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Background: Unbalanced inflammatory response is a critical feature of sepsis, a life-

threatening condition with significant global health burdens. Immune dysfunction,

particularly that involving different immune cells in peripheral blood, plays a crucial

pathophysiological role and shows early warning signs in sepsis. The objective is to

explore the relationship between sepsis and immune subpopulations in peripheral

blood, and to identify patients with a higher risk of 28-day mortality based on

immunological subtypes with machine-learning (ML) model.

Methods: Patients were enrolled according to the sepsis-3 criteria in this

retrospective observational study, along with age- and sex-matched healthy

controls (HCs). Data on clinical characteristics, laboratory tests, and lymphocyte

immunophenotyping were collected. XGBoost and k-means clustering as ML

approaches, were employed to analyze the immune profiles and stratify septic

patients based on their immunological subtypes. Cox regression survival analysis was

used to identify potential biomarkers and to assess their association with 28-day

mortality. The accuracy of biomarkers for mortality was determined by the area

under the receiver operating characteristic (ROC) curve (AUC) analysis.

Results: The study enrolled 100 septic patients and 89 HCs, revealing distinct

lymphocyte profiles between the two groups. The XGBoost model discriminated

sepsis fromHCs with an area under the receiver operating characteristic curve of 1.0

and 0.99 in the training and testing set, respectively. Within the model, the top three

highest important contributions were the percentage of CD38+CD8+T cells, PD-

1+NK cells, HLA-DR+CD8+T cells. Two clusters of peripheral immunophenotyping of

septic patients by k-means clustering were conducted. Cluster 1 featured higher

proportions of PD1+ NK cells, while cluster 2 featured higher proportions of naïve

CD4+T cells. Furthermore, the level of PD-1+NK cells was significantly higher in the

non-survivors than the survivors (15.1% vs 8.6%, P<0.01). Moreover, the levels of PD1+

NK cells combined with SOFA score showed good performance in predicting the

28-day mortality in sepsis (AUC=0.91,95%CI 0.82–0.99), which is superior to PD1+
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sensitivity C-reactive protein; PCT, Procalcitonin; IL

interleukin-8; IL-10, interleukin-10; CRRT, continuo
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NK cells only(AUC=0.69, sensitivity 0.74, specificity 0.64, cut-off value of 11.25%). In

the multivariate Cox regression, high expression of PD1+ NK cells proportion was

related to 28-day mortality (aHR=1.34, 95%CI 1.19 to 1.50; P<0.001).

Conclusion: The study provides novel insights into the association between PD1+NK

cell profiles and prognosis of sepsis. Peripheral immunophenotyping could

potentially stratify the septic patients and identify those with a high risk of 28-

day mortality.
KEYWORDS

sepsis, mortality, immunophenotype, NK cells, machine-learning
Introduction

Sepsis is a life-threatening organ dysfunction characterized by

an unbalanced host’s inflammatory response to infection (1). In

2017, a global study on sepsis burden estimated 48.9 million sepsis

cases and 11 million sepsis-related deaths worldwide, which

represents almost 20% of all deaths globally (2, 3). Once patients

with sepsis require admission to critical care units, one-third of

patients do not survive within 28 days and mortality varies by age,

comorbid status, number, and type of organ dysfunction (4, 5).

Immune dysfunction is a pivotal pathophysiological feature of

sepsis that involves different types of immune cells and complex

molecular regulation thereof (4). During sepsis, inflammation and

immunosuppression may occur sequentially or concurrently. An initial

surge of pro-inflammatory cytokines and acute phase reactants,

including interleukin(IL)-6, IL-8, ferritin, and C-reactive protein

(CRP), followed by a compensatory anti-inflammatory response

marked by elevated level of IL-10 in plasma, decreased expression of

HLA-DR, and heightened expression of exhaustion markers including

PD-1, TIM-3, and neutrophils CD88, along with an elevated

proportion of regulatory T cells (Tregs), ultimately leads to drained

and dysfunctional lymphocytes (4, 6–9). This phenomenon is called

‘sepsis-induced immunosuppression’, which has been related to

adverse outcomes and increased mortality (10, 11). In light of this,

researchers are actively engaged in the exploration and evaluation of

biomarkers or digital signatures associated with sepsis and its

phenotypes, to enhance diagnostic efficiency and identify potential

physiological pathways and therapeutic targets (12).

