. A new set of amino acid descriptors and its
application in peptide QSARs. Pept Science: Original Res Biomolecules. (2005) 80:775–
86. doi: 10.1002/bip.20296

56. Sandberg M, Eriksson L, Jonsson J, Sjöström M, Wold S. New chemical
descriptors relevant for the design of biologically active peptides. A multivariate
characterization of 87 amino acids. J medicinal Chem. (1998) 41:2481–91.
doi: 10.1021/jm9700575

57. Boman HG. Antibacterial peptides: basic facts and emerging concepts. J Internal
Med. (2003) 254:197–215. doi: 10.1046/j.1365-2796.2003.01228.x

58. Eisenberg D, Weiss RM, Terwilliger TC. The hydrophobic moment detects
periodicity in protein hydrophobicity. Proc Natl Acad Sci. (1984) 81:140–4.
doi: 10.1073/pnas.81.1.140

59. Guruprasad K, Reddy BB, Pandit MW. Correlation between stability of a protein
and its dipeptide composition: a novel approach for predicting in vivo stability of a
protein from its primary sequence. Protein Engineering Design Selection. (1990) 4:155–
61. doi: 10.1093/protein/4.2.155

60. Gasteiger E, Hoogland C, Gattiker A, Duvaud Se, Wilkins MR, Appel RD, et al.
Protein identification and analysis tools on the ExPASy server. Springer Protocols
Handbooks. Humana Press. Totowa, NJ (2005).

61. Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open
software suite. Trends Genet. (2000) 16:276–7. doi: 10.1016/S0168-9525(00)02024-2

62. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions.
Adv Neural Inf Process Syst. (2017) 30:1–10.

63. Ribeiro MT, Singh S, Guestrin C. (2016). “ Why should i trust you?” Explaining
the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, KDD 2016 San Francisco, CA.
doi: 10.1145/2939672.2939778

64. Montemurro A, Schuster V, Povlsen HR, Bentzen AK, Jurtz V, Chronister WD,
et al. NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired
TCRa and b sequence data. Commun Biol. (2021) 4:1060. doi: 10.1038/s42003-021-
02610-3

65. Chowell D, Krishna S, Becker PD, Cocita C, Shu J, Tan X, et al. TCR contact
residue hydrophobicity is a hallmark of immunogenic CD8+ T cell epitopes. Proc Natl
Acad Sci. (2015) 112:E1754–E62. doi: 10.1073/pnas.1500973112

66. Alam SM, Davies GM, Lin CM, Zal T, Nasholds W, Jameson SC, et al.
Qualitative and quantitative differences in T cell receptor binding of agonist and
antagonist ligands. Immunity. (1999) 10:227–37. doi: 10.1016/S1074-7613(00)80023-0

67. De Magistris MT, Alexander J, Coggeshall M, Altman A, Gaeta FC, Grey HM,
et al. Antigen analog-major histocompatibility complexes act as antagonists of the T
cell receptor. Cell. (1992) 68:625–34. doi: 10.1016/0092-8674(92)90139-4

68. Kersh GJ, Allen PM. Structural basis for T cell recognition of altered peptide
ligands: a single T cell receptor can productively recognize a large continuum of related
ligands. J Exp Med. (1996) 184:1259–68. doi: 10.1084/jem.184.4.1259

69. YangW, Grey HM. Study of the mechanism of TCR antagonism using dual-TCR-
expressing T cells. J Immunol. (2003) 170:4532–8. doi: 10.4049/jimmunol.170.9.4532
frontiersin.org

https://doi.org/10.3389/fimmu.2021.640725
https://doi.org/10.3389/fimmu.2021.640725
https://doi.org/10.1093/bioinformatics/btad284
https://doi.org/10.7554/eLife.85126
https://doi.org/10.3389/fimmu.2022.893247
https://doi.org/10.1093/bib/bbad202
https://doi.org/10.1038/s42256-023-00619-3
https://doi.org/10.1016/j.isci.2024.109770
https://doi.org/10.1093/bioinformatics/btad468
https://doi.org/10.1093/bioinformatics/btad468
https://doi.org/10.1038/s42256-023-00641-5
https://doi.org/10.1038/s42256-023-00641-5
https://doi.org/10.1101/2023.10.02.560555
https://doi.org/10.1093/bioinformatics/btab294
https://doi.org/10.1038/s42256-023-00727-0
https://doi.org/10.3389/fimmu.2022.1014256
https://doi.org/10.1093/bioinformatics/btad743
https://doi.org/10.1093/bioinformatics/btad743
https://doi.org/10.1038/s41598-023-46930-2
https://doi.org/10.1073/pnas.0408677102
https://doi.org/10.1073/pnas.0408677102
https://doi.org/10.1093/bib/bbaa318
https://doi.org/10.1038/s42256-021-00383-2
https://doi.org/10.1089/cmb.2008.0173
https://doi.org/10.1002/cem.856
https://doi.org/10.1002/qsar.200630145
https://doi.org/10.1007/BF01025492
https://doi.org/10.1021/ci980211b
https://doi.org/10.2174/092986609788923220
https://doi.org/10.1007/s00894-001-0058-5
https://doi.org/10.1021/acs.jcim.7b00488
https://doi.org/10.1002/chem.201103811
https://doi.org/10.1186/1758-2946-5-41
https://doi.org/10.1186/1758-2946-5-42
https://doi.org/10.1016/0022-5193(66)90112-3
https://doi.org/10.1002/minf.201501023
https://doi.org/10.1021/ci00025a005
https://doi.org/10.1007/s00726-009-0287-y
https://doi.org/10.1016/j.molstruc.2006.07.004
https://doi.org/10.1002/bip.20296
https://doi.org/10.1021/jm9700575
https://doi.org/10.1046/j.1365-2796.2003.01228.x
https://doi.org/10.1073/pnas.81.1.140
https://doi.org/10.1093/protein/4.2.155
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1038/s42003-021-02610-3
https://doi.org/10.1038/s42003-021-02610-3
https://doi.org/10.1073/pnas.1500973112
https://doi.org/10.1016/S1074-7613(00)80023-0
https://doi.org/10.1016/0092-8674(92)90139-4
https://doi.org/10.1084/jem.184.4.1259
https://doi.org/10.4049/jimmunol.170.9.4532
https://doi.org/10.3389/fimmu.2024.1426173
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


T. et al. 10.3389/fimmu.2024.1426173
70. George AJ, Stark J, Chan C. Understanding specificity and sensitivity of T-
cell recognition. Trends Immunol. (2005) 26:653–9. doi: 10.1016/j.it.2005.
09.011

71. Hwang J-R, Byeon Y, Kim D, Park S-G. Recent insights of T cell receptor-
mediated signaling pathways for T cell activation and development. Exp Mol Med.
(2020) 52:750–61. doi: 10.1038/s12276-020-0435-8

72. Brazin KN, Mallis RJ, Das DK, Feng Y, Hwang W, Wang J-h, et al.
Structural features of the abTCR mechanotransduction apparatus that
promote pMHC discrimination. Front Immunol. (2015) 6:441. doi: 10.3389/
fimmu.2015.00441
Frontiers in Immunology 12
73. Liu CSC, Raychaudhuri D, Paul B, Chakrabarty Y, Ghosh AR, Rahaman O, et al.
Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J Immunol.
(2018) 200:1255–60. doi: 10.4049/jimmunol.1701118

74. LiuCSC,GangulyD.Mechanical cues for T cell activation: role of piezo1mechanosensors.
Crit Reviews™ Immunol. (2019) 39:15–38. doi: 10.1615/CritRevImmunol.v39.i1
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