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Background: While previous research has established an association between

inflammatory bowel disease (IBD) and osteoporosis (OP), the nature of this

association in different populations remains unclear.

Objective: Our study used linkage disequilibrium scores(LDSC) regression analysis

and Mendelian randomization(MR) to assess the genetic correlation and causal

relationship between IBD and OP in European and East Asian populations.

Methods:We performed separate genetic correlation and causal analyses for IBD

and OP in European and East Asian populations, used the product of coefficients

method to estimate the mediating effect of nutritional status on the causal

relationship, and used multi-trait analysis to explore the biological mechanisms

underlying the IBD-nutrition-OP causal pathway.

Results: Our analysis revealed a significant genetic correlation and causal

relationship between IBD and OP in the European population. Conversely, no

such correlation or causal relationship was observed in the East Asian population.

Mediation analysis revealed a significant mediating effect of nutritional status on

the causal pathway between IBD and OP in the European population. Multi-trait
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analysis of the IBD-nutrition-OP causal pathway identified MFAP2, ATP13A2,

SERPINA1, FTO and VCAN as deleterious variants.

Conclusion: Our findings establish a genetic correlation and causal relationship

between IBD and OP in the European population, with nutritional status playing a

crucial mediating role.
KEYWORDS

inflammatory bowel disease, osteoporosis, genetic correlation, causality, mediating
effect, multi-trait analysis, harmful variant
1 Introduction

Bone is a dynamic and actively remodeling tissue that maintains

a delicate equilibrium between bone formation by osteoblasts and

bone resorption by osteoclasts (1). OP arises from an imbalance in

bone homeostasis in which bone resorption exceeds bone

formation, resulting in reduced bone mass, deteriorated

microarchitecture, and heightened susceptibility to fragility

fractures (2). In 2010, 5.5 million men and 22 million women in

the European Union were diagnosed with OP (3). The prevalence of

OP is steadily increasing due to changing global demographics,

earning it the moniker ‘the silent disease of the 21st century’ (4).

IBD is defined as an autoimmune disorder that primarily affects

the gastrointestinal tract. Its chronic and relapsing nature makes it a

challenging disease to treat. Currently, no known cure exists for IBD

(5). IBD is divided into two primary subtypes, Crohn’s disease(CD)

and ulcerative colitis(UC), based on the affected area within the

digestive tract. CD typically affects the terminal ileum, cecum,

perianal region, and adjacent colon, while UC usually involves the

rectum, with continuous extension to encompass a portion of or the

entire colon (6–8). Since its identification a century ago, Europe has

consistently exhibited the highest incidence of IBD (9). Reports

indicate that over 2.5 million individuals in Europe have received an

IBD diagnosis (10). In recent years, there has been a significant

change in the epidemiology of IBD, with a noticeable rise in Asian

countries and among Asian immigrant populations in Western

nations (11, 12). Research suggests an increased risk of OP in

individuals with IBD (13–15). However, the potential variation in

the link between these two conditions across European and East

Asian populations remains uncertain. Therefore, it is crucial to

conduct further investigation into the causal relationship and

shared genetic architecture between IBD and OP within diverse

ethnic groups for a comprehensive understanding of both diseases.

Nutritional status is defined as the overall condition of the body

resulting from the intake, absorption and utilization of nutrients,

including the effects of specific physiological and pathological states

(16). Malnutrition includes deficiencies, imbalances, or excesses of

energy and nutrients, including micronutrients. It has been shown
02
that chronic bowel inflammation in IBD patients interferes with the

