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Immunogenic cell death (ICD) spatiotemporally regulates damage-associated

molecular patterns (DAMPs) derived from dying cancer cells to signal the

immune response. Intriguingly, these DAMPs and cytokines also induce

cellular responses in non-immune cells, particularly cancer cells. Several ICD-

modulating natural products and miRNAs have been reported to regulate the

DAMP, cytokine, and cell death responses, but they lack systemic organization

and connection. This review summarizes the impacts of natural products and

miRNAs on the DAMP and cytokine responses and cancer cell death responses

(apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the

rationale that ICD inducers of natural products have modulating effects on

miRNAs, targeting DAMPs and cytokines for immune and cancer cell death

responses. In conclusion, DAMP, cytokine, and cell death responses are

intricately linked in cancer cells, and they are influenced by ICD-modulating

natural products and miRNAs.
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1 Introduction

1.1 Immunogenic cell death, damage-
associated molecular patterns,
and cytokines

ICD induces antitumor immunity by triggering several immune

signals and damage-associated molecular patterns (DAMPs)

involved in immune and cell death responses (1). DAMPs are

molecules that induce intracellular responses but generate

immunogenic responses in an extracellular environment (2).

Generally, DAMPs are released by damaged or dying cells and

tissues, triggering an innate immune response against these

damaged and infected cells as well as cancer cells (3).

The danger signals from DAMPs include the cell surface

exposure of calreticulin (CALR), the release of the high-mobility

group box 1 (HMGB1) protein, and the secretion of ATP (4).

Subsequently, they cooperatively activate dendritic cells and

cytotoxic T lymphocytes (CTLs), causing them to kill cancer cells

(5). LDL receptor-related protein-1 (CD91), P2X7 receptor (P2X7R),

and Toll-like receptor 2 (TLR2) are located on the dendritic cell

surface and recognize CALR, ATP, and HMGB1, respectively.

In addition to DAMPs, ICD inducers also promote the secretion

of inflammatory cytokines from cancer cells. The DAMPs and

cytokines activate dendritic and natural killer (NK) cells,

promoting the secretion of effector cytokines. After ICD inducer

treatment, the dying cancer cells promote DAMP responses, and, in

turn, they release cytokines that activate the immune response, such

as C-X-C motif chemokine ligand 10 (CXCL10; IL8) and

interleukin 6 (IL6) (6, 7); additionally, IFNG (IFN-g) is released

by T helper 1 (Th1) cells and CTLs and interleukin 17A (IL17A;

IL17) is released by Th17 cells (8). Moreover, activated dendritic

cells secrete interleukin 12 (IL12), which causes NK cells to secrete

interferon g (IFNG; IFNg) and tumor necrosis factor-alpha (TNF;

TNFA; TNFa) (9). Furthermore, macrophages secrete interferon b
(IFNB1; IFNb1; IFNB), promoting apoptosis in neutrophils (10).
Frontiers in Immunology 02
Myeloid-derived suppressor cells (MDSCs) are responsible for the

immune suppression activity of macrophages and dendritic cells

(11). Therefore, ICD modulates DAMP and cytokine responses.
1.2 Some DAMPs and cytokines involved in
ICD were selected as ICD gene candidates

As described above, ICD initiates spatiotemporal DAMP

signals, such as the cell surface translocation of CALR and heat

shock proteins (HSP70 and HSP90) and the release of ATP and

HMGB1, leading to cell death (12). Consequently, DAMPs and

cytokines are vital for ICD induction.

In this review, we selected DAMPs involved in ICD modulation,

including HMGB1, CALR, heat shock protein family A (HSP70)

member 1A (HSPA1A), HSP70 member 1B (HSPA1B), heat shock

protein 90 alpha family class A member 1 (HSP90AA1), and heat

shock protein 90 beta family member 1 (HSP90B1) (1, 3, 12, 13). The

selected cytokines involved in ICD modulation include interleukin 6

(IL6), C-X-C motif chemokine ligand 8 (CXCL8; IL8), CXCL10,

IL12A, IL12B, IL17A, IL23A (IL23), IFNB1, IFNG, and TNF (14, 15).

