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Oligodendrocyte precursor cells (OPCs) have long been regarded as progenitors

of oligodendrocytes, yet recent advances have illuminated their multifaceted

nature including their emerging immune functions. This review seeks to shed

light on the immune functions exhibited byOPCs, spanning from phagocytosis to

immune modulation and direct engagement with immune cells across various

pathological scenarios. Comprehensive understanding of the immune functions

of OPCs alongside their other roles will pave the way for targeted therapies in

neurological disorders.
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Introduction

OPCs are the progenitors responsible for generating mature oligodendrocytes and

facilitating subsequent myelination throughout life (1). OPCs are also considered NG2 glia

due to their expression of NG2 (neural/glial antigen-2 or chondroitin sulfate proteoglycan

4) (2, 3). Platelet-derived growth factor receptor alpha (PDGFRa) is also widely used to

identify OPCs, distinguish them particularly from NG2-expressing pericytes (4).

Developmentally, OPCs in the mouse brain are generated in three waves: from the

ventral forebrain, particularly from the medial ganglionic eminence (MGE) and the

embryonic preoptic area (ePOA) around embryonic day (E) 12.5; from the dorsal brain,

specifically the lateral and medial ganglionic eminences (LGE, MGE) around E15.5; and the

subventricular zone during perinatal days (5). In adult, OPCs constitute approximately 5%

of the total CNS population) (1), including both gray and white matter. Typically, OPCs

display a stellate morphology characterized by small cell bodies and highly branched

processes (Figure 1A). These processes frequently come into contact with various parts of

neurons, such as the nodes of Ranvier (7, 8), presynaptic terminals (9, 10), and cell bodies

(11), suggesting multiple ways of communication between OPCs and neurons (10, 12–15).

In addition to direct neuron-OPC communication, OPCs indirectly shape brain circuits via
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many other pathways (15), including participation in BBB barrier

function (16) and immune modulation (17).

In the CNS, immune function is mainly performed by microglia.

As the resident immune cells, they actively and continuously survey the

CNS microenvironment, using their processes to promptly detect signs

of damage or foreign substances and eliminate them through

phagocytosis (18). Serving as the primary responders to insults

within the CNS, microglia release cytokines, chemokines, and other

signaling molecules to orchestrate subsequent responses by other cell

types. The activation of microglia can exhibit either pro- or anti-

inflammatory characteristics depending on the context. Additionally,

upon sensing threats or damage, microglia become activated and
Frontiers in Immunology 02
undergo changes in morphology. Mild activation leads to an increase

in the complexity of their morphology, while intense activation triggers

their transformation into an ameboid-like shape with enhanced

phagocytic activity. Microglia also increase the expression of MHC I

and II to facilitate the recruitment and activation of T cells in response

to specific threats.

Notably, OPC processes are motile (19) and phagocytic (20, 21).

Under pathological conditions, OPCs become hypertrophic (22, 23)

(Figures 1B–E) and release and/or respond to cytokines (17, 24, 25). In

multiple sclerosis (MS), OPCs also enhance the expression of MHC I

and II molecules and interact with immune cells (24, 26). All of these

studies provide strong evidence of the immune function of OPC. In this
FIGURE 1

Morphological diversity of OPCs in healthy and pathological contexts. (A) OPCs in the corpus callosum (right pannel) are more elongated than in the
cortex (left pannel). (B) Cortical stab wound injury (SWI) was induced in 9-week-old NG2-CreERT2 x GCaMP3 mice. Tamoxifen was administrated at
postnatal day 7 and 8 (p7/8) to induce expression of GCaMP3 in OPCs. (C) Coronal brain slice was immunostained with GFP (for amplifying GCaMP3
signals in OPCs and OLs), Iba1 (microglia) and GFAP (astroglia) at 2 days post injury (dpi) of SWI. (D) Magnified images of boxed area in (C). (E) At 2
dpi, OPCs increase morphological complexity at the center (left) and surrounding area (right) of the lesion. Scale bar in (A, E) = 5 µm, (C) = 200 µm,
(D) = 50 µm. (unpublished data from Fang et al., 2023 (6)).
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review, we delve into the immune functions exhibited by OPCs,

expanding beyond their canonical role in myelination. We start with

the phagocytic activity of OPCs. Then, we elaborate on the

contribution of OPCs in wound healing and de-/remyelination with

a particular focus on OPC-immune cell interaction. The

comprehension of OPCs’ immunological roles carries substantial

implications for neuroinflammatory diseases, neurodegenerative

disorders, and the development of potential therapeutic interventions

targeting the immune system within the CNS.
Threat elimination
through phagocytosis

Immune cells play a crucial role in engulfing foreign or harmful

substances to safeguard the body—a function previously thought to

be exclusive to certain cells until recently observed in OPCs (27, 28).

Studies on primary OPCs isolated from rat brains revealed their

phagocytic activity against various debris types, including myelin-

rich debris from white and grey matter, as well as cell membrane

lysate from cultured astrocytes, although their activity against

amyloid beta was comparatively low (28). The mechanism

underlying OPCs’ selective phagocytosis remains elusive, but one

possibility is the involvement of low-density lipoprotein receptor-

related protein 1 (LRP1) (Table 1), a transmembrane receptor

known to bind directly to myelin basic protein (MBP) (29). Cells

expressing LRP1 may selectively bind to debris expressing MBP,

facilitating myelin-debris-specific phagocytosis. Inhibition of

ligand-binding activity of LRP1 by antagonists like glutathione-S-

transferase receptor-associated protein (GST-RAP) resulted in the

inhibition of myelin debris uptake (29). However, the reasons for

the preferential phagocytosis of astrocyte cell membrane over

amyloid beta remain unclear. Moreover, it’s uncertain whether

the substance preferentially phagocytosed by OPCs is dependent

on the disease context. Addressing these open questions will

necessitate further studies.
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The phenomenon of OPC phagocytosis extends beyond in vitro

scenarios involving myelin debris or pathological contexts. Recent

studies have unveiled that OPCs engulf axons and presynaptic

terminals in vivo during brain development (20, 21). Axonal

fragments, together with the presence of phagosomes, were observed

within OPCs in the developing brain (20). Single-nucleus RNA-

sequencing data showed that OPCs in the developing cortex express

crucial phagocytic genes and neuronal transcripts, confirming their role

in axon engulfment during development and suggesting their

involvement in refining neuronal circuits throughout cortical

maturation. Additionally, independent research has demonstrated

OPC-mediated phagocytosis of presynaptic compartments in the

developing visual cortex (21). This phagocytosis appears to be

mediated by LRP1 (Table 1), as it was observed in some of OPC

processes contacting synapses. Notably, OPC-mediated synapse

phagocytosis plays a crucial role in neural circuit activity. In

experiments where mice were subjected to darkness during the

critical period (postnatal day 20–29) and subsequently exposed to

light for only 10 hours, which induces neural activity, the number of

synapses engulfed by OPCs increased compared to mice kept in

darkness. Interestingly, the absence of microglia diminished OPC

engulfing activity, suggesting a signal input from microglia for OPC

phagocytosis (21). As OPCs form postsynaptic structures with

neuronal axons, and neurotransmission via this communication

triggers OPC differentiation into mature oligodendrocytes—cells that

do not inherit synaptic connections (35, 36)—it is plausible that after

receiving signals for differentiation, OPCs phagocytose presynaptic

terminals projected to them, ultimately differentiate into mature

oligodendrocytes. However, further studies are needed to validate

this hypothesis.

An intriguing observation is that following phagocytosis, OPCs

enter a quiescent state. Transcriptomic analysis has revealed that post-

phagocytosis, OPCs downregulate genes associated with myelination

and migration (28). The mechanisms underlying how OPCs decide

their fate, whether to differentiate into oligodendrocytes or engage in

phagocytosis, remain elusive. It is plausible that the pro-inflammatory
TABLE 1 Summaries of factors contributing to OPC-immune functions.