absorption of essential micronutrients, including Fe, Ca, vitamin D,

vitamin B12, folic acid, Zn, Mg and vitamin A, resulting in

deficiencies (17). In addition, research has identified Ca and

vitamin D as key micronutrients in mitigating bone loss, with

vitamin B12, folic acid, vitamin K, vitamin C, phosphate, Mg and

Na also playing a role (18–22). Previous research strongly suggests

that malnutrition is a significant factor in the development of OP in

people with IBD. Body composition assessment is an important tool

to effectively assess and monitor nutritional status, with bioelectrical

impedance analysis emerging as the most efficient and reliable

method due to its rapid performance, non-invasive nature and

cost-effectiveness (23, 24). Therefore, we will use impedance of arm

(IOA) as an indicator of nutritional status to investigate the

mediating effect and common genetic architecture of nutritional

status within the causal pathway linking IBD and OP, with the aim

of gaining new insights into how IBD influences the development

of OP.
2 Methods

2.1 Research design

This study examines the genetic correlation and causal

relationships between IBD and OP in European and East Asian

populations. To evaluate the genetic correlation between IBD and

OP, we used LDSC. We conducted two-sample MR analyses to assess

the causal relationship between IBD and OP. We then employed a

two-step approach to evaluate the mediating effect of IOA. Finally, we

performed multi-trait analysis using MTAG to investigate the shared

genetic architecture underlying IBD, IOA, and OP (Figure 1).
2.2 Data source

To identify genetic variants associated with IBD, data from the

International Inflammatory Bowel Disease Genetics Consortium
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(IIBDGC, https://www.ibdgenetics.org/) was used. The IIBDGC

conducted the largest multi-ancestry (East Asian and European)

IBD genetics study to date (25). The analysis of East Asian

population included 14,393 cases of IBD, consisting of 7,372 cases

of CD and 6,862 cases of UC, as well as 15,456 controls. Samples

were collected from East Asian countries such as China, South

Korea, and Japan. The analysis of European population involved

25,042 cases of IBD and 34,915 controls of non-Finnish European

population. This included 12,194 cases of CD and 28,072 controls,

as well as 12,366 cases of UC and 33,609 controls. The original

GWAS researchers conducted thorough quality control and

association analyses to effectively control for population structure

and other confounding factors.

The GWAS summary dataset for investigating the genetic

associations of OP in individuals of European population, including

8,017 cases and 391,037 controls, was provided by the FinnGen

biobank (https://r10.finngen.fi/pheno/M13_OSTEOPOROSI) (26). A

summary dataset of GWAS was obtained to explore the genetic

associations of OP in individuals of East Asian population. The
Frontiers in Immunology 03
dataset comprised data from 9,794 cases and 168,932 controls of

Japanese descent (https://pheweb.jp/) (27). OP diagnoses in this

study were ascertained from hospital statistics and categorized using

the International Classification of Diseases and Related Health

Problems (ICD) 10 coding system.

The GWAS summary datasets investigating the genetic

associations of IOA were sourced from the MRC-IEU database

(https://gwas.mrcieu.ac.uk/). The dataset was generated using the

Phesant GWAS pipeline on derived variables from UKBiobank. It

included 454,850 individuals of European population for left IOA

and 454,862 individuals of European population for right IOA (28).
2.3 Genetic correlation

LDSC is a commonly used method for analyzing genetic

correlations. It allows for the estimation of genetic contributions

to complex diseases and traits by utilizing the concept of LD. In this

study, we used the 1000 Genomes Project as the reference panel to
A

B

FIGURE 1

Research flowchart. (A) Flowchart for research on East Asian population; (B) Flowchart for research on European population.
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calculate LD scores, following established methodology. The

strength of association between individual single nucleotide

polymorphisms (SNPs) and complex traits was inferred by

estimating their respective LD Scores (29). LDSC was used to

conduct cross-trait analysis and assess the genetic correlation

between IBD and OP.
2.4 Causal relation

2.4.1 Two-sample MR
Valid results from MR analysis depend on the fulfillment of three

key assumptions. Specifically, genetic variants that serve as instrumental

variables(IVs) for risk factors must satisfy the following: (1) relevance:

showing a robust association with the risk factor under study; (2)

independence: showing no correlation with known or unknown

confounders; and (3) exclusion restriction: influencing the outcome

solely through the risk factor, with no other direct causal pathways (30).