The protein signaling pathway involving both DAMPs and selected

cytokines in ICD modulation were shown (Figure 1) (15–21).
1.3 miRNAs have ICD-modulating effects

miRNAs are short nucleotide (21-23 nts) molecules that can

regulate genes both positively (22–25) and negatively (2). Several

miRNAs exhibit tumor-promoting or suppressing effects. In the

immune response, miRNAs may regulate the ICD-modulated

expression, translocation, and secretion of some DAMPs (2).

Moreover, miRNAs may regulate cytokine responses in a manner

that modulates the immune response (26, 27). Consequently,

DAMP-targeting miRNAs are potential regulators of immune-

modulated responses and cell death in cancer cells (2).
FIGURE 1

Protein signaling pathway involving both DAMPs and selected cytokines in ICD modulation. ICD inducer triggers HMGB1 secretion, CALR surface
exposure, HSPA4/HSP90AA1 surface exposure and secretion, and inflammatory cytokine secretion from dying cancer cells or damaged cells.
Subsequently, HSPA4/HSP90AA1 and inflammatory cytokines can activate both NK and DC cells. NK cells secrete INFG and TNF to activate Th1 and
Th17 to secrete IFNG and IL17A, respectively. Moreover, DC cells secrete IL12A and IL12B to activate Th1 cells and secrete IL6 and IL23A to activate
CTL cells for IFNG secretion.
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1.4 ICD inducers of natural products

Drugs with the ability to induce ICD have anticancer effects by

enhancing DAMP and cell death responses (28). Several natural

products exhibiting ICD-inducing functions have been reported

(28). However, the impact of miRNA regulation on natural ICD-

modulating products remains unclear. Later, we will illustrate the

organization between ICD, natural products, and miRNAs in detail.
1.5 Rationale for this review

Many natural products exhibit miRNA-modulating effects

when used for anticancer treatment (29, 30). Moreover, many of

these products have induced ICD (31, 32). Accordingly, natural

products have the potential to regulate ICD through miRNAs, but

they lack systemic organization.

This review illustrates the systemic connection between ICD

(DAMP and cytokine responses), cell death responses (apoptosis,

autophagy, ferroptosis, necroptosis, and pyroptosis), miRNAs, and

natural products (Figure 2). With the help of bioinformatics, the

potential ICD targets of ICD-modulating miRNAs in natural

product studies were retrieved from miRDB (270). The detailed

reports on ICD, natural products, and miRNAs from the literature

were retrieved using Google Scholar. Finally, we propose the

rationale that the ICD inducers among natural products modulate

ICD targets that involve DAMPs and cytokines (Section 2). In this

review, miRNAs that target DAMPs and cytokines were collected,
Frontiers in Immunology 03
and the immune and cell death responses were integrated (Sections

3 and 4). Moreover, the interaction between ICD-inducing natural

products and ICD-modulating miRNAs is also explored (Section 5).
2 ICD-inducing natural products that
modulate DAMPs and cytokines