Traditional biomarkers could be considered to provide information

in systemic inflammation, including host-response biomarkers e.g.,

CRP, and procalcitonin (PCT), and organ dysfunction evaluation, e.g.

sequential organ failure assessment (SOFA). However, given the

complexity of sepsis, these indicators are neither specific nor sensitive
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to sepsis (13), leaving still needs for more new biomarkers. Therefore, as

the immune dysregulation triggered by sepsis has gained more

attention, monitoring the immune status of septic patients could be

potential and crucial for the assessment of the prognosis and timely

protection of organ function (14). Most patients with sepsis have

reduced lymphocytes. Nevertheless, most viable lymphocytes are in

an unresponsive state. Specifically, the quality and quantity of T cells, B

cells and NK cells were altered in sepsis patients, resulting in impaired

differentiation and activation of these immune cells, as well as high

expression of negative costimulatory molecules. Besides, an increased

frequency of immunosuppression markers [such as BTLA+CD4+T cells

(15), TIM-3+CD4+T cells (16) and Th17/Treg ratio (17)] in septic

patients is associated with higher rates of mortality or secondary

infection. Consequently, there is a urgent need to identify the key

features of immune cell alterations, and to further stratify septic patients

with higher risk based on immunophenotyping biomarkers.

In the study, we investigated the role of T cells and natural killer

(NK) cells in sepsis, especially the role of PD-1+NK cells in sepsis. To

overcome the complexity and multiparameter of immune network

dynamics in sepsis, machine learning (ML) encompassing a class of

mathematical methods were applied. ML could process information

from large datasets to generate core knowledge and insights (18), which

is required in comprehensive depiction of immune profiles (19). It

could further enhance the predictive and prognostic accuracy (18, 20,

21). In the present study, we proposed for the first time the ML-based

immunophenotypes in sepsis and their relationship with other

inflammatory biomarkers. Furthermore, we identified the patients

with increased risk of mortality based on immunological subtypes.
Materials and methods

Study design and subjects

This retrospective study was conducted at Peking Union

Medical College Hospital (PUMCH) between June 2023 and

December 2023. Adult patients diagnosed with sepsis according

to Sepsis-3 criteria were included, with at least one test of the
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peripheral immune cells (1). Exclusion criteria included patients

aged less than 18 years, pregnant, or lack of immune cell testing. To

better describe the predictive value of the immune patterns, septic

patients with underlying conditions including chronic infection,

autoimmune diseases, or cancers, were also included in our study

set. Meanwhile, healthy controls (HCs) were included with age and

sex matched with the septic patients.
Data collection and flow cytometry

Clinical characteristics, including age, sex, sequential organ

failure assessment (SOFA) score, underlying diseases,

immunosuppressive drugs, infection sources and 28-day

mortality, were retrospectively collected from medical records.

Initial inflammatory tests upon admission were recorded,

including complete blood count, hsCRP, PCT, IL-6, IL-8, and IL-10.

Immunophenotyping of peripheral blood lymphocytes was

analyzed by 18-colour flow cytometry (LSRFortessa & trade; BD

Biosciences, USA) as previously described (22). Fresh whole blood

was tested with a panel of monoclonal antibodies against CD3/

CD8/CD4, CD3/CD16 plus CD56, HLA-DR/CD38/PD-1/Ki-67/

CD56 plus CD16, HLA-DR/CD38/PD-1/Ki-67/CD8, CD28/CD8/

CD4, CD62L/CD45RA/CD4, CD25/CD127/CD4, and isotype

controls (Immunotech, France). Cell surface marker expression

was analyzed using Flowjo software v10.6. Cell counts of

lymphocyte subsets were calculated with the white blood cell

counts and lymphocyte differentials obtained from blood routine

tests of the same specimen. Immunophenotyping methodologies

and the threshold of expression of immune cells has been shown in

Supplementary Figure 1.
Machine learning

XGBoost
To discriminate immune cell profiles between septic patients

and HCs, we utilized both the Logistic Regression and XGBoost

(eXtreme Gradient Boosting) approaches, renowned for their

established effectiveness in diverse machine learning prediction

tasks. The logistic regression algorithm was implemented using

the Scikit-Learn package (v1.0.2) in Python. Default values were

utilized for the key hyperparameters in the LogisticRegression

model. For the XGBoost approach, the XGBoost package (v1.6.2)

in Python was employed. The key hyperparameters in the XGBoost

model included the number of trees (n_estimators=1000) and

maximum tree depth (max_depth=2), while the remaining

hyperparameters adopted their default values.

To evaluate the performance of the models, the areas under the

receiver operating characteristic curve (AUC) were computed.

Furthermore, the SHapley Additive exPlanations (SHAP) values

were calculated using the SHAP package (v0.42.1) in Python. These

values were employed to visualize the interpretation of the

contributing variables in both the Logistic Regression and

XGBoost models.
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K-means clustering
We used k-means clustering exploring the stratification of the

immune cell profile in those sepsis patients. The number of

optimum values for k (the number of clusters) was determined by

the “NbClust” package in R (23), which turned out to be two

clusters. After standardizing the proportions of T cell subsets and

NK cells, K-means clustering was done.

PLAS-DA
To validate the features identified by XGBoost, we conducted

subsequent partial least squares discriminant analysis (PLSDA)

using the Scikit-Learn package in Python. This analysis employed

ten-fold cross-validation with 5 repetitions to mitigate the risk of

overfitting. We opted for PLS-DA due to its capability as a

supervised machine learning tool, serving both feature selection

and classification purposes. The prediction interval of the model

was visually represented by the 95% confidence ellipses constructed

between the two principal components.
Statistical analysis

Statistical analyses were performed using R 4.1.3 (https://

www.r-project.org/). Continuous data were reported as the mean

± standard deviation (SD) or median (interquartile range [IQR])

depending on their normality, analyzed with Student’s t-test or

rank-sum test as appropriate. Categorical data were reported as the

number and percentage and compared using Fisher’s exact test or

chi-square test. For correlation analysis, Pearson or Spearman

analyses were performed as appropriate. The receiver operating

characteristic (ROC) curve was used to determine the ability of

lymphocyte subsets to discriminate septic patients from HCs, as

well as comparing different biomarkers with 28-day mortality with

Youden index. Immune cell levels were then classified using cutoff

values. Cox regression analysis was conducted to determine the

association of the potential biomarker with the 28-day mortality

represented by the odds ratio (HR) and the 95% confidence

intervals (CI). All tests were two-sided, and statistical significance

was set at P <0.05.
Results

The lymphocyte profile in the peripheral
blood in patients with sepsis was
greatly disturbed

A total of 100 septic patients and 89 age and sex-matched HCs

were enrolled. The median ages of the two groups were similar (59

[40.8–68] years in the sepsis group vs. 53 [39–61] years in the HC

group), which means the immune profile could be comparable due

to exception of age and sex interference.

The main characteristics of septic patients are shown in Table 1.

In general, lungs were the main site of infection (n = 40; 40%),

followed by intrabdominal infection (n = 28; 28%) and endocarditis
frontiersin.org

https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.3389/fimmu.2024.1426064
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2024.1426064
(n = 20; 20%). Around 52% patients required mechanical

ventilation, 55% required vasopressive drugs, and 22% developed

AKI including 15% that required CRRT. Among sepsis patients, 22

patients (22%) died during the 28-day follow-up period.

The lymphocyte profiles of septic patients exhibited notable

distinctions compared with HC. The proportions of most cell

subsets showed marked differences between sepsis and HCs.

Proportions of Tregs, naïve CD4+T cells, PD1+CD4+T cells, Ki67+

CD4+T cells, CD38+DR+ CD4+T cells, PD1+ CD8+T cells, Ki67+

CD8+T cells, DR+ CD8+T cells, CD38+ CD8+T cells, CD38+DR+

CD8+T cells, DR+NK cells, CD38+NK cells, PD1+NK cells, and

Ki67+NK cells in septic patients were significantly higher than those

in HCs. In contrast, the absolute lymphocytes, memory CD4+T

cells, and NK cells proportions were significantly lower in septic

patients than those in HCs (Supplementary Table 1). These results

indicated that patients with sepsis had a disrupted immune cell

profile in the peripheral blood compared with HCs.
Machine learning approach differentiates
lymphocyte profiles between sepsis
and HC

To further define and validate the immunophenotype in sepsis,

we employed the XGBoost approach with the lymphocyte subsets

from the peripheral blood of septic patients and HCs. The

percentage of lymphocyte subsets containing 21 features entered

the XGBoost model. After optimization, the accuracy of the

XGBoost model in the testing set to distinguish septic patients

from HCs was 1.0. Besides, the XGBoost algorithm showed AUC of

100% and 99.8% with ROC analysis in the training and testing set,

respectively, indicating the outstanding effectiveness of this model

in discriminating septic patients from HCs (Figure 1B).

To better visualize and explore the role of specific lymphocyte

subsets in the XGBoost model, the top ten mean absolute SHAP

scores were calculated and demonstrated in Figure 1A. The

percentage of CD38+CD8+T cells, PD-1+NK cells, HLA-DR+

CD8+T cells represented the top three highest SHAP value

contributions in the segregation of patients with sepsis from HCs

in the XGBoost model.

For further validation, we carried the logistic model explaining

the feature importance with SHAP and PLS-DA analysis

(Supplementary Figure 2).
The correlation between different
lymphocyte subsets and serum biomarkers
in sepsis

We then did correlation analysis to investigate the potential

relationship between immune cell profile and serum biomarkers in

sepsis. The heatmap showed the correlation of the proportions of

different immune cell subsets with the serum biomarker in

patients (Figure 2).

The percentage of lymphocytes were negatively correlated with

hsCRP (r = -0.2911, P = 0.0497) and PCT (r= -0.3034, P= 0.0404).
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In addition, the percentage of CD3+ T cells also showed the same

negative trend with hsCRP (r = -0.4066, P = 0.0050) and PCT (r=

-0.4802, P=0.0007). As for NK cell subsets, the percentage of NK

cells was positively correlated with PCT (r = 0.3895, P = 0.0075).
The stratification of sepsis based on
immune cell profile using the machine-
learning approach revealed two clusters

To stratify septic patients based on immune cell profile, we

utilized the ML approach of K-means clustering. Considering the

immune cell recruitment in the sepsis patients, we focused on

CD8+T and NK cell profiles. After confirming that two clusters were

optimal, we did a k-means clustering analysis to investigate immune

patterns among T cell subsets and NK cells (Figure 3A). As shown

in Supplementary Figure 3, the cluster 1 (n = 32) was characterized

by significantly higher proportions of PD1+NK cells (13.80 [8.32–

21.75] % vs. 8.38 [5.02–12.80] %, P=0.001), CD38+CD8 T cells

(79.25 [63.20 - 89.05] % vs.40.45 [31.38 - 60.75] %, P<0.001), HLA-

DR+ CD8 T cells (76.60 [59.12 - 81.55] % vs.40.45 [(24.13 - 56.00]

%, P<0.001), CD38+HLA-DR+CD8+ T cells(56.00 [40.05 - 70.20] %

vs. 20.75 [9.70 - 27.85] %, P<0.001) and memory T cell(75.25 [58.90

- 83.92] % vs. 50.60 [38.62 - 63.92] %, P<0.001). While the cluster 2

(n = 68) featured significantly higher proportions of CD4+T (32.95

[22.70 - 45.75] % vs. 59.35 [50.63 - 70.17] %, P<0.001), naïve CD4+T

(18.95 [9.65 - 37.32] % vs. 42.90 [31.93 - 56.92] %, P<0.001),

CD4+CD28+T cells (91.65 [88.02 - 96.15] % vs. 95.25 [91.83 - 97.98]

%, P= 0.017).

Notably, the difference in PD-1+ NK cells proportions was most

obvious between the two clusters (Figure 3B).
PD-1+NK immune cell profile based
stratification predicted mortality
rate in 28-day in sepsis

Given the results of ML indicating a potential immune risk

biomarker of PD-1+ NK cells, we further investigated the clinical

utility of immunophenotypes in predicting the 28-day mortality for

septic patients. As shown in Supplementary Table 3, the level of PD-

1+NK cells were significantly higher in the non-survivors than those

in the survivors (15.1% vs 8.6%, P<0.01). To further confirm the

prognostic role of PD-1+NK cells in sepsis, we compared the

predictive performance between PD-1+NK cells and commonly

used inflammatory markers, including CRP, PCT, IL-6, as well as

SOFA score. The area under the ROC curve (AUC) of the

percentage of PD-1+NK cells and hsCRP, PCT and IL-6 for

predicting 28-day mortality were 0.69 (0.58–0.80), 0.58 (0.45–

0.71), 0.52(0.39–0.65), and 0.56 (0.39–0.72), respectively.

Moreover, the SOFA score was 0.727 (0.635–0.807) (Figure 4).

The AUC of the combination of percentage of PD-1+NK cells and

SOFA score was 0.91 (0.82–0.99). The comparison of the AUC of

SOFA+ PD-1+NK (the percentage of PD-1+NK cells) model vs. PD-

1+NK (0.91 vs. 0.69, P<0.001), SOFA+PD-1+NK model vs. hsCRP

(0.91 vs. 0.58, P<0.001), SOFA+PD-1+NK model vs. PCT(0.91 vs.
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TABLE 1 Baseline characteristics of the patients according to 28-day survival.

Parameters All patients
(n = 100)

Survivors
(n = 78)

Non-Survivors
(n = 22)

P

Demographic characteristics

Age (years) 59.00 (40.75, 68.00) 58.00 (40.00, 67.00) 63.00 (58.00, 70.25) 0.197

Male, n (%) 64 (64.00) 50 (64.10) 14 (63.64) 0.968

Lab tests

WBC (×109/L) 10.54 (5.45, 14.66) 10.19 (5.98, 15.14) 11.41 (4.81, 13.15) 0.687

Lym% 9.25 (4.50, 19.62) 10.30 (4.62, 20.28) 7.25 (3.68, 13.35) 0.130

N% 79.90 (68.07, 88.93) 75.05 (64.67, 85.93) 88.70 (81.08, 90.88) 0.001

hsCRP (mg/L) 160.00 (96.80, 252.00) 157.00 (92.00, 243.00) 223.00 (133.77, 270.53) 0.133

PCT (ng/ml) 4.00 (0.80, 14.00) 4.60 (0.72, 15.50) 2.90 (1.65, 9.82) 0.896

IL-6 (pg/mL) 119.20 (36.64, 309.50) 127.48 (41.62, 322.50) 110.00 (36.00, 161.50) 0.520

IL-8 (pg/mL) 82.60 (44.50, 142.73) 78.00 (52.00, 131.46) 92.80 (26.72, 200.40) 0.990

IL-10 (pg/mL) 14.55 (7.35, 22.83) 14.80 (8.07, 22.78) 9.14 (5.00, 35.52) 0.534

Underlying diseases

hypertension, n (%) 34 (34.00) 29 (37.18) 5 (22.73) 0.206

diabetes, n (%) 29 (29.00) 19 (24.36) 10 (45.45) 0.054

cancers, n (%) 11 (11.00) 8 (10.26) 3 (13.64) 0.951

Immunocompromised, n (%) 20 (20.00) 12 (15.38) 8 (36.36) 0.061

Steroids, n (%) 11 (11.00) 6 (7.69) 5 (22.73) 0.109

Immune Therapy, n (%) 15 (15.00) 9 (11.54) 6 (27.27) 0.137

Source of infection, n (%)

Lung 40 (40.00) 23 (29.49) 17 (77.27) <.001

Abdominal 28 (28.00) 24 (30.77) 4 (18.18) 0.246

Urinary Tract 9 (9.00) 6 (7.69) 3 (13.64) 0.661

Endocarditis 20 (20.00) 19 (24.36) 1 (4.55) 0.080

Others 10 (10.00) 8 (10.26) 2 (9.09) 1.000

Severity

Shock, n (%) 54 (54.00) 35 (44.87) 19 (86.36) <.001

SOFA, M (Q1, Q3) 4.00 (2.00, 9.00) 3.00 (2.00, 7.00) 11.00 (9.00, 12.00) <.001

SOFA>8, n (%) 32 (32) 12 (15.38) 20 (90.91) <.001

Vasopressive drugs, n (%) 55 (55.00) 36 (46.15) 19 (86.36) <.001

Mechanical ventilation, n (%) 52 (52.00) 34 (43.59) 18 (81.82) 0.002

Acute kidney injury, n (%) 22 (22.00) 15 (19.23) 7 (31.82) 0.333

CRRT, n (%) 15 (15.00) 10 (12.82) 5 (22.73) 0.417

ICU length of stay, M (Q1, Q3) 2.00 (0.00, 10.00) 1.50 (0.00, 8.00) 5.00 (2.25, 12.25) 0.040

Length of hospitalization, M (Q1, Q3) 15.50 (8.75, 27.00) 17.00 (10.50, 28.75) 9.00 (3.00, 15.75) 0.001
F
rontiers in Immunology
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Data are shown as median and interquartile range.
WBC, white blood cell; Lym%, the percentage of lymphocytes in WBC; N%, the percentage of neutrophils in WBC; SOFA sepsis-related organ failure assessment; hsCRP, high-sensitivity C-
reactive protein; PCT, Procalcitonin; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; CRRT, continuous renal replacement therapy; ICU, Intensive Care Unit.
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0.52, P<0.001), and SOFA+PD-1+NK model vs. IL-6 (0.91 vs. 0.56,

P<0.001) indicates that the mortality prediction of the SOFA+ PD-

1+NK model was better than the other isolated indicator. However,

there was no statistical difference between SOFA+PD-1+NK model

vs. SOFA score (0.91 vs. 0.89, P>0.05). The 28-day mortality was

predicted according to the cutoff, and the sensitivity and specificity

were shown in Table 2.

Furthermore, based on the ROC analyses, patients were divided

into high and normal groups of PD1+ NK cells proportion according to

the cut-off value of 11.25%. We conducted univariate and multivariate

Cox regression, and the regression result revealed a statistically

predictive role of PD1+ NK cells in mortality of sepsis (HR=3.96,

95%CI 1.46 to 10.75; P=0.007). After adjusting for age, sex, and SOFA

score, a multivariate Cox regression model also showed the increase in
Frontiers in Immunology 06
PD1+ NK cells proportion was related to 28-day mortality (aHR=1.34,

95%CI 1.19 to 1.50; P<0.001) (Table 3).
Discussion

Sepsis remains a devastating and life‐threatening clinical condition

in practice. Due to its nature of dysregulated immune responses, more

understanding of its immunological mechanism and potential

biomarkers will better serve the clinical management and finally

improve the prognosis. In this study, we conducted a comprehensive

investigation of multiparametric immunophenotypes to determine

immune dysfunction in septic patients and identify biomarkers for

risks of mortality using machine learning approaches. We

distinguished the prognostic values of PD-1+ NK cells in predicting

28-day mortality in sepsis. This was based on the following findings

and arguments: (1) the percentage of PD-1+NK cells of sepsis patients

who died within 28 days was significantly higher than that of those who

survived, (2) multivariate cox regression analysis showed that the

percentage of PD-1+ NK cells and SOFA score were independent

risk factors for 28-day mortality, (3) the AUC of predicting the 28-day

mortality was non-inferior to the ordinary inflammatory biomarkers.

Our findings of the distinctive immune disturbances induced by sepsis

suggested a possible role of immunemodulating in improved outcomes

of these critically ill patients (24).

In our study, we found that the immune phenotypes testing in

peripheral blood could easily distinguish patients in sepsis with

healthy controls, which indicated the necessity of immune

evaluation in septic patients. The top three peripheral immune

cell subtypes pinpointed by ML analysis in discriminating sepsis

from HCs were CD38+CD8+T cells, PD-1+NK cells, and HLA-DR+

CD8+T cells. The circulating CD38+CD8+T cells and HLA-DR+

CD8+T cells represent the activation subsets of CD8+T cells. The

persistent activation of NK and CD8+ T-lymphocytes plays a central

role in eliminating pathogens in sepsis, similar as we depicted in

COVID-19 in previous studies (22).
BA

FIGURE 1

XGBoost model and SHAP value to evaluate variables’ importance. (A) SHAP summary plot to visualize the features’ impact on the model. The
proportions of immune cell are ranked by importance (most important on top). The SHAP values on the x-axis indicate strength and direction of
impact (positive value indicates increased probability of belonging to the sepsis group, a negative value indicates increased likelihood of belonging to
the healthy control group). The color of the dots represents the feature value of corresponding immune cell proportions (blue if low, red if high).
(B) Receiver operating characteristic (ROC) curve of XGBoost model in the training set and the testing set. SHAP, SHapley Additive explanation;
XGBoost, eXtreme Gradient Boosting.
FIGURE 2

Correlation analysis of immune cell subsets and laboratory
parameters. Heatmap representing the correlation analysis between
percentage of immune cells with laboratory parameters (*, p<0.05,
**, p<0.01, ***, p<0.001).
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Not surprisingly, changes of NK cells have gained increased

attention, acting as a significant risk factor for sepsis (25). They are

the main effector cells in innate immunity which can recognize and

attack viruses and bacteria (26). Previous studies have reported that

the number of NK cells in the peripheral blood of sepsis patients is

significantly higher than that of healthy individual (27).

Programmed cell Death-1 (PD-1) is expressed on various

immune cells (28). PD-1 overexpression in NK cell line resulted

in decreased degranulation, indicating its suppressive effects not

only on T cells but also on NK cells (29). Significant expression of

PD-1 has been described in digestive cancers (30) and several

infectious diseases, including chronic HIV (31), HBV (32), and

HCV (33) infection, influenza (34), and SARS-CoV-2 infection

(35), which contributes to an exhausted NK cell response.

However, less is considered on the prognostic value of PD-1 and

other surface inhibitory receptors of NK cells in clinical studies,
Frontiers in Immunology 07
which might constrain the comprehensive understanding of NK cells

in human sepsis. To the best of our knowledge, this is the first study

investigating the prognostic role of the percentage of PD-1+ NK cells

in sepsis. And we found that PD-1+ NK could predict the 28-day

mortality of sepsis. Multiple clinical studies have established a

correlation between PD-1 or PD-L1 expression and sepsis mortality

(36). Previous studies mainly highlighted the high risk in mortality of

patients with an increased expression of PD-1 by CD8+T cells or

monocytes (8, 37, 38), or even combined exhausted CD8+ T cells

pattern (2B4hiPD-1hi CD160low or 2B4hi PD-1low CD160hi) (39).

However, comparisons of PD-1+NK cells and PD-1- NK cells have

revealed PD-1+NK cells to be functionally exhausted, with impaired

cytotoxicity and cytokine production and reduced proliferative

capability (28, 40). A prospective study pointed out that the

expression of PD-1 in Tregs (OR:1.04;95%CI:1.00–1.07) and SOFA

scores (OR:1.26;95%CI:1.05–1.52) were independent risk factors for
FIGURE 4

ROC curves of the PD-1+ NK levels, hsCRP, PCT, IL-6 levels and SOFA in predicting patients’ 28-day mortality. AUC, area under the curve;
hsCRP, high-sensitivity C-reactive protein; SOFA, sepsis-related organ failure assessment.
BA

FIGURE 3

Cluster analysis based on the lymphocyte subsets in sepsis. (A) Clustering visualization (k = 2) obtained from k-means clustering. (B) Forest plot
shows odds ratios with 95% CIs for the associations of lymphocyte cell subsets in Cluster 1 and Cluster 2.
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28-day mortality in septic patients (41). Furthermore, several studies

proved that the percentage of monocytes and NK cells expressing

PD-L1 can have discriminatory value for mortality with AUC values

in the range of 0.66 to 0.85 (7, 42). Recently, an experimental study

proved that high expression of PD-L1 were thought to be connected

with sepsis progression, and the survival rate of septic mice was

improved by anti-PD-L1 antibody treatment (43). These findings

proved the significant role of the exhaustion pattern in terms of the

critical illness in sepsis. Through evidence of over-stimulation by

impaired cells deficient in MHC-I probably lead to upregulation of

PD-1 expression on NK cells, we could propose that the impact of

PD-1 blockade on NK cells, may be more nuanced in terms of impact

on functional activity than CD8+T cell function, however, more

evidence is still needed (25).

Furthermore, CRP and PCT levels did not predict 28-day

mortality, which is similar to the earlier studies (42, 44). These

results indicated that the percentage of PD-1+NK cells could predict

the prognosis of sepsis patients earlier than conventional inflammatory

markers, such as CRP and PCT. The AUC analysis showed that the

percentage of PD-1+NK cells was similar to commonly used clinical

SOFA scores in predicting the 28-day mortality. Observational studies

have noted that levels of soluble programmed cell death ligand-1 (sPD-

L1) in the peripheral blood are elevated in septic patients and positively
Frontiers in Immunology 08
correlated with CRP and PCT levels. However, these levels are not

associated with poor prognosis at an early stage (45). Similarly, some

immunosuppressive biomarkers like monocytic HLA-DR expression

proved inadequate for predicting sepsis mortality in the initial phase.

Additionally, a sustained decrease in mHLA-DR expression was noted

in non-surviving patients (46).

In addition, two independent risk factors of regression analysis

were constructed into a prediction model of SOFA+PD-1+NKmodel.

Its performance in predicting 28-day mortality was significantly

better than any other single indicator. The SOFA+PD-1+NK mode

improves the AUC of SOFA scores (0.89–0.91) without the statistical

difference, which may contribute to the excellent performance of

SOFA in the study. The evaluation items of the SOFA score include

the related indexes to evaluate the function of the nervous system,

blood system, circulatory system, respiratory system, liver, and

kidney, but exclude the immune function. The current results

suggested that the inclusion of indicators reflecting the immune

function into the SOFA scoring system might further optimize the

predictive efficacy of SOFA scores.

As demonstrated above, circulatory immune cells play a critical

role in the pathogenesis of sepsis. However, interpreting their role is

complicated by the inherent limitations of observational studies and

the complex interactions between host and bacteria, which render

these studies susceptible to confounding factors and reverse

causation. To address these challenges, statistical methods such as

inverse probability weighting (IPW) and Mendelian randomization

(MR) analysis are necessarily employed (47), albeit requiring large

sample sizes. A recent study using MR analysis, based on genome-

wide association studies (GWAS), identified causal effects of 36 and

34 immunophenotypes on sepsis and 28-day mortality, respectively

(48). These findings supported the significant influence of immune

cells in the pathogenesis of sepsis.

Our study has some limitations. First, the interpretation of our

findings might be limited by the sample size and the fact that it was

conducted at a single center. Further validation with a large clinical

cohort is necessary. Second, ML algorithms act like a black box that

can produce effective predictions, yet their complementary

explanations are often invisible. Considering that, we attempted

to utilize SHAP values to explain and visualize the weight of specific

lymphocyte subsets in the ML model. Third, although routinely

used at our institution, we acknowledge that achieving broader

adoption across multiple centers remains a significant challenge.

The modest contribution and feasibility of using this approach to

enhance predictive performance in clinical settings could be further

improved. Lastly, the functional studies related to inflammatory

factors released by NK and T lymphocytes are not enrolled in the

current study yet.
Conclusion

In conclusion, our work showed that the expression of PD-

1+NK cells was independent risk factors for 28-day mortality, and it

may serve as valuable indicators for predicting prognosis of patients

based on the sepsis-3.0 criteria. Whether to include an assessment

of immune function in the SOFA score needs further investigation.
TABLE 3 Cox regression analysis for 28-day mortality.

Variables Unadjusted Model Adjusted Model

HR (95%CI) P aHR (95%CI) aP

Age 1.02 (1.00 - 1.05) 0.108 3.78 (1.35 - 10.58) 0.011

SOFA 1.30 (1.18 - 1.43) <.001 1.03 (1.00 - 1.06) 0.058

Male 1.51 (0.59 - 3.86) 0.389

PD1+NK group

<11.25 Ref Ref

≥11.25 3.96 (1.46 - 10.75) 0.007 1.34 (1.19 - 1.50) <.001
SOFA, sepsis-related organ failure assessment; HR, hazard ratio; aHR, adjusted hazard ratio;
Ref, reference.
TABLE 2 The percentage of PD-1+ NK cells, SOFA score for predicting
28-day mortality.

Markers Best
cutoff

Specificity Sensitivity AUC 95%
CI

hsCRP 194.5 0.64 0.56 0.579 0.451–
0.707

PD1+NK 11.25 0.64 0.74 0.69 0.573–
0.807

PCT 10.5 0.40 0.83 0.524 0.396–
0.652

IL-6 194 0.41 0.8 0.556 0.392–
0.719

SOFA 8.5 0.85 0.91 0.898 0.816–
0.979
SOFA, sepsis-related organ failure assessment; PD-1 NK, the percentage of PD-1+ NK cell;
hsCRP, high-sensitivity C-reactive protein; PCT, Procalcitonin; IL-6, interleukin-6.
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