To ensure the relevance and exclusion restriction assumptions, we set a

genome-wide significance threshold of p<5×10−8 to select exposure-

associated SNPs, and a threshold of R2< 0.001 to identify independent

variants and mitigate bias due to LD. We calculated the F statistic to

minimize weak instrument bias and to assess the strength of the selected

SNPs, setting a threshold of F statistic>10 for further analysis (31). To

ensure objectivity, we used the Steiger-Flering method for SNP

screening (32). In addition, we used the Mendelian Randomization

Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test to identify

potential outliers within the multi-instrument MR analysis, particularly

those with pleiotropic effects at the SNP level (33). Based on previous

research, we identified age at menopause and age at menarche as

potential confounders of the independence assumption. We then used

the LDlink database (https://ldlink.nih.gov/) to query traits associated

with IVs (R2 = 0.8, base pair window=50000) and subsequently

removed SNPs associated with these confounders (34). Inverse

variance weighted (IVW) analysis served as the primary MR analysis,

with the weighted median method, MR-Egger, and MR-PRESSO used

to assess the robustness of the IVW results (33, 35, 36). We used the Q

test for both IVW and MR-Egger to identify heterogeneity among

individual IVs that could potentially violate the assumptions. MR-Egger,

through its intercept estimate, was used to assess pleiotropy and ensure

the independence of genetic variation from the outcome (37). In

addition, we conducted MR analyses stratified by European and East

Asian populations and further by disease subtypes (CD and UC) to

investigate the causal relationship between IBD subtypes and OP

across populations.

2.4.2 Two-step MR
IVW method was used as the primary approach to estimate the

causal effects in the two-step MR mediation analysis. This analysis

involved the calculation of two different MR effects: (1) the causal effect

of exposure on themediator (â ); the causal effect of themediator on the

outcome (b̂ ). The product of coefficients method was used as

the primary approach to estimate the indirect effect, specifically the

mediating influence of IBD on OP through IOA (38).
Frontiers in Immunology 04
2.5 Multi-trait analysis of GWAS

MTAG is a meta-analytical approach that uses inter-trait

correlations to increase statistical power for detecting new genetic

associations within individual traits. This method applies inverse-

variance weighted meta-analysis to summary statistics obtained from

GWAS conducted on diverse traits (39). MTAG assumes the

homogeneity of the effect-size variance-covariance matrix across

SNPs for all traits. Even in cases where this assumption is not met,

for instance, when specific SNPs influence only a subset of traits, the

estimators derived from MTAG can maintain consistency.

FUMA was used to functionally map and annotate significant

SNPs identified through GWAS analysis using MTAG. The aim was

to elucidate the genetic underpinnings linking OP, IBD, and arm

resistance (40). SNP2GENE was used to annotate the biological

functions of SNPs and their corresponding gene mapping. The

parameters for independent significant SNPs and lead SNPs were

set as follows: a maximum P-value of p<5×10−8, a maximum P-

value cutoff of 0.05, an r2 threshold of ≥ 0.6, a secondary r2

threshold of ≥ 0.1, and a maximum distance of< 250 kb between

LD blocks for merging into a single locus.
2.6 Statistical analysis

LDSC (v1.0.0, https://github.com/bulik/ldsc). R software (version

4.3.2), and R packages ‘TwoSampleMR’, ‘MendelianRandomization’,

‘MRPRESSO’, and ‘MVMR’ were used for all MR analyses. MTAG

(0.9.0, https://github.com/JonJala/mtag) and FUMA (https://

fuma.ctglab.nl/) were used for data cleaning and statistical/

bioinformatics analysis.
3 Results

3.1 Genetic correlation

Single trait LDSC regression results: The heritability (h2) of OP

in individuals of European population was estimated to be 0.0102

(se:0.0017), with mean Chi2 statistic of 1.1247 and intercept of

1.0442 (se:0.0084). The h2 of IBD was estimated to be 0.3109 (se:

0.0302), with mean Chi2 statistic of 1.5014 and intercept of 1.1298

(se:0.0144). In individuals of East Asian population, the h2 of OP

was estimated at 0.0139 (se: 0.0028),with mean Chi2 statistic of

1.1247 and intercept of 1.0442 (se:0.0084).The h2 of IBD was

estimated at 0.3146 (se: 0.0357). with mean Chi2 statistic of

1.2398 and intercept of 1.0478 (se:0.01).The results of the Cross-

Trait LD Score Regression Genetic Correlation Analysis are as

follows: (1) For individuals of European population, the genetic

correlation (rg) between OP and IBD was estimated at 0.1278

(se:0.0577), with Z-score of 2.2139 and p-value of 0.0268. (2) For

individuals of East Asian population, the genetic correlation

between OP and IBD was estimated at 0.0696 (se: 0.086), with Z-

score of 0.8095 and p-value of 0.4182.
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3.2 Causal relation

3.2.1 Two-sample MR
To investigate the causal relationship between IBD and OP, we

performed a univariate Mendelian randomization (UVMR) analysis

and identified suitable SNPs as IVs using F-statistics, Steiger

filtering, and outlier diagnostics. Interestingly, we found a

significant positive causal relationship between IBD and OP in

the European population (odds ratio [OR]: 1.043, 95% CI: 1.013–

1.073, p = 0.006), but this association was not present in the East

Asian population. Further analysis of disease subtypes showed a

positive causal relationship between CD and OP in the European

population (OR: 1.039, 95% CI: 1.008–1.07, p = 0.015), but not

between UC and OP. In the East Asian population, no causal

relationships were observed between either CD or UC and

OP (Figure 2).