Many natural compounds can induce ICD (31, 32). Most

natural product studies focus on cancer cells’ antiproliferative and

immunomodulatory activity, while evidence for the induction of

ICD in the immune system is limited. Consequently, we

summarized the ICD-inducing natural products, focusing on the

ICD-modulated responses to DAMPs and cytokines, particularly in

cancer cells (Table 1). The ICD inducers of natural products are

classified based on their targeting network, which is constructed by

analyzing the STRING database (271) (Figure 3). The natural

products are classified into five functions: cardiac glycosides,

topoisomerase II inhibitors, anti-mitotic agents, antibiotics, and

multiple functions (Table 1) (Sections 2.1-2.5).
2.1 Cardiac glycosides

2.1.1 Digitoxin and digoxin
Digitoxin (33) and digoxin (35), foxglove (Digitalis purpurea)-

derived cardenolides, upregulate ICD-related molecules such as

DAMPs (HSP90, CALR, and HMGB1) in osteosarcoma cells
FIGURE 2

Arrangement of this review. Using Google Scholar, we organized natural products with ICD-inducing functions and their ICD targets, such as DAMPs
and cytokines [Table 1 (T1)]. ICD-modulating miRNAs that regulate DAMPs and cytokines were also retrieved [Tables 2 and 3 (T2, T3)]. Based on our
searches in Google Scholar and miRDB (270), the potential ICD targets (DAMPs (HMGB1, CALR, HSP1A, HSP1B, HSP90AA1, and HSP90B1) [Figure 3
(F3)] and cytokines [IL6, IL8, IL12A, IL12B, IL17A, IL23, IFNB1, INFG, and TNF)] for these miRNAs were collected (Tables 2, 3). Moreover, the DAMP-
modulated miRNAs (Table 1) targeting DAMPs are shown. In comparison, the functions of cytokine-modulated miRNAs (Table 2) are presented. For
DAMP-modulating miRNAs, the immune and cell death responses were categorized (Table 2). Cell death responses, such as apoptosis, autophagy,
ferroptosis, necroptosis, and pyroptosis, were also retrieved. For cytokine-modulating miRNAs, their immune responses and expression levels in
cancer cells were categorized [Table 3 (T3)]. Finally, we ascertained the relationship between ICD inducers of natural products and ICD-modulating
miRNAs [Table 4 (T4) and Figure 4 (F4)].
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TABLE 1 DAMP and cytokine responses of ICD-inducing natural products.

IL12B IL23A IL17A TNF IFNG IFNB1
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ICD inducers of natural products
DAMPs of ICD* Cytokines of ICD*

HMGB1 CALR HSP70 HSP90 CXCL8 CXCL10 IL6

Cardiac glycosides

Digitoxin (33) (33) (33) (33) (34) ↓

Digoxin (33) (35) (35) (36) (33) (34, 37) ↓ (37) ↓

Ouabain (40) (40) (40) (41) ↓ (42), (43)

Lanatoside C (40) (40) (40) (46) (46)

Topoisomerase II inhibitors

Doxorubicin (1, 47) (14) (14) (14) (14) (48) (49) (50)

Daunorubicin (53) (53) (53) (53) (54) ↓

Dactinomycin (56) (56) (56) (57) ↓ (57) ↓

Anti-mitotic agents

Paclitaxel (58) (58) (59) (60) (61) (60)

Colchicine (65) (66) (66) (66) (67) ↓ (68) ↓

Epothilone B (71) (71)

Antibiotics

Septacidin (72) (72) (72)

Bleomycin (73) (74) (74) (75) (76) (77) (78)

Multiple functions

Shikonin (81) (81) (82) (81) (81) (83) (83)

Wogonin (86) (86) (86) (87) ↓ (88) ↓ (88) ↓

Linalool (91) (92) ↓ (92) ↓

Capsaicin (94) (94) (94) (94) (94) (95) ↓ (96) ↓ (95, 96) ↓

Astaxanthin (98) (99) ↓ (100, 101)

Paramylon (103) (103)
↓

↓
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(Table 1) (Figure 3). Digoxin also upregulates HSP70 levels in

patients with chronic heart failure (36).

These natural products also induce ICD-modulated cytokine

responses (Table 1) (Figure 3). Digitoxin downregulates CXCL8 in

cultured lung epithelial cells (34). Similarly, digoxin downregulates

various ICD-modulating cytokines, as well as CXCL8, IL6, and

TNF, in peripheral blood mononuclear cells (37). Digoxin

downregulates bortezomib-induced IL23A in brain vascular

endothelial cells (38) and IL17A in colonic mucosa (39).

Accordingly, digitoxin and digoxin regulate DAMPs’ and ICD-

modulated cytokines’ functions.

2.1.2 Ouabain and lanatoside C
Ouabain and lanatoside C, the cardiac glycosides, induce

DAMP responses (CALR exposure, ATP secretion, and HMGB1

release) (Table 1) (Figure 3) (40). Moreover, these natural products

regulate ICD-modulating cytokines. For example, ouabain

upregulates IL6 and TNF in peripheral blood mononuclear cells

(42). In comparison, it downregulates IL6 signaling (43), TNF-

induced IL12 (44), and IL17A (45) in cultured skeletal muscle cells,

dendritic cells, and bronchial epithelial cells, respectively.

Additionally, lanatoside C upregulates IL6 and CXCL8 in

pericytes (46). Accordingly, ouabain and lanatoside C regulate

DAMPs and ICD-modulated cytokines’ functions.
2.2 Topoisomerase II inhibitors

2.2.1 Doxorubicin
Doxorubicin upregulates DAMPs (CARL, HSP70, and HSP90),

causing them to translocate to the cell surface and causing the

release of HMGB1 in leukemia, ovarian, and prostate cancer cells

(Table 1) (Figure 3) (14). In terms of ICD-modulating cytokines,

doxorubicin upregulates the production of IL6 (50) and IFNG

(272). IL17A enhances the doxorubicin sensitivity of breast cancer

cells (52). Moreover, doxorubicin upregulates CXCL8 and TNF in

lung cancer cells (48) and IL12-induced IFNG in xenografted breast

cancer (51). Accordingly, it regulates DAMPs and ICD-modulating

cytokines’ functions.
2.2.2 Daunorubicin
Daunorubicin, a Streptomyces peucetius-derived antibiotic,

induces DAMPs (CARL exposure and the release of HSP70/

HSP90) in acute myeloid leukemia cells (53) (Table 1) (Figure 3).

It also modulates several ICD-modulating cytokines. Histone

deacetylase 8 (HDAC8) is upregulated in daunorubicin-resistant

AML cells. In contrast, the inhibition of HDAC8 promotes

daunorubicin sensitivity by downregulating IL6 (54). Moreover,

the upregulation of AKT and IL17A enhances the daunorubicin

resistance of B cell acute lymphoblastic leukemia (ALL) cells (55),

suggesting that daunorubicin downregulates IL17A.
2.2.3 Dactinomycin
Actinomycin D (dactinomycin), a natural chromopeptide,

promotes the release of HMGB1 and IFNG and the exposure of
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TABLE 2 Potential targets and immune and cell death responses for DAMP-modulating miRNAs.

ICD-
modulating
miRNAs

Targets for Responses for

DAMP miRDB *1 Immune
Cell death *2

Apoptosis Autophagy Ferroptosis Necroptosis Pyroptosis

let-7e-5p
HMGB1
(118)

IL6
chondrocytes
↓ (119)

chondrocytes
(119)

miR-107
HMGB1
(120)

glioma (121) breast ca (120)
chondrocytes
↓ (122)

miR-1179
HMGB1
(123)

gastric ca (123) oral ca ↓ (124)

miR-1284
HMGB1
(125)

IL12B
cervical
ca (125)

miR-129-5p
HMGB1
(126)

gastric ca (126)
colon ca
↓ (127)

intestinal
epithelial cells
↓ (128)

pheochromocytoma
(129)

miR-181b-5p
HMGB1
(130)

CALR,
TNF,
HSP90B1

B, T
cells (119)

AML (130)
gallbladder
ca (132)

chondrocytes
(133)

lymphocytes
↓ (134)

endothelial cells
↓ (135)

miR-193a-3p
HMGB1
(136)

colon ca (137) liver ca ↓ (138)
cardiomyocytes
↓ (139)

miR-200a-3p
HMGB1
(140)

IL17A
prostate
ca (141)

cardiomyocyte
(142)

myocardial cells
↓ (143)

intestinal
epithelial cells
↓ (144)

aortic endothelial
cells ↓ (145)

miR-200c-3p
HMGB1
(146)

Macrophage
(147)

trabecular
meshwork cells
↓ (148)

prostate
ca (149)

retinal vascular
cells (150)

miR-205-5p
HMGB1
(151)

gastric ca (152)
prostate ca
↓ (153)

MI/R injury
↓ (154)

miR-218-5p
HMGB1
(155)

cervical ca
(156),
RASFs (157)

RASFs (157)
glioblastomas
(158)

miR-320a-3p
HMGB1
(159)

HSPA4,
IL12B

B cells ↓ (160) B cells ↓ (160) breast ca (161)

miR-325
HMGB1
(162)

gastric ca (163)
cardiomyocytes
(164)

miR-34a-3p
HMGB1
(165)

TNF
retinoblastoma
(165)

retinoblastoma
(165)

meningioma
cells (166)

liver ca (167)

miR-34a-5p
HMGB1
(168)

HSPA1B,
CXCL10

CD8+ T
cells (169)

lung ca (170)
ovarian
granulosa
cells (171)

cardiomyocytes
(172)

miR-449a
HMGB1
(173)

HSPA1B,
CXCL10

liver ca (174) T cells ↓ (175)

miR-505-3p
HMGB1
(176)

IFNG lung ca (177) neuron ↓ (178)

miR-519d-3p
HMGB1
(179)

liver ca (180) liver ca (180)

miR-665
HMGB1
(181)

lung ca ↓ (182),
breast ca
↓ (183)

macrophages
↓ (184)

MIRI (185)

miR-142-3p

HMGB1
(186),
HSPA1B
(187)

CD3+ spleen
lymphocytes
(188)

breast ca (186)
breast ca
↓ (186)

liver ca (189)
myocardial injury
↓ (190)

(Continued)
F
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TABLE 2 Continued

ICD-
modulating
miRNAs

Targets for Responses for

DAMP miRDB *1 Immune
Cell death *2

Apoptosis Autophagy Ferroptosis Necroptosis Pyroptosis

miR-223-5p
HSPA1A
(191)

spinal cord
injury
rats (192)

prostate
ca (193)

ischemic/
reperfused hearts
↓ (194)

miR-27b-3p
HSP90AA1
(195)

Th1, Th2,
Th17,
Treg (196)

breast ca (197)

miR-361-5p
HSP90AA1
(198)

ovarian ca
↓ (199)

gastric ca
↓ (200)

miR-628-3p
HSP90AA1
(201)

lung ca (201)

miR-223-3p
HSP90B1
(202)

M2
macrophages
(203)

osteosarcoma
(202)

liver ca ↓(204)
podocytes
↓ (205)

macrophage
↓ (206)

cardiomyocyte (207)

miR-27a-3p CALR (2)

colon ca ↓
(208), pre-
osteoblast cells
↓ (209)

pre-osteoblast
cells (209)

lung ca ↓ (210)
F
rontiers in Immuno
logy
 07
*1. Target candidates include DAMP- and cytokine-modulating genes, as Figure 2 (section 1.2) shows. *2. ↓ indicates that miRNAs downregulate the cell death responses (right). Except for those
indicated with the symbol ↓, the miRNAs exhibit inducing effects on these cell death responses without a symbol. ca, cancer cells; Th, helper T cells; Treg, regulatory T cells; RASFs, rheumatoid
arthritis synovial fibroblasts; MIRI, myocardial ischemia–reperfusion injury.
TABLE 3 Potential miRDB targets, immune function, and expression in cancer cells for cytokine-modulating miRNAs.

Cytokine-modulating miRNAs miRNA functions* miRDB targets Expression in cancer*

miR-150-5p NK cell maturation ↑ (211) HSP90B1, TNF adult T cell leukemia (212)

miR-181a-5p NK cell maturation ↑ (213) HSP90B1, TNF, CALR bladder (214)

miR-30e-5p NK-mediated cytotoxicity (215) breast (216), bladder (217)

miR-378a-3p NK-mediated cytotoxicity (215) gastric (218)

miR-302c-3p NK-mediated cytotoxicity (219) cervical (220)

miR-520c-3p NK-mediated cytotoxicity (219) lung (221)

miR-10b-5p NK-mediated cytotoxicity (222) breast (223)

miR-93-5p NK-mediated cytotoxicity (224) colon (225), ovary (226)

miR-20a-5p NK-mediated cytotoxicity (227) ovarian ↑ (227)

miR-106b-5p NK-mediated cytotoxicity (224) lung ↑ (228), colon (229)

miR-148a-3p NK-mediated cytotoxicity ↑ (230) HSP90B1 renal (230)

miR-326 Th17 differentiation ↑(231) lung, gastric, breast (232)

miR-181c-5p Th17 differentiation ↑(233) