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Ensemble modeling of SARS-
CoV-2 immune dynamics in
immunologically naïve rhesus
macaques predicts that potent,
early innate immune responses
drive viral elimination
Catherine Byrne and Joshua T. Schiffer*

Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
Introduction: An unprecedented breadth of longitudinal viral and multi-scale

immunological data has been gathered during SARS-CoV-2 infection. However,

due to the high complexity, non-linearity, multi-dimensionality, mixed anatomic

sampling, and possible autocorrelation of available immune data, it is challenging

to identify the components of the innate and adaptive immune response that

drive viral elimination. Novel mathematical models and analytical approaches are

required to synthesize contemporaneously gathered cytokine, transcriptomic,

flow cytometry, antibody response, and viral load data into a coherent story of

viral control, and ultimately to discriminate drivers of mild versus severe infection.

Methods: We investigated a dataset describing innate, SARS-CoV-2 specific T

cell, and antibody responses in the lung during early and late stages of infection in

immunologically naïve rhesus macaques. We used multi-model inference and

ensemble modeling approaches from ecology and weather forecasting to

compare and combine various competing models.

Results and discussion:Model outputs suggest that the innate immune response

plays a crucial role in controlling early infection, while SARS-CoV-2 specific

CD4+ T cells correspond to later viral elimination, and anti-spike IgG antibodies

do not impact viral dynamics. Among the numerous genes potentially

contributing to the innate response, we identified IFI27 as most closely linked

to viral load decline. A 90% knockdown of the innate response from our validated

model resulted in a ~10-fold increase in peak viral load during infection. Our

approach provides a novel methodological framework for future analyses of

similar complex, non-linear multi-component immunologic data sets.
KEYWORDS

SARS-CoV-2, mathematical modeling, ensemble model, systems immunology, innate
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1 Introduction

TheCOVID-19pandemic, caused by thenovel coronavirus SARS-

CoV-2, spurred an extraordinary global effort to comprehensively

understand the pathophysiology of this infection. Longitudinal viral

and multi-scale immunological datasets were amassed at an

unparalleled scale (1–15), offering a unique opportunity to identify

the intricacies of immune defense mechanisms during SARS-CoV-

2 infection.

Animal models have proven especially useful for studying

SARS-CoV-2 viral and immune kinetics (2, 3, 16–23). In contrast

to the limitations faced in human studies, where sampling is often

confined to saliva or nasal specimens collected after symptom onset,

animal model studies enable sampling from the lung and other

various tissue sites throughout the course of infection, including

critical early pre-symptomatic time points. In addition, crucial

variables such as time of infection, size of viral inoculum, viral

variant, vaccination history, prior infection, and frequency of

sampling are all experimentally controlled (24). Further, unlike in

human studies where viral load is often the sole measure that is

sampled longitudinally, animal models permit comprehensive

assessments of changes in innate and adaptive immune responses

over time (2, 3, 10, 22, 25, 26). SARS-CoV-2 infection in rhesus

macaques presents relatively similarly to non-severe infection in

humans, with comparable symptoms and duration of infection (10).

As such, rhesus macaque data has proven particularly useful to

better understand viral infection dynamics following vaccination,

treatment, or reinfection with SARS-CoV-2 (2, 3, 10, 22, 23, 27, 28).

Despite the substantial volume of available data characterizing the

SARS-CoV-2 immune response in rhesus macaques, there are no

standardizedmethods to discern the relative importance and timing of

mechanisms driving viral clearance. Immune responses demonstrate

substantial redundancy (29). Moreover, separating and characterizing

the dozens of gene products, antibodies, and immune cell populations

which may be essential to infection clearance, presents computational

challenges.Mathematicalmodels ofwithin-host infection dynamicsfit

to data offer a methodical way to test competing hypotheses of how a

spreading infection and intensifying immune response may interact

(30–33). Although numerousmathematicalmodels of the within-host

dynamics of SARS-CoV-2 infection have been developed to

recapitulate viral load (11, 13, 33–38), only a few have concurrently

integratedviral and immunedata, and thesehave typically focusedona

single arm of the immune system (35, 39–41). To our knowledge, no

model has been fit concurrently to detailed longitudinal innate, cell-

mediated, and humoral response data, with these responses variously

coupled to SARS-CoV-2 elimination (42–44), and no model has

focused specifically on lung immune responses.

When testing different mathematical models, multiple models

may adequately fit observed, complex non-linear data such that

several competing hypotheses to explain the data remain viable (45–

47). This issue is compounded by the fact that even in carefully

planned experiments, the sampling frequency may be too low

during critical intervals to discriminate models with slightly

differing assumptions. Consequently, testing, comparing, and

amalgamating the outcomes of multiple potential models provides

a more comprehensive and thorough result, allowing the weighting
Frontiers in Immunology 02
of multiple hypotheses and projecting necessary uncertainty into

subsequent model predictions (48–50).

In the fields of climatology, ecology, and epidemiological

modeling (51–57), there are methods for testing many different

models and synthesizing predictions into ensemble models. This

approach has yet to be adopted in within-host models of infectious

disease but will be necessary to account for the rapid emergence of

multi-component immune data. Whereas traditional viral dynamic

models were fit to viral load alone, future models will be tasked to

recapitulate viral load, gene signature data (11), T cell subset, B cell,

innate immune cell, cytokine (58), and antibody levels (35) over

time. Additional challenges will be weighing the strength of each

data type for fitting and assessing for different degrees of

misclassification across multiple assays. Akin to weather forecasts

which attempt to predict precipitation, wind, and temperature, such

detailed models can be utilized to predict viral and immune kinetics

in individuals with different immune starting conditions due to

prior vaccination or infection.

Here, using detailed rhesus macaque infection data, we develop

and test 160 different mathematical models describing the virologic

and immunologic dynamics of SARS-CoV-2 infection in the lung.

Using the concepts of multi-model inference (50), we predict the

importance, timing, and contribution of each tested immune control

mechanisminclearing infected cells and free virus.Further,wedevelop

ensemble model predictions that combine top model results and

examine how these predictions diverge from those made by

individual models. Together, our results provide further insight into

the immunemechanisms of SARS-CoV-2 infection clearance, provide

new methods for the analysis of similar data sets, but also highlight

limitations of current methods to predict infection outcomes.
2 Results

2.1 Analysis of bronchoalveolar lavage fluid
reveals dynamic immune and viral kinetics
within the lung during SARS-CoV-
2 infection

To obtain a representation of infection kinetics within the lung,

Nelson et al. performed bronchoalveolar lavage (BAL) on SARS-CoV-

2-infected rhesus macaques and analyzed BAL fluid (BALF) for viral

genomic RNA concentrations with qPCR, anti-spike IgG titers with

ELISA, SARS-CoV-2-specific CD4+ and CD8+ concentrations with

cell staining andflowcytometry, and the expressionof interferon (IFN)

and IFN-stimulating genes (ISGs)with scRNAseq (2).We selected this

dataset for modeling based on the longitudinal, multi-model

measurements of immune response from the most relevant site of

infection, the lung. Such data is not available from human studies. The

data was notable for a decline in SARS-CoV-2 RNA starting on day 1

(Figure 1A), relatively stable anti-spike IgG levels with a slight increase

in some animals (Figure 1B), late increases in virus-specific CD4+ and

CD8+ T cells (Figure 1C), and early increases and abrupt decreases in

multiple innate gene signatures (Figure 1D).

While wanting to describe as much of these data as possible

within our mathematical model, it was unfeasible to mechanistically
frontiersin.org
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FIGURE 1

Description of viral and immunological data collected from BAL during SARS-CoV-2 infection in immunologically naïve Rhesus Macaques. (A) SARS-
CoV-2 genomic (g)RNA copies/ml of BALF were measured using qPCR. The red horizontal line shows the threshold of detection (3000 copies/ml).
Data points on days 1 and 2 are extrapolated from corresponding viral loads measured in the throat and the nose on these days (see Methods).
(B) Area under the curve (AUC) from ELISA titration curves of SARS-CoV-2 anti-spike proteins in collected BALF. (C) Percentage of virus-specific
CD4+ and CD8+ T cells in BALF, measured via flow cytometry. CD4+ and CD8+ cells were considered virus-specific if they stain positively for IFN g
or TNF following exposure to a megapool of SARS-CoV-2 antigens. (D) Normalized average expression values of IFN genes and ISGs, measured via
scRNAseq. (E) Correlation between ISG expression and same-day gRNA levels in BALF. The three genes with the most significant correlation are
shown (correlation coefficient indicated). These genes also showed the greatest change over time, according to feature selection. (F) Time-series
data of these top three genes. Data comes from (2).
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model the dynamics of all genes examined through scRNAseq

without making the model unworkably complex. To identify

genes of interest, we performed feature selection (59) on IFN and

ISG time series data and examined how gene expression correlated

with same-day viral loads. Results indicated that the IFI27, IFI6, and

IFI16 genes showed the strongest correlations with viral load

(Figure 1E) and the greatest variability over time (Figure 1F). In

addition, these genes were selected based on mechanistic

importance and high dynamics during human SARS-CoV-2

infection (60–67). Thus, in addition to viral genomic RNA

concentrations, anti-spike IgG titers, and virus-specific CD4+ and

CD8+ concentrations, we included the dynamics of these three

genes in our mathematical model of infection. As ISGs are known to

mediate the innate immune response (8, 68), these three genes were

assumed to capture the dynamics of the innate immune response

and describe its impact on viral dynamics within our model.
2.2 Competing mathematical models of
immune containment SARS-CoV-
2 infection

Many models of within-host dynamics during SARS-CoV-2

infections exist (11, 13, 33–37), but few incorporate detailed data on

how different arms of the immune response might impact infection
Frontiers in Immunology 04
(35, 39–41). To test the role of both the innate and adaptive immune

response on SARS-CoV-2 elimination, we developed the following

model (Figure 2) describing how the kinetics of infection within the

lung change over time, t.

dS
dt

= dSS0 − h
S
S0

e−yAAV   −  dS S

dI
dt

= h
S
S0

e−yAAV −oibFiIFi − nIT −mIE − d I

dV
dt

= pe−oi
yFiFi I − cV

dFi
dt

= dFiFi0 + wFiI − dFiFi

dT
dt

= dTT0 + wTI − dTT

dE
dt

= dEE0 + wEI − dEE

dA
dt

= dAA0 + wAI − dAA
FIGURE 2

Visual description of all potential terms included within our mathematical model of SARS-CoV-2 infection. Red boxes indicate which model terms
were alternatively included or excluded to determine how well each version of this model fits the data. The rate at which susceptible cells (S)
become infected (I) is dependent on the number of susceptible cells, the amount of virus (V) present, and the presence of anti-spike IgG (A), which
may dampen infection rates through neutralization of virus. Infected cells can potentially be cleared by interacting with virus-specific CD8+ T cells I,
virus-specific CD4+ T cells (T), or the innate immune response (Fi). The rate of viral production is dependent on the number of infected cells but can
be dampened by the innate immune response inducing an antiviral state in infected cells. The rate of proliferation for anti-spike IgG antibody, virus-
specific CD8+ T cells, virus-specific CD4+ T cells, and innate immune cells is proportional to the number of infected cells but is not turned on until
time tj , where j is specific to the type of immune response. For the innate immune response (Fi), we test its dynamics being represented by three

possible ISGs: IFN27 (i=1), IFI6 (i=2), and IFI16 (i=3).
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where

i = 1, 2, 3f g
and

wj =  
0,   t < tj
aj,   t ≥ tj

(

In this model, susceptible cells (S) are produced at a constant

rate dSS0, where S0 is the number of susceptible cells in the lung

before infection (t = 0), and naturally die at a rate dsS. These cells

become infected by SARS-CoV-2 virions (V) at rate h S
S0
e−yAAV and

move into the infected compartment (I). This rate incorporates the

potential role of anti-spike IgG (A) in dampening infection rates

through virus neutralization, with the scaling factor e−yAA taking on

a value between 0 and 1. Thus, higher IgG antibody levels may lower

infection rates according to their concentration.

Virus-specific CD4+ T cells (T), virus-specific CD8+ T cells (E),

the innate immune response captured by IFI27, IFI6, and IFI16

expression (F1,   F2,   F3, respectively), and anti-spike IgG each are

assumed to have constant rates of production and per-capita

natural death rates that maintain an equilibrium in the absence of

infection. Infection also stimulates the production of each

compartment, with the rate of proliferation proportional to the

number of infected cells. We, however, assume that infection-

induced proliferation for each compartment remains zero until

time tj at which point onwards it is equal to ajI, where j is specific to

the immune compartment.

Infected cells may be cleared by the innate immune response,

virus-specific CD4+ T cells, or virus-specific CD8+ T cells, at rates

oibFiIFi, nIT , and mIE, respectively. Infected cells may also

naturally die at a per-capita rate d . Virus is produced by infected

cells at a per-capita rate p which may be dampened by the innate

immune response by a factor e−oi
yFiFi . Virus is naturally cleared at a

per-capita rate c.

To test different versions of the model, we alternated setting

parameters bF1,   bF2,   bF3,   n,  m,   yF1,   yF2,   yF3 and yA to zero as

well as including or excluding potential target cell limitation, where

when excluded susceptible cells were not modeled and the

infectivity term h S
S0
e−yAAV was set to he−yAAV . As the impact of

the separate ISGs is likely hard to distinguish, we only allowed one

ISG at a time to have an impact on clearing infection and/or

dampening viral production. With these combinations, a total of

160 versions of this model were developed and fit to available data

(Figure 1), with appropriate transformations to make each set of

data representative of counts within BALF (see Supplementary

Material for further details).
2.3 Ensemble modeling to synthesize
multiple well-fitting mathematical model
versions for multi-model inference

Upon fitting each version of our mathematical model (described

in Methods), we calculated Akaike Information Criterion (AIC)

scores to determine how well each model performed. Here, the AIC
Frontiers in Immunology 05
score for model j is defined as

AICj = 2kj − 2ln(Lj)

where kj is the number of model-estimated parameters in model

j and Lj is model j’s maximized likelihood value.

Based on AIC scores, each model was assigned a rank, with

lower AIC scores corresponding to a better model. In examining the

dynamics of all top-ranked models, we noted that they all predicted

the size of the anti-spike IgG population to remain unchanged over

the 10-day study (Figure 3C). This comes from the data being

relatively flat with only a slight increase noted after viral

elimination, as has been observed in infection of immunologically

naïve humans (35). As such, the e−yAA component within the

model’s infection term (h S
S0
e−yAAV) remained constant over time

and model results including this term were indistinguishable from

models where this constant was incorporated into the value of h. As
such, we chose to exclude all models that did not set yA to zero from

our analysis, reducing the total number of models to 80. The

ranking of all 80 models appears in the Supplementary Material

(Supplementary Figure S2).

We compared models through several quantifiers. We

calculated AIC score differences (DAICj), capturing the difference

between the AIC score of model j and the minimum AIC score

across all models, the evidence ratios (ERj), capturing how much

more likely the model with the lowest AIC score is to model j, and

AIC weights (wj), capturing the probability that model j best

captured the data. Definitions of these terms are provided in

the Methods.

Values for the top-ranked models are displayed in Table 1. The

AIC weights of the top 12 ranked models (Figure 3A and Table 1)

summed to 0.95, thus giving us the 95% confidence set that we used

for further analysis. Among these 12 models, likelihood and AIC

scores were relatively similar, with no single model being

overwhelmingly the best. However, the models’ Akaike weights

indicate large variability in how probable each was at best capturing

the data. For example, while the top-ranked model has a probability

of 0.30 for best-capturing data, the probability is 0.012 for the 10th-

ranked model, making the first model 25 times more likely.

To capture the combined predictions of our different models,

we developed an ensemble model. While ensemble modelling can

encompass a host of different ways of combining model predictions

(51–57), here we define ours as the Akaike-weighted median

behaviors of the 95% confidence set over time. As such, this

model tracks the median and confidence intervals of all viral and

immune variables exhibiting dynamics within the observation

window. By choosing the 95% confidence set of models, we are

95% confident that one of the models we have included is the best at

approximating the data (50). The ensemble model’s predictions of

each model compartment’s dynamics over time are displayed in

Figures 3B–E, along with projections of each of the top 12 models.

Our ensemble model predicted there to be a period of very slight

viral rebound occurring around days 4 and 5 post-infection. Viral

loads were predicted to rebound from a local minimum of 3:3� 105

copies/ml of BALF at 3.6 days post-infection to a local maximum of

1:3� 106 copies/ml of BALF at 5.2 days post-infection, before
frontiersin.org
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continuing back downwards. This resurgence in virus corresponds

with a decreasing innate response, while eventual re-control

corresponds to rising T cell responses. The model also predicted a

surge in innate responses peaking slightly after maximal viral load

at comparable orders of magnitude for IFI27, IFI16 and IFI6 relative

to baseline to those in humans (11, 69).
Frontiers in Immunology 06
2.4 Importance and timing of the innate
and adaptive immune response in clearing
SARS-CoV-2 infection

Using Akaike weights from the models within the 95%

confidence set, we calculated how important each tested model
FIGURE 3

Ensemble model fits to SARS-CoV-2 viral and immune data. (A) Ranking of the top 12 models that best fit biological data and whose AIC scores add
up to a summed weight of 0.95. The X-axis displays which of the tested parameters were included within a particular model, while the Y-axis ranks
models based on their AIC scores. Term “S” represents the inclusion of target cell limitation. AIC scores are indicated by the color of the filled-in
boxes. These top 12 models were used to create an ensemble model to capture the combined results. (B–E) Ensemble weighted median (colored
lines) and the individual top 12 model fits (grey lines) to data. Grey dots indicate data points. Red dots indicate the median of the data points. Orange
horizontal line indicates the threshold of detection for qPCR.
frontiersin.org
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term was to obtaining optimal fit to viral and immune dynamic

measures during SARS-CoV-2 infection (Table 2). To calculate

importance, we summed the Akaike weights of the models in which

each term appeared and normalized by the total accumulated

weights of the 95% confidence set. We repeated this analysis

assuming a lower cut off for late viral loads and detected no

significant differences in model selection (not shown).

Our results indicate that parameters describing the impact of

the innate immune response on infection were essential to describe

observed viral and immune data, appearing in every model within

the 95% confidence set, and thus had an importance of 1. Of these

innate immune parameters, infected cell clearance by IFI27

appeared most frequently, having an importance of 0.74. Infected

cell clearance by virus-specific CD4+ T cells also ranked highly

having an importance of 0.95, while infected cell clearance by virus-

specific CD8+ T cells had an importance of 0.44. The inclusion of

target cell limitation within the model had an importance of 0.24.

Parameter values from the 95% confidence set were relatively

preserved across models (Figure 4). As our model predicts when the

proliferation of each immune compartment begins, we developed a

timeline of how infection is eliminated. Our model suggests that

interferon expression, characterizing the innate immune response,

expands early during infection. IFI27, IFI6, and IFI16 expansion

were predicted to initiate a median of 0.27, 0.72 and 0.52 days post-

infection, respectively. This was followed by increases in virus-

specific CD4+ T cells beginning at 4.5 days post-infection. Virus-

specific CD8+ T cell proliferation was predicted to begin 6.9 days

post-infection. Anti-spike IgG antibodies were predicted to increase

a median of 9.7 days post-infection; however, IgG expansion rates

were very low with the AUC under titration curves expected to

increase by a median of 1:9� 10−7 per infected cell per day. By this

time point, BALF viral loads in 5 out of the 6 monkeys were below
Frontiers in Immunology 07
the threshold of detection, providing further support that these

antibodies had little role in controlling primary infection in this

immunologically naïve cohort.

When comparing the models that include infection clearance by

the different ISGs, we identified that the per-capita clearance rate of

infected cells is a median of 2.5 times faster per IFI27 gene expressed

than it is per IFI6 gene expressed (bF1=bF3). Further, we found that

the coefficient yFi, allowing for dampening of viral production, is a

median of 5.8 times larger per IFI27 gene expressed than it is per

IFI6 gene expressed (yF1=yF3). None of the models in the 95%

confidence set included the role of infection clearance or

dampening of viral production by IFI16. When performing a

similar comparison for the models that included infection

clearance by T cells, we found that the per-capita clearance rate

of infected cells was a median of 3.7 times faster per virus-specific

CD4+ T cell/ml than it was per virus-specific CD8+ T cell/ml in the

BALF (m=n).

The values of the remaining parameters in our model appear in

the Supplementary Material (Supplementary Figure S3), as does an

analysis of the correlation between fitted parameter values

(Supplementary Figure S4). Notably, some parameter values are

positively and negatively correlated indicating a potential lack of

complete mathematical identifiability. Alternatively, these

correlations may have a mechanistic underpinning. For instance,

the three cytokines often proliferate at correlated rates which could

reflect an equivalent cellular source; cytokine proliferation often

correlates with enhanced cell killing by cytokines as well as CD4+ T

cells which may suggest coupled innate and acquired

immune responses.

We next used our 95% confidence set of models to examine how

the rates of infected cell clearance (Figures 5A, B) and virus

production (Figure 5C) fluctuated throughout the 10-day study
TABLE 1 95% confidence set of best-ranked models describing SARS-CoV-2 infection in Rhesus Macaques.

Rank
Included

Parameters/
Compartments

ln(Lj) kj AICj DAICj ERj wj
Summed
Weight

1 n,   bF1 -741.273 23 1528.547 0.000 1.000 0.305 0.305

2 n,   bF1,  m -740.845 24 1529.691 1.144 1.771 0.172 0.477

3 n,  m,   yF1 -741.292 24 1530.584 2.038 2.770 0.110 0.587

4 n,   bF1,   S -741.392 24 1530.784 2.237 3.061 0.100 0.686

5 n,   bF1,m,   S -740.433 25 1530.865 2.318 3.187 0.096 0.782

6 n,   yF1 -742.860 23 1531.720 3.173 4.887 0.062 0.844

7 n,   bF1,m, yF1 -741.381 25 1532.763 4.216 8.231 0.037 0.882

8 n,   yF1,   S -742.958 24 1533.916 5.369 14.648 0.021 0.902

9 n,   bF1,   yF1 -743.086 24 1534.172 5.625 16.650 0.018 0.921

10 n,   yF3, bF3 -743.486 24 1534.972 6.425 24.847 0.012 0.933

11 n,  m, yF1,   S -742.507 25 1535.014 6.467 25.370 0.012 0.945

12 n,   bF1,  m, yF1,   S -741.568 26 1535.136 6.589 26.964 0.011 0.956
Here, for each model j within the confidence set, the ln of the likelihood (Lj), the number of free parameters (kj), the Akaike information criterion score (AICj), the evidence ratio (ERj), the weight

(wj) and the summed weight is displayed. The tested model parameters that were included in each model are listed. Models were ranked in order of their AIC scores.
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period as a function of the different arms of the immune response.

We identified that the rate of infected cell clearance is predicted to

peak around day 2 post-infection. Clearance of infected cells was

predicted to depend solely on the innate immune response for the

first 4 days post-infection. Between days 4 and 5 post-infection, the

dominating immune response switched, with virus-specific CD4+ T

cells increasing and appearing most closely linked with infected cell

lowered viral load. Around 7 days post-infection, some remaining

clearance was predicted to be attributed to the virus-specific CD8+

response, though the role of virus-specific CD4+ T cells continued

to predominate.

Figure 5C shows how the rate of virus production per-infected-

cell-per-day changes over time as a function of the innate immune

response. Each infected cell was predicted to produce the lowest

amount of virus per day around day 2 post-infection when ISG

expression was highest (Figure 3E), with rates at their lowest being a

median of 64% of what they were before the innate immune

response began to proliferate.
2.5 Projections of infection assuming
weaker innate and T-cell responses

To further predict the importance of including each tested term

in our mathematical model, we simulated in silico knock-down

experiments, scaling down model parameter values and observing

how these changes impacted predicted viral loads over time. We

identified that predicted viral loads showed the greatest increase

when we dampened the IFI27-mediated clearance rate of infected
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cells, regulated by parameter bF1, and the virus-specific CD4+ T

cell-mediated clearance rate of infected cells, regulated by

parameter n (Figure 6).

If parameter bF1 was knocked down by 50%, 90%, or 99%, the

peak viral load was projected to be 2.0, 9.4, or 89 times higher than

in the baseline model, respectively. While viral loads reached higher

values in these scenarios, this in turn stimulated more virus-specific

CD4+ T cell production due to the greater number of infected cells

present (not shown). As a result, there was a faster decline in viral

levels once virus-specific CD4+ T cell proliferation began. This is a

prediction that should be interpreted with caution because innate

regulation also helps induce T cell activation. Similar results

occurred when we dampened all innate immune response

parameters appearing within the 95% confidence set of models

(bF1,   bF2,   bF3, yF1,   yF2 and yF3) (Figure 6). This result suggests that

IFI27 appears to be the gene best capturing the innate immune

response and that its impact on clearing infected cells, rather than

dampening infection rates, best described the data.

If parameter n was knocked down, the early viral dynamics

remained unaffected due to virus-specific CD4+ T cell proliferation

having not yet initiated. Yet, the resurgence of virus predicted at day

4 post-infection was amplified, as the innate response was waning.

This outcome is concordant with various degrees of viral rebound

noted in untreated individuals in large human cohorts of SARS-

CoV-2 infection, particularly during the pre-vaccine era (33). When

parameter n was dampened by 50%, 90%, or 99%, viral loads were

predicted to rebound to 1:8� 106, 7:7� 106, or 6:5� 107 copies/

ml of BALF between days 5 and 6 post-infection, respectively.

Dampening of other immune parameters or the removal of target

cell limitation led to minimal changes in the predicted viral loads of

our ensemble model (Supplementary Material, Supplementary

Figure S5), suggesting they have a lesser role in hindering or

clearing infection in immunologically naïve animals.
2.6 Model forecasts of viral load
trajectories given varying degrees of pre-
existing innate and acquired immunity

All model fitting was performed on data from previously

uninfected and unvaccinated rhesus macaques. The animals

therefore had no pre-existing immune memory to SARS-CoV-2.

Using our 95% confidence set of models, we attempted to forecast

the viral dynamics of re-infection scenarios in rhesus macaques and

to assess whether the ensemble model made similar predictions to

individual models.