3.2.2 Two-step MR
To investigate whether IOA mediates the causal relationship

between IBD and OP, we analyzed individuals of European

population who showed a causal link between IBD and OP. Our
Frontiers in Immunology 05
causal analysis revealed a positive association between IBD and

IOA, with b of 0.008 (95% CI: 0.003, 0.012, p = 0.001) for the left

arm and 0.007 (95% CI: 0.003, 0.012, p = 0.001) for the right arm

(Figure 3). Further analysis showed a positive association between

IOA and OP, OR were 1.248 (95% CI: 1.091, 1.405, p = 0.006) for

the left arm and 1.232 (95% CI: 1.083, 1.380, p = 0.006) for the right

arm (Figure 4). We estimated the mediating effect of IOA on the

IBD-OP causal pathway using the coefficient product method, OR

were 1.002 (95% CI: 1.000, 1.004) for the left arm and 1.001 (95%

CI: 1.000, 1.003) for the right arm.
3.3 Multi-trait analysis of GWAS

Considering the established genetic correlation and causal link

between OP and IBD in European population, along with the

mediating role of IOA in this relationship, we performed a multi-

trait GWAS analysis. This analysis utilized GWAS data for OP, IBD,

and IOA (both left and right) to identify genetic loci within the OP

GWAS dataset that exhibit associations with IBD and IOA. SNPs

reaching genome-wide significance and clustered based on an R2
FIGURE 2

Forest plots of causality. Forest plots including causality between IBD and OP of East Asian population and European population in the analyses and
causality between disease subtypes CD, UC and OP. The forest plot includes nSNP, Beta95%CI, and correlation pvalues for all studies in the analysis.
# represents the number of outliers filtered by MR-PRESSO.
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threshold of 0.1 to ensure approximate independence were designated

as “lead SNPs”. Following MTAG integrating GWAS data for OP with

both GWAS-IBD and GWAS-IOA, the initial set of 50 SNPs exhibiting

significant associations (p<5×10−8) in the original GWAS-OP

expanded to encompass 146 SNPs for the left IOA and 94 SNPs for

the right IOA within the MTAG-OP results. As defined previously,

“lead SNPs” represent SNPs achieving genome-wide significance and

clustered with an R2 value of 0.1 to approximate independence. The

original GWAS-OP dataset contained 7 lead SNPs. Following MTAG

analysis, the MTAG-OP results revealed 8 lead SNPs for the left IOA

and 6 lead SNPs for the right IOA that demonstrated associations with

both IBD and IOA (Figure 5). The analysis of the genomic loci

identified 25 genes for the left IOA and 23 genes for the right IOA

exhibiting associations with the IBD-IOA-OP relationship. Among

these, 6 genes for the left IOA and 5 genes for the right IOA harbored

deleterious variants with a Combined Annotation Dependent

Depletion (CADD) score exceeding 12.37. By integrating the MTAG

analysis results for both left and right IOAs in the context of the IBD-

IOA-OP relationship, we identified five genes harboring deleterious

variants: MFAP2, ATP13A2, SERPINA1, FTO, and VCAN. We

performed MAGMA gene set analysis using curated gene sets and

Gene Ontology (GO) terms sourced from the Molecular Signatures

Database (MsigDB). Integrating the results of the MTAG analysis

results for both IOAs in relation to the IBD-IOA-OP association, we

identified four significant gene sets: GOBP SKELETAL SYSTEM
Frontiers in Immunology 06
DEVELOPMENT, GOBP_REGULATION_OF_SKELETAL_

MUSCLE_CELL_DIFFERENTIATION, WP_ENDOCHONDRAL_

OSSIFICA and WP_ENDOCHONDRAL_OSSIFICATION_WITH_

SKELETAL_DYSPLASIAS.
4 Discussion

To our knowledge, this study pioneers a comprehensive cross-

trait analysis of the IBD-IOA-OP causal pathway using whole-

genome data, providing a systematic assessment of their shared

genetic architecture based on balanced evidence for both genetic

correlation and causation. Initially, we employed LDSC and MR

analyses to investigate the genetic correlation and causality

between IBD and OP across European and East Asian

population. Our findings revealed a positive genetic correlation

(rg: 0.1278) and causal relationship (OR: 1.043, 95%CI (1.013,

1.073)) between IBD and OP within the European population.

However, this correlation and causality were absent in the East

Asian population. Subsequently, disease subtype analysis revealed

a positive causal relationship between CD and OP (OR: 1.039, 95%

CI (1.008, 1.070)) within the European population. Conversely, no

causal relationship was observed between UC and OP in either

European or East Asian population, nor between CD and OP in

East Asian population. Finally, a two-step MR analysis identified
FIGURE 3

Two-step MR analysis of forest plots. Forest diagrams include analyzing the causal relationship between IBD and IOA. The forest plot includes nSNP,
Beta95%CI, and correlation pvalues for all studies in the analysis. # represents the number of outliers filtered by MR-PRESSO.
FIGURE 4

Two-step MR analysis of forest plots. Forest diagrams include analyzing the causal relationship between IOA and OP. The forest plot includes nSNP,
Beta95%CI, and correlation pvalues for all studies in the analysis. # represents the number of outliers filtered by MR-PRESSO.
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the mediating effects of IOA on the causal pathway of IBD to OP

within European population, specifically for the effects of the left

side (OR: 1.002, 95% CI (1.000, 1.004)) and right side (OR: 1.001,

95% CI (1.000, 1.003)). Using MTAG for multi-trait causal

pathway analysis, we identified deleterious variants MFAP2,

ATP13A2, SERPINA1, FTO, and VCAN within the causal

pathway IBD-IOA-OP. In conclusion, our research provides

compelling evidence for genetic correlation and causality

between IBD and OP in European population, elucidates the

IBD-IOA-OP causal pathway and common genetic basis, and

identifies potential functional genes associated with this
Frontiers in Immunology 07
pathway. It is important to acknowledge the diverse genetic

backgrounds across different ethnicities, which may explain the

lack of robust genetic evidence supporting the correlation and

causality between IBD and osteoporosis in East Asian population.

Osteopenia and osteoporosis are prevalent extraintestinal

manifestations in IBD patients, affecting 40–50% and 2–30% of

patients, respectively (41, 42). Epidemiological studies within

European population have revealed a higher prevalence of

reduced bone mineral density(BMD) in IBD patients. There is

evidence that IBD patients exhibit reduction in BMD, with CD

patients exhibiting more pronounced reduction compared to UC
A

B

C

FIGURE 5

GWAS Manhattan chart. (A) GWAS − OPoriginal Manhattan map, (B) MTAG − OPIBD−IOA(L) Manhattan map, (C) MTAG − OPIBD−IOA(R) Manhattan map.
Horizontal coordinates are chromosomes and vertical coordinates are -log10(p). The dashed line indicates p threshold of 1× 10−6, and the solid line
indicates p threshold of 5× 10−8. Orange dots indicate SNPs 1× 10−6<p<5× 10−8, red dots indicate p<5× 10−8, and green dots indicate lead SNPs.
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patients, who demonstrate either no significant reduction or less

pronounced decrease (43–45). MR analysis conducted on European

population identified positive causal relationship between IBD and

OP. Subtype analysis revealed positive causal association between

CD and OP, while no such association was observed for UC (46).

Our findings corroborate these results, suggesting that the divergent

causal relationships between CD and UC with OPmay be attributed

to malnutrition resulting from impaired absorption (47). The

increased propensity for malnutrition in CD compared to UC

may be attributed to its location in the small intestine and its

nature as a systemic disease with a prolonged pre-disease period. In

contrast, UC is confined to the distal colon and presents as an acute-

onset mucosal disease (48). Epidemiological studies investigating

the association between IBD and OP within East Asian population

remain limited, with conflicting findings. A study focusing on

postmenopausal women in China identified IBD as a non-

significant risk factor for OP (49). A comprehensive Korean study

examining the prevalence of extraintestinal manifestations in IBD

patients revealed a higher prevalence of osteoporosis within this

group. However, the standardized prevalence ratio compared to the

general Korean population did not indicate a significant association,

suggesting that IBD may not be a primary factor influencing OP

development (50). Conversely, other studies have identified IBD as

a significant risk factor for OP (51, 52). Our findings align with

previous epidemiological studies and MR analyses conducted

within European population. However, the results observed in our

East Asian population diverge from both European data and some

prior East Asian epidemiological and MR analyses. Several factors

may contribute to these discrepancies: (1) Population genetic

structure contributes to differences in osteoporosis-associated

genetic variants between European and East Asian populations.

GWAS were conducted separately for European and East Asian

populations to identify genetic variants associated with

osteoporosis. In contrast to the European population, no

significantly associated loci, independent SNPs, and lead SNPs

were identified for osteoporosis phenotypes in the East Asian

population under the same statistical threshold. The European

population revealed 6 loci, 9 independent SNPs, and 7 lead SNPs

significantly associated with osteoporosis phenotypes[(see the

Manhattan plots comparing GWAS results for osteoporosis in the

two populations in Supplementary Figures S7, S8)]. The findings

indicate that diverse mechanisms influencing the distribution and

function of genetic variants across populations contribute to the

substantial differences in osteoporosis-associated genetic variants

between European and East Asian populations. (2) While rapid

urbanization and industrialization in East Asian countries (China,

South Korea, and Japan) have resulted in an exponential rise in IBD

prevalence, rates remain considerably lower than those observed in

European nations (53, 54). Additionally, variations in industrial

development and healthcare systems across East Asia contribute to

regional disparities in IBD prevalence and extraintestinal

manifestations (55). (3) The emergence of IBD in previously

unaffected regions typically follows a pattern, with UC initially

presenting more frequently than CD. Geographic variation in the

distribution of IBD subtypes has been observed, with UC being

predominant in East Asian countries and CD being more prevalent
Frontiers in Immunology 08
in European nations. The anatomical location of inflammation in

UC may explain the lower incidence of malnutrition-induced

osteoporosis observed in these patients (56). The reported

prevalence ratio of UC to CD in Asia is 2.0, further highlighting

the regional differences in IBD subtype distribution (57). (4) Other

confounding factors also contribute to the observed disparities.

Dietary habits, such as the prevalent consumption of tea in East

Asian countries and coffee in European countries, may play a role. It

has been suggested that coffee consumption may exacerbate

gastrointestinal symptoms in IBD patients, leading to decreased

intestinal Ca absorption and disruption of Ca-P homeostasis, which

may ultimately contribute to osteoporosis development (58, 59).

Conversely, tea consumption has been linked to reduced intestinal

inflammation and permeability, potentially offering protection

against IBD progression. Furthermore, tea consumption has been

associated with increased bone-specific alkaline phosphatase levels,

a marker of bone formation, which may contribute to a reduction in

the risk of osteoporosis (60–62).

This study makes significant contribution by exploring the

novel domain of IBD-nutrition-OP interactions. We have

identified and quantified the mediating role of the index of

overall nutritional status (IOA) in the causal relationship between

IBD and OP. While direct investigations into this specific pathway

are limited, existing research provides supporting evidence.

Bioelectrical impedance analysis has emerged as a valuable tool

for accurately and efficiently assessing nutritional status and body

composition in IBD patients (63–65). Moreover, research has

established robust correlation between bioelectrical impedance

measurements and osteoporosis (66, 67). Based on existing

research, we hypothesize that the mechanism underlying the IBD-

nutrition-OP causal pathway may involve two key aspects. Firstly,

IBD is characterized by gut microbiota dysbiosis, which results in an

imbalance between beneficial and harmful bacterial taxa and an

abnormal abundance and diversity of the gut microbiota (68–71).

This dysbiosis impacts the absorption, bioavailability, and

bioaccessibility of essential micronutrients relevant to bone

metabolism, such as Ca, Zn, Se, and Fe. Studies have

demonstrated that the gut microbiota can enhance Ca absorption

and regulate intestinal serotonin production, a neurotransmitter

believed to interact with osteoblasts and regulate bone metabolism

(72). Furthermore, research has shown that Lactobacillus

plantarum 299v significantly increases the absorption of nonheme

dietary iron during specific testing periods (73). Additionally, Zn

and Fe Se compounds present in food sources are converted to

selenomethionine (SeMet) by the gut microbiota, which enables the

host to absorb this essential micronutrient. These compounds are

not absorbed by the small intestine and reach the colon, where

commensal bacteria enhance their bioavailability and deliver them

to the host (74, 75). Secondly, IBD is a chronic, progressive

inflammation within the gut that causes damage to the intestinal

structure and function. This results in a wide range of

gastrointestinal symptoms. IBD patients experience alterations in

the intestinal mucosa, damage to the digestive tract, impaired

digestion, exacerbated inflammatory consumption, hindered

nutrient absorption, leading to malnutrition and subsequent

significant changes in body composition. These changes are
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characterized by marked reductions in muscle mass and skeletal

muscle mass, ultimately increasing the risk of osteoporosis (76–81).

It is notable that our research extended the analysis of the IBD-

nutrition-OP causal pathway, identifying lead SNPs (rs4920608,

rs115912456, rs10875906, rs3184504, rs112635299, and rs56094641)

and genes associated with potentially deleterious mutations (MFAP2,

ATP13A2, SERPINA1, FTO, and VCAN). MFAP2, a component of

the extracellular matrix, was the first identified protein playing a crucial

role in regulating growth factor signal transduction (82). Gene

expression profiling revealed the specific expression of MFAP2

within osteoblast-like cells (83). Animal models demonstrated that

MFAP2-deficient mice experience progressive bone loss, coupled with

elevated expression of osteoclasts and NF-kB ligand receptor activator

(84, 85). MFAP2 plays a pivotal role in the development of functional

vasculature, which is essential for the absorption, transport, and

homeostasis of nutrients within the body (82, 86). ATP13A2, a

lysosomal type 5 P-type ATPase involved in polyamine transport, is

associated with various neurodegenerative disorders, including

autosomal recessive hereditary familial Parkinson’s disease (87, 88).

The rs4920608 variant, an intronic variation located at the end of the

ATP13A2 gene, may influence the polymorphism of ATP13A2.Studies

have demonstrated the involvement of ATP13A2 in elemental

metabolism, including Mg toxicity, Zn homeostasis, and Fe

deposition (89–94). Mg, Fe, and Zn are essential for bone

mineralization and metabolism. Zn, in particular, exhibits a strong

association with osteoporosis, playing a pivotal role in skeletal

development and bone mass maintenance (95–98). SERPINA1,

which has been extensively researched, exerts a significant influence

on human health. The SERPINA1 gene encodes the secreted a1-
antitrypsin (AAT) subtype, which performs essential functions by

inhibiting proteases and modulating immune responses (99).

Research aimed at elucidating the novel immunomodulatory roles of

active vitamin D (1,25(OH)2D3) in human CD4 T cells has revealed its

ability to modulate these functions through the effective induction of

a1-antitrypsin gene (SERPINA1) expression (100, 101). It has been

demonstrated that the indirect consequences of altered immune status

can result in the persistent destruction of bone tissue. It has been

demonstrated that immune cells interact with osteoblasts and

osteoclasts through direct cell-to-cell contact. However, it is more

likely that this occurs via paracrine mechanisms, particularly in the

context of a chronic low-grade inflammatory phenotype (102). Genetic

research has identified a correlation between the rs112635299 variant

of SERPINA1 and the levels of glycoprotein acetylated and

phenylalanine (103). Glycoprotein acetylated and phenylalanine have

been identified as inflammatory markers that are superior indicators of

chronic low-grade inflammation compared to C-reactive protein (104).

The correlation between phenylalanine and inflammatory markers

suggests a connection with chronic low-grade inflammation and

immune activation (105). A genetic association study identified

SERPINA1 as a shared genomic region for C-reactive protein and

osteoporosis (106). Furthermore, SERPINA1 gene therapy has been

explored and evaluated in animal models of osteoporosis (107). FTO, a

key gene in gene-diet interactions, exhibits its highest expression in the

brain. Its role in amino acid sensing allows it to influence the intake of

both macronutrients and micronutrients (108–110). The rs56094641
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variant, an intronic variation within the FTO gene, has been

demonstrated to influence FTO polymorphism during osteoblast

differentiation, resulting in alterations in the expression of the

osteoblast biomarkers ALPL and OPN (111). Moreover, research has

demonstrated downregulation of FTOmRNA in osteoporosis patients.