Factors Cellular origin Effect Reference

LRP1 OPC Phagocytosis of myelin derbris and presynaptic engulfment (21, 29)

TGFb2 OPC Mediate microglia homeostasis and immune response via TGFBR2-CX3CR1 pathway (17)

IL-
1b, CCL2

OPC Induction, activation and recruitment of CD4+ T cells and T helper cell type 1 (Th1) (25, 30, 31)

Olig2 OPC
Overexpression of Olig2 enhance OPC migration and further differentiation in LPC-induced
demyelination model

(6)

IFN-g - /T cells
Enhance OPC phagocytosis;
Induce OPC quiescence;
Increase MHC I and II expression in OPCs and further recruit T cells;

(24, 27,
32–34),

IL-4, IL-10 -
Reduce OPC phagocytosis;
Inhibit OPC differentiation;
Reduce MHC expression

(34)

TNF-a - Enhance OPC phagocytosis (34)
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factor IFN-g, prevalent in various inflammatory microenvironments

including demyelinated lesions, induces OPC quiescence (32). Blocking

IFN-g has been shown to rescue human OPC proliferation and

differentiation (32, 33). IFN-g triggers the upregulation of the

transcriptional regulator paired related homeobox protein 1 (PRRX1)

in human OPCs, leading to cell-cycle arrest in vitro (32). This suggests

that precursor and immune functions may be mutually exclusive.

However, a recent study demonstrated that triggered by anti-

inflammatory cytokines (IL-4 and IL-10), primary OPCs reduced

both differentiation and phagocytic activity (34) (Table 1).

Conversely, pro-inflammatory cytokines like IFN-g and TNF-a did

not affect OPC differentiation but increased phagocytic activity

(Table 1). This discrepancy might stem from the inability of these

cytokines, although abundant in inflammatory conditions, to fully

replicate the complex inflammatory microenvironment in vivo. There

could be synergistic or antagonistic effects between various cytokines

along with IFN-g or IL-4. Therefore, a more comprehensive study is

warranted to elucidate how OPCs determine their fate, whether to

engage in phagocytosis or remain as active precursors.
Glial scar formation and
wound healing

After CNS injury, OPCs undergo rapid and significant

transformations akin to microglia (37). In response to acute brain

injury, OPCs migrate to the injury site, proliferate, and undergo

morphological changes, such as hypertrophy, polarization or

elongation (22, 38) (Figures 1C, D). The biological relevance of OPC

morphological changes to their immune function is not yet clear. One

possibility is that hypertrophy or polarization may enhance OPC

proliferation and migration toward the lesion site, facilitating glial

scar formation and blocking immune cell infiltration. Within 2–4 days

post injury (dpi), a high density of OPCs occupies the center and

surrounding area of the injury core (Figure 1D), and this density does

not return to normal until 4 weeks after injury (22). These OPCs can be

considered reactive OPCs, named after the reactive astrocyte. OPCs at

the lesion site exhibit elongated morphologies and are polarized toward

the lesion (22). These polarized cells appear to migrate to the lesion site

within the first 4 dpi. In addition, the number of polarized OPCs peaks

at 2dpi, coinciding with the peak of OPC recruitment to the lesion site.

However, not all polarized OPCs migrate, indicating that polarization

does not necessarily implymigration. Interestingly, a recent study using

a combination of spatial and single-cell RNA transcriptomics identified

a subset of OPCs (cluster 15) in the injury core and another group of

OPCs (cluster 10) at the periphery (39). These cluster 15 OPCs may be

the polarized cells. A combination of immunohistochemistry against

OPCs, along with spatial and single-cell transcriptomics, could

potentially address this hypothesis. Nevertheless, more studies are

needed to further elucidate the link between OPC morphological

changes and immune function.

Reactive OPCs migrate to the lesion site through the release of

matrix metalloproteinase 9, an enzyme crucial for extracellular

matrix degradation (40). Additionally, overexpression of Olig2, a
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key transcription factor for OPC fate determination, enhances OPC

recruitment to the demyelinated lesions in the corpus callosum of

lysolecithin-induced demyelination mouse model and promotes

further differentiation (41) (Table 1). However, a subset of OPCs

near the lesion site downregulates Olig2 expression after acute brain

injury, but not in demyelinated area, and exhibit quiescent

phenotype (6). These Olig2low/neg OPCs may participate in glial

scar formation or wound healing via distinct mechanisms (42).

Reactive OPCs play a crucial role in wound healing, as evidenced

by the impairment of wound healing upon deletion of proliferating

OPCs (22). This could be attributed to compromised communication

between OPCs and microglia, as well as other infiltrating immune

cells. The mechanisms underlying OPC-microglia communication

following acute brain injury are not fully understood, but OPCs

have been shown to modulate microglial homeostasis and reactivity

during neuroinflammation (17). In a context of LPS-induced

neuroinflammation, depletion of OPCs led to a significant increase

in proinflammatory cytokines (IL-1b, IL-6, IL-12b, TNF-a, iNOS) in
the brain. This did not involve periphery immune cells as the integrity

of BBB remained unchanged after OPC depletion. This observation

suggests that OPCs suppress microglial responses to LPS challenge.

This immune-suppressive effect was mediated by transforming growth

factor-b2 (TGFb2) released by OPCs (Table 1), acting on TGFBR2 in

microglia, which in turn regulates CX3CR1-mediated microglial

immune responses (17). Interestingly, OPCs also change the

expression of TGFb2 after acute brain injury. Single-cell RNA

sequencing of glial cells at the injury site has revealed that both

clusters of OPCs (OPC1 and OPC2) upregulate Tgfb2 mRNA (39).

Hence, depleting reactive OPCs at the lesion site may enhance

microglial response and inflammation, thereby impeding wound

healing. Furthermore, OPCs interact with T cells in various

pathological contexts (17, 24, 25, 27, 43) (further discussed in the

next section). It is intriguing whether reactive OPCs repel peripheral

immune cells after the initial response, a question that warrants

further investigation.

The study from Koupourtidou et al. has revealed that a cluster of

inflammatory genes, exceeding 140 in number, exhibited common

alterations in all reactive glial cells surrounding the lesion, including

microglia, OPCs, and astrocytes, following a stab wound injury in the

mouse cerebral cortex—a model for traumatic brain injury (TBI)

(39). Among the 241 upregulated genes, those involved in cell

proliferation predominated. Intriguingly, a subset of each glial cell

type, localized proximally to the injury site, exhibited a shared

upregulation of genes associated with innate immunity pathways,

such as type I interferon, CXCL10-CXCR3, and toll-like receptor

(TLR2) mediated signaling pathways. This coordinated regulation of

innate immunity pathways contributed to OPC accumulation at the

injury site post-brain injury, without influencing OPC proliferation

or altering the overall number of oligodendrocyte lineage cells near

the injury site. However, whether this expression pattern is linked to

immunoregulation or immunoprotection necessitates further

investigation, as it did not induce new transcriptional states but

rather modified inflammatory signatures through partial

downregulation of inflammatory genes following stab wound injury.
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Multiple role-playing in
multiple sclerosis

OPCs play a pivotal role in remyelination, particularly in

demyelinating diseases like MS, prompting extensive research aimed

at enhancing their proliferation and differentiation capabilities under

inflammatory conditions. However, emerging evidence suggests that

OPCs serve not only as precursors but also actively contribute to the

generation and maintenance of the inflammatory milieu through bi-

directional communication with immune cells. To date, studies

investigating the interaction between OPCs and microglia in the

context of MS are limited, with a greater focus on the

communication between OPCs and peripheral immune cells.
Recruitment and activation of peripheral
immune cells by OPCs

Under normal physiological conditions, OPCs typically exhibit

minimal expression of inflammatory genes. However, gene expression

analysis of PDGFRa+ OPCs revealed increased expression of several

cytokines and chemokines, eg. IL-1b and CCL2, in the lesions of MS

patients as well as in the brains of cuprizone-induced demyelinatedmice

(25) (Table 1). IL-1b is known for its role in the induction, activation,

and recruitment of CD4+ T-lymphocytes and T-helper cell type 1 (Th1)

(30, 31), suggesting OPCs may recruit T cells to the lesion. Indeed, two

independent transcriptomic studies have revealed immune-cell like

OPCs in the spinal cord of experimental autoimmune

encephalomyelitis (EAE) mouse model or at the chronic active lesion

edge of MS patient brain (27, 44). A subset of OPCs in the EAE mouse

model expressed genes involved in antigen processing and presentation

via major histocompatibility complex class I and II (MHC-I and -II)

(27) and the expression ofMHC I and II could be induced by IFN-g (24,
27) (Table 1). Interestingly, OPCs enhanced T cell survival in co-culture

system, and this effect was further augmented when OPCs were pre-

treated with IFN-g. Furthermore, presence of OPCs increased the

number of T cells expressing TNFa and IFN-g, indicating that IFN-g/
MHC-II signaling between OPCs and T cells provide a positive

regulatory feedback on inflammation. These studies strongly support

the notion that OPCs are not only passive target of T cells but also

actively modulate T cell function.

Interestingly, OPCs display similar alterations when exposed to

an anti-inflammatory environment, such as IL4 and IL10. These

changes include MHC-II expression and cytokine secretion (34)

(Table 1). The expression of MHC I and II in OPCs induced by

IFN-g is likely mediated by STAT1 and Bach1 transcription factors.

It has been shown that OPCs upregulate transcriptional factors such

as STAT1 (signal transducer and activator of transcription 1) and

Bach1 in response to the IFN-g signaling, which in turn upregulates

immune genes such as PSMB9 (proteasome 20S subunit beta 9) and

TAP2 (antigen peptide transporter 2) in OPCs of mice and humans

(45). PSMB9 aids in class I MHC peptide processing (46) and TAP2

facilitates antigen transport and MHC I folding (47).

OPCs in the demyelinated lesion increase the LRP1 expression,

that enhances its ability to phagocytose and cross-present the debris
Frontiers in Immunology 05
(48). Knockout of LRP1 in OPCs notably reduced inflammation in

demyelinating mouse models (EAE and cuprizone models). LRP1-

deficient OPCs showed impaired phagocytic ability, lower levels of

MHC-I, MHC-II, and immunoproteasome, ultimately resulting in

enhanced myelin repair and neuroprotection (49). Hence, the

conversion of OPCs to a pro-inflammatory phenotype may be

mediated by LRP1.

OPCs also express antigens CD273 and CD274 (also known as

programmed death ligand (PD-L) 2 and PD-L1, respectively) (24,

27, 43) (reviewed by Cabeza-Fernández et al (50),). When exposed

to cerebrospinal fluid (CSF) from MS patients in the phase of

progressive MS (pMS), OPCs upregulate PD-L1, which in turn

suppresses T cell-induced inflammation (43). In addition,

compared to CSF from patients in the relapsing phase, CSF from

pMS patients reduces the MHC II and TNF-a expression, as well as

the activation of NF-kB in OPCs, of MS, thereby suggesting OPCs

exposed to pMS CSF impede T cell activation and proliferation (43).

Hence, it’s tempting to speculate that OPCs adjust their phenotype

in response to various conditions, thereby influencing T cell activity.

This observation appears contradictory to the aforementioned

findings, likely due to the comparatively simplified nature of in

vitro systems compared to in vivo environment. The presence of

myelin debris, CD4+ and CD8+ T cells, chemokines, and cytokines

in MS lesions renders the signaling inputs to OPCs far more

complex than those provided by CSF alone.
Suicide cascade or heterogeneity of OPCs?

The number of OPCs is significantly reduced in MS lesions and

normal-appearing white matter compared to control tissue (44, 51).

This could be due to the peripheral immune cell induced OPC

apoptosis. As mentioned above, OPCs activate T cells in the lesion

and increase the number of IFN-g producing T cells. This cytokine

also attracts CD8+ T cells to MS lesions, resulting in OPC death

through the activation of caspase cascades via the Fas/FasL and

perforin/granzyme pathways (24) (Figure 2). Furthermore, a recent

study observed that OPCs, along with Th1 cells, activate a subset of

macrophages, leading them to become cytotoxic and subsequently

induce OPC apoptosis (26). It seems that, initiated by unknown

reason, OPC-expressed CCL4 starts to attract Th1 cells, and two

together further recruit macrophages. In turn, the latter induce OPC

and oligodendrocyte death, inducing demyelination (Figure 2). This

self-destructive mechanism suggests that OPCs inMSmay undergo a

phenotypic change, becoming pro-inflammatory OPCs. However, it’s

also plausible that the OPCs recruiting T cells and those undergoing

apoptosis represent distinct subpopulations. OPCs exhibit

heterogeneity based on factors such as their resident region, origin,

age, and most importantly, their local microenvironment (5, 52–54).

Kukanja et al. recently demonstrated that in the tissue of MS patients

or mouse models, OPCs fall into two subtypes: homeostatic OPCs

and disease-associated (DA)-OPCs (55). The latter subtype

upregulates genes involved in immune function, such as B2m

(coding Beta-2-Microglobulin), C4b (coding complement

component 4b), and Igtp (Interferon gamma induced GTPase).

Based on this evidence, we posit that DA-OPCs may primarily
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recruit immune cells in MS, while homeostatic OPCs mainly produce

myelin and are the targets of immune cell-induced apoptosis. On the

other hand, OPCs involved in remyelination can originate from

either pre-existing OPCs through self-renewal or from neural stem

cells (NSCs) (56, 57). The myelin sheaths formed by these two

different-origin OPCs vary in thickness, with NSC-derived OPCs

forming fully thick myelin sheaths and OPC-derived OPCs forming

thinner sheaths (57). These results indicate that these OPCs exhibit

distinct properties. Could it be that pre-existing OPCs are pro-

inflammatory while NSC-derived OPCs are pro-myelinating?

Further investigation is imperative to elucidate the processes

leading to the accumulation of myelin debris and subsequent

activation of immune responses, particularly the mechanisms

through which myelin debris acts as an antigen, triggering immune

cell reactions.
Conclusion

OPCs have emerged as key players in various aspects of

immune function, drawing significant attention in recent

research. However, our understanding of how OPCs elicit

immune responses remains limited. It is still an open question

whether the immune-responsive OPCs represent a distinct

subpopulation or are converted from homeostatic OPCs. There is

an urgent need to identify the origin of immune-responsive OPCs,

characterize them, and elucidate the cellular and molecular

mechanisms underlying their contribution to CNS immune

responses. The use of advanced techniques, such as in vivo two-

photon imaging with transgenic animals and spatial- and single-cell

RNA sequencing, will help address these questions and further
Frontiers in Immunology 06
enhance our understanding of the intricate interplay between OPCs

and immune cells. Deeper exploration of these interactions holds

promise for uncovering novel therapeutic avenues for multiple

sclerosis and other neuroinflammatory disorders.
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FIGURE 2

OPC-T cell interaction in multiple sclerosis. (1) Accumulation of myelin debris in demyelinated lesions attracts CD4+ T cells to the site. Additionally,
OPCs express chemokines such as CCL2, CCL4, and pro-inflammatory cytokines like IL-1b, further aiding in the recruitment of CD4+ T cells. (2)
Upon activation, CD4+ T cells migrate to the lesion site and release pro-inflammatory factors like IFNg and IL17. (3) IFNg plays a dual role: it recruits
CD8+ T cells to the lesion while also inducing MHC expression in OPCs, thereby activating both CD4 and CD8+ T cells. (4) CD8+ T cells contribute
to OPC apoptosis through pathways involving Fas/FasL and perforin/granzyme. (5) OPCs, in collaboration with CD4+ T cells, activate a subset of
macrophages through mechanisms that are currently unknown. These activated macrophages subsequently induce OPC apoptosis. (Created with
BioRender.com).
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