We assumed the same viral inoculum as in the above data but

assumed that CD4+ and CD8+ T cell memory would be present due

to prior infection, and thus the response to infection by virus-

specific T cells would begin sooner. Given the uncertainty regarding

the speed of antigen recognition and presentation during early

infection, we simulated different scenarios where the CD4+ and

CD8+ T cell response was assumed to begin proliferating between 1

and 5 days post-infection (70, 71). Similarly, given the long

estimated half-life of memory CD4+ and CD8+ T cells of 200

days (4), we varied the number of virus-specific T cells present in
TABLE 2 The relative importance of tested parameters in capturing
SARS-CoV-2 rhesus macaque infection dynamics.

rameters/
Compartment

Description Importance

bF1, bF3,  yF1, yF3 Impact of the innate response
on infection

1

n Infected cell clearance by CD4
+ T cells

0.95

bF1 Infected cell clearance by IFI27 0.74

m Infected cell clearance by CD8s 0.44

yF1 Hindrance of viral production
by IFI27

0.27

S Target cell limitation 0.24

yF3 Hindrance of viral production
by IFI6

0.012

bF3 Infected cell clearance by IFI6 0.012

bF2 Infected cell clearance by IFI16 0

yF2 Hindrance of viral production
by IFI16

0

yA Hindrance of infection by anti-
spike IgG

0

Importance is determined by summing the Akaike weights of the 95% confidence set of best-
ranked models for which a particular parameter appears.
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the BALF from values similar to those observed immediately

following infection clearance ( ≅ 65 cells/ml from BAL) to what

might be observed 2 years after initial infection ( ≅ 5 cells/ml

from BAL).
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Example results from these simulations are shown in Figure 7.

Our ensemble model indicates that the number of virus-specific

CD4+ T cells present at the start of re-infection has a larger impact

on the predicted maximum viral load than the number of virus-
FIGURE 4

Parameter values appearing for the best-ranked models. Boxplot color indicates the immune compartment to which a parameter belongs.
Background shade indicates how often a parameter appeared within the 12 best-ranked models. Colored dots show individual parameter values for
the models that include each parameter (value not set to 0). Boxplots show the median and interquartile range (IQR), while whiskers indicate 1.5
times the IQR. Black dots indicate the weighted median of each parameter value, determined using model Akaike weights when accounting for all
models in the 95% confidence set. Panel (A) displays values related to the timing of proliferation. Panel (B) displays values related to innate immune
response proliferation. Panels (C, D) display values related to the clearance of infected cells and damping of viral production by the innate response,
respectively. Panels (E, F) display values related to the proliferation of, and clearance of infection by T cells, respectively. Panel (G) displays values
describing the rate of anti-spike IgG proliferation.
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specific CD8+ T cells (Figure 7A). Using general linear models to

predict the relationship between peak viral load and virus-specific

CD4+ and CD8+ T cells, we found that while 17 additional virus-

specific CD4+ T cells/ml of BALF present at the beginning of

infection would lower the peak viral load ten-fold, 450 additional

virus-specific CD8+ T cells/ml of BALF would be needed at the

beginning of infection to have the same effect. The timing of when

virus-specific CD4+ and CD8+ T cells were assumed to begin

proliferation positively correlated with the predicted maximum

viral load, where each additional delay of a day would increase

the maximum viral load by approximately 1/3 of a log.

Despite these trends and the similar dynamics predicted by each

of the models within the 95% confidence set when describing primary

infection (Figure 3), the results of these individual models vary

substantially in some of the reinfection scenarios simulated

(Figure 7B). While all models in the 95% confidence set include

infection clearance by virus-specific CD4+ T cells, only half include

infection clearance by virus-specific CD8+ T cells. Thus, while

increases in virus-specific CD4+ T cells lead to declines in viral

load in all models, increases in virus-specific CD8+ T cells only

impact viral loads in the models that include their role in infection

clearance. This diversion in model predictions is most apparent when

the number of virus-specific CD4+ or CD8+ T cells is high

(Figure 7B) and points to the need for greater model specification
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against larger and more granular similar datasets, as well as predictive

validation against data from animals with previous vaccination and/

or infection. Notably, the results from these simulations generate a

wide diversity of viral load trajectories with variable peak viral loads,

duration of shedding, time to peak, expansion slopes, clearance

slopes, and rebound kinetics, all in keeping with results from large

human cohorts in the post-vaccination era (33). Overall, these results

highlight a potential key impact of pre-infection local immunity on

determining the outcome of viral infections.
3 Materials and methods

3.1 Rhesus macaque infection and
data collection

Six healthy male rhesus macaques were infected with 2� 106

TCID50 via a combined intranasal and intratracheal inoculation

with the USA-WA1 strain of SARS-CoV-2 as described in (2).

Infected rhesus macaques were monitored for ten days, with throat,

nasal, BALF, and plasma samples collected throughout. BALF

samples were used to perform qPCR, cell staining, flow

cytometry, ELISA, and scRNAseq as described in (2). All animal

experiments and data collection were performed by Nelson et al. (2)
FIGURE 5

Impact of each immune component in eliminating SARS-CoV-2 infected cells. (A, B) Rate of infected cell clearance throughout infection, as
mitigated by the innate immune response, CD4+ T cell response, and CD8+ T cell response. Panel A shows the per-infected cell-per-day clearance,
while panel B shows the total per-day clearance rate. Note that panel B shows the “per-day clearance rate+1” so that values may be displayed on a
log scale. (C) Innate immune system’s impact on dampening the rate of viral production by inducing an antiviral state in infected cells. The innate
immune system’s impact was determined by combining the impact of all ISGs examined. As our best-fitting models did not include any impact of
anti-spike IgG on infection control, their role is not displayed here. Solid lines show the weighted median, while ribbons show the weighted
interquartile range, calculated using the Akaike weights from the 95% confidence set of best-ranked models.
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at the National Institutes of Health in Bethesda, MD. The single cell

RNA sequencing read data can be found at NCBI GEO under

accession GSE196980. All other source data and detailed methods

for data collection can be found at Nelson et al. (2).
3.2 Determining genes of interest based on
scRNAseq data

Daily counts/cell for each IFN and ISG examined were averaged

across monkeys and then z-score normalized. These values were

used in feature selection following the algorithm outlined in (59)

and executed using the FSHMM package in R, ranking genes based

on their degree of variability over time.

Daily counts/cell were also correlated with the corresponding

log10-transformed genomic RNA measure made on the same day in

the same monkey, as shown in Figure 1.
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3.3 Simulating and fitting our
mathematical model

Our mathematical models were simulated and fit using the

POMP package in R (72), with a description of this method

appearing in the Supplementary Material. Models were fit to data

presented in Figure 1 that were transformed to be representative of

counts within BALF. A full explanation of how data was

transformed and how initial parameter values were chosen

appears in the Supplementary Material. Models were fit by

searching parameter space to maximize each model’s likelihood

using the Nelder-Mead algorithm.

The models were concurrently fit to all rhesus macaque data to

give maximum power, with a full description of the fitting process

in the Supplementary Material. Code describing how the model was

defined and fit can be found on GitHub at https://github.com/

catherinebyrne/SARS-CoV-2-ensemble-model.
FIGURE 6

Impact of immune response parameters on the ensemble model’s SARS-CoV-2 viral load projections. The 95% confidence set of best-ranked
models was run where each immune response parameter was multiplied by a scaling factor to maintain or dampen its impact on infection. The
resulting ensemble weighted median and IQR of predicted viral loads are shown. The scaled parameters descriptions are in the x-axis strip text while
the scaling factor is in the y-axis strip text. Red lines show the threshold of detection and purple lines show the weighted median of the unchanged
ensemble model. The panel labeled “all aspects of innate response” indicates the impact of all innate immune response parameters (bFi and yFi,
where i=1,2,3) appearing in the set of best-ranked models.
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3.4 Multi-model inference calculations

We compared our different mathematical models with metrics

based on AIC scores to better quantify the probability that each

model best represented biological data. We calculated the DAICj for

each model i, where
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DAICj = AICj − AICmin

and AICmin is the minimum AIC score across all models. From

these, we calculated the evidence ratio (ERj) of each model which

quantifies how much more likely the model with the lowest AIC

score is to model j, and is defined as
FIGURE 7

Predictions of SARS-CoV-2 infection viral dynamics assuming different memory T cell conditions. Here, we varied the initial number of virus-specific
CD4+ T cells present in the BALF (i) and the time at which memory T cell proliferation was assumed to begin (j) to capture potential conditions
during a SARS-CoV-2 reinfection. (A) Ensemble model’s predicted peak SARS-CoV-2 viral load (copies/ml) measured from BAL from all scenarios
examined. (B) Time series dynamics of predicted viral loads from a subset of the scenarios examined (ratio of virus-specific CD4+ T cells to virus-
specific CD8+ T cells is 1:1). Purple lines show the ensemble model’s prediction of the viral load during primary infection. Pink and green lines show
the individual predictions of the top 12 models within the 95% confidence set. Blue lines show the ensemble model’s predictions of the viral load
under each reinfection scenario.
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ERj =
e−

1
2DAICmin

e−
1
2DAICj

:

Lastly, we calculated AIC weights, where the weight of model j

(wj ) is defined as

wj =
e−

1
2DAICj

oG
g=1e

−1
2DAICg

and G is the total number of models. These weights represent

the probability that a particular model is the best-fitting model of a

set, each taking a value between 0 and 1 and summing up to 1.
4 Discussion

The ever-growing volume and complexity of non-linear

immunologic data from animal model infection experiments and

from human research protocols underscores the necessity of

developing new computational methods for transforming these

data from being descriptive to more mechanistic. Many SARS-

CoV-2 datasets would benefit from such methods, as the data’s

multidimensionality poses substantial challenges in discerning the

precise components of the innate and adaptive immune response

driving viral elimination, and immunopathogenesis.

While mechanistic mathematical modeling can be highly

beneficial to gain insight into the non-linear dynamics and

interplay between pathogens and the immune response (30–33),

how to appropriately scale up these models to incorporate multiple

immune data types is largely unestablished. In many fields, like

climate/weather modeling, ecology, and epidemiology, many

models are often created, compared for likelihood, and ultimately

combined into an ensemble model, allowing for a more realistic and

unbiased approach to forming predictions and understanding a

system (51–57). However, this technique has yet to be widely

applied to within-host mathematical models of infectious disease.

Through this approach, we attempted to fit 160 different

mathematical models to data describing SARS-CoV-2 infection

within the lungs of rhesus macaques, with each model encoding a

specific set of hypotheses describing how the immune response may

target and clear SARS-CoV-2 infection.

Through feature selection and correlation of IFN and ISG

expression with viral load, we identified IFI27, IFI6, and IFI16 as

innate genes likely linked to SARS-CoV-2 clearance and ones whose

dynamics may be representative of the entire innate immune

response. These genes were also selected based on experimental

evidence from human infection linking their expression to viral

clearance, though conflicting data from mouse models emphasizes

the need to test our model’s conclusions further (11, 60, 69, 73).

Upon fitting our models to these data, IFI27 emerged as the gene

best capturing the innate immune response against SARS-CoV-2.

Previous studies have identified the IFI27 gene to be one that is

upregulated in the lung tissue of SARS-CoV-2 patients (74), and

where expression temporally aligns with SARS-CoV-2 viral loads

(11). IFI27 is suggested to regulate the innate immune response

during SARS-CoV-2 infection by interfering with the RIG-1
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pathway, which is critical for recognizing viral infection and

preventing hyper-inflammation and excessive innate immune

responses (60, 73). Through analysis of our top-ranked models,

the proliferation of the innate immune response was suggested to

largely limit infection through direct clearance of infected cells.

Analysis of our different mathematical models also indicated

that virus-specific CD4+ T cell-mediated clearance of infection had

high importance in capturing infection dynamics, appearing in all

top-ranked models. Similarly, clearance of infection by virus-

specific CD8+ T cells appeared in half of top-ranked models.

Previous research has highlighted the importance of the T cell

response in clearing and mitigating the severity of SARS-CoV-2

infection, with the cytotoxic role of CD8+ T cells well-established

(42, 75–77). This feature of infection may have been underestimated

in our model based on the inclusion of only immunologically naïve

animals and highlights the importance of future work fitting models

concurrently to infected immune experienced animals as well.

While CD4+ T cells are usually thought to help clear infection

indirectly through activating and recruiting other immune cells,

cytokine production, and regulating the immune response, some

studies of SARS-CoV-2 infection have reported significant

expansion of cytotoxic CD4+ T cells within infected patients,

particularly in those with severe COVID-19 (78–80). Thus, the

importance of virus-specific CD4+ T cell-mediated clearance of

infection within our model may be a result of its help to other

immune cell populations, or through direct cytotoxic activity.

Our model suggested that anti-spike IgG antibodies do not play

a discernable role in infection clearance within the first 10 days of

infection in immune-naïve animals. Anti-spike IgG titration curves

showed no significant change over the 10 days of study (2), and

previous studies suggest that titers do not peak until 3 to 7 weeks

post-infection (81). While much literature describes the importance

of the antibody response against SARS-CoV-2 (22, 81, 82), these

responses may instead play more of a role in preventing and

controlling re-infection. Indeed, previous mathematical analysis

has also shown that plasma SARS-CoV-2 antibodies likely do not

impact primary infection, with increases in titers not occurring until

later post-infection (35).

Through simulating our top-ranked models when assuming the

presence of T cell memory, our results suggest how memory T cells

may limit the severity of reinfection, with virus-specific CD4+ T

cells having a larger impact than virus-specific CD8+ T cells. While

all top-ranked models performed similarly when capturing available

primary infection data, they notably diverged in their forecasts of

infection when large populations of memory T cells were assumed

to be present. By using an ensemble model approach, our

predictions consider these differences and describe the

uncertainty associated with projections in a way that a single-

model analysis would not. This result underscores the importance

of ensemble model techniques, especially when forming predictions

beyond what available data describes.

The uncertainty of our predictions could be narrowed if our

ensemble model reflected the input of fewer models, if top-ranked

models differed less substantially in terms of assumptions, and if the

top-ranked models had a higher relative likelihood of explaining the
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data. To achieve this aim would require fitting models to a wider

array of strategically gathered data. In current work, this could be

achieved by increasing the amount and type of viral and immune

data with a possible focus on gathering these measures at least daily.

A common problem for model fitting is that longitudinal sampling

is too infrequent. However, in our case, more data time points

describing early primary infection may or may not have narrowed

the scope of possible best models, as all our top-ranked models

predicted similar dynamics during the first 10 days of primary

infection. Instead, further testing our models with data collected

from other infection scenarios, such as reinfection, or infection

following vaccination might effectively rule out the likelihood of

multiple models within our current 95% confidence set. These

different scenarios may also better reveal the influence of cellular

and humoral immunity, which may play a more critical role in

repeated infections than our top models indicate.

Another limitation of our models is that they do not include the

inherent spatial, multi-compartment dynamics of infection. Our

mathematical models are meant to be representative of the infection

kinetics within the lung, with the data used to fit ourmodelsmeasured

from BALF. While BALF does provide some representation of the

immune and viral changes within the secretions of the alveoli of the

lower respiratory system, its sampling does not directly capture what is

occurring within the lung’s mucosa, where infected cells would be

present, and tissue-resident immunity may reside. Further, our model

treats the lung as a homogeneous region; instead, patches of infected

cells and a heterogeneous immune response across different tissue

regions are likely present.

Another possible pitfall is subjectivity in terms of model design

such that the most likely model may not be included in the list of

considered models. Similarly, if key immune mediators of viral

clearance are not measured and used for model fit, then these

mechanisms will inherently be underrepresented in the ensemble

model. These problems are not unique to ensemble models and are

relevant to more traditional viral dynamic models as well as

immunologic experiments in general. Nevertheless, future work will

need to strive to achieve a balance between comprehensive sampling of

all arms of the immune response to avoid biasing model conclusions.

Our study demonstrates the potential of integrating diverse

mathematical models and ensemble techniques to dissect the

dynamics of viral clearance and immune response. These methods

will become increasingly necessary due to the breadth and complexity

of immune data being collected during longitudinal infection studies.

By identifying key genes and predicting the timing and way in which

the innate and adaptive immune systems each respond to SARS-CoV-

2 infection, our results provide early insights into the intricate interplay

betweenSARS-CoV-2and thehost immunesystem,whilehighlighting

the need for careful experimental design to best inform these models.
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