FTO overexpression induces osteogenic differentiation of C3H10T1/2

cells, while the GDF11-FTO-PPARg axis suppresses bone formation

and promotes adipogenic differentiation of osteoporotic bone marrow

mesenchymal stem cells during osteoporosis. These findings

underscore the pivotal role of FTO in osteoblast demise and

differentiation (112–114). The VCAN gene encodes chondroitin

sulfate proteoglycan, a principal component of the extracellular

matrix (115). rs115912456 is an intronic variant of the VCAN gene.

The functional consequences of this variant remain undefined at

present. VCAN expression was observed to exhibit a two-fold

upregulation during osteoblast metabolism and an eight-fold increase

during the process of altered development and regeneration of

dystrophic myofibers resulting from chronic calcium influx in

dystrophin-deficient myofibers (116–118). Although the genes

associated with the genetic variants rs10875906 and rs3184504 do

not meet the CADD threshold for identifying potentially harmful

mutations, these lead SNPs demonstrate a significant association with

the IBD-nutrition-OP axis. rs10875906, an intergenic variant, exhibits a

significant association with bone density phenotype, although the

functional implications of this association remain unclear (119).

rs3184504, a missense variant in the SH2B3 gene, is linked to the

inflammatory metabolite kynurenine. Plasma kynurenine has been

identified as a potential biomarker for both acute and chronic

inflammation involving the SH2B3 pathway, and exhibits a

correlation with the inflammatory marker C-reactive protein (120).

This study elucidates the genetic correlation and causal

relationship between IBD and OP in both European and East

Asian populations, further establishing the mediating role of

nutritional status within this causal pathway. Our research boasts

several strengths. Firstly, in contrast to existing East Asian IBD

GWAS (with 157,116 SNPs) and OP MR studies (121), we utilized

the latest and largest East Asian IBD GWAS dataset (comprising

12,869,831 SNPs), minimizing the risk of false-positive results.

Secondly, we performed cross-validation of genetic correlation

and MR analyses across diverse populations, ensuring robust and

reliable results. Thirdly, MR analysis incorporated rigorous IV

selection through MR-PRESSO and Steiger filtering tests,

accounting for potential pleiotropic effects. The identification of

any outliers did not impact the causal effects observed in the initial

IVW analysis. Fourthly, we employed IOA as a measure of body

composition and nutritional status in our causal pathway mediation

analysis, guaranteeing the credibility and rationale of the model

employed to elucidate the mediating effects. Fifthly, we employed

multi-trait analysis of GWAS to investigate the IBD-nutrition-OP

causal pathway, marking the first exploration of this domain.

Finally, we analyzed the lead SNPs and their corresponding genes

within the IBD-nutrition-OP causal pathway, establishing the

biological mechanisms underlying this relationship.

It must be acknowledged that the limitations of our research are

considerable. Firstly, our analysis of the genetic correlation and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1425610
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kang et al. 10.3389/fimmu.2024.1425610
causal relationship between IBD and OP was conducted exclusively

on European and East Asian populations. While our findings

indicate that this relationship exists solely within the European

population, the evolving epidemiology of East Asian population and

the uneven development across East Asian countries and regions

may introduce bias into the results. Secondly, our chosen GWAS

datasets lacked gender stratification, potentially introducing

outcome bias. Thirdly, despite the exclusion of SNPs associated

with confounding factors such as age at menarche and menopause

in the MR analysis, the potential influence of other confounders

cannot be entirely ruled out. Fourthly, the overlap in sample sources

within East Asian datasets may influence the stability of our

findings. Finally, while we have identified genes associated with

the IBD-nutrition-OP causal pathway, further longitudinal studies

and experimental investigations are crucial to comprehensively

unravel the underlying biological mechanisms.
5 Conclusions

This study provides a comprehensive understanding of the

genetic correlation and causal relationship between IBD and OP,

identifies the causal mediating role of nutritional status in the

IBD-OP relationship, and uses multi-trait analysis to investigate

the underlying biological mechanisms of the IBD-nutrition-OP

causal pathway. The results of this study provide causal evidence

for the pathogenesis of bone changes in IBD patients, which

may facilitate early prevention and diagnosis of bone loss in

this population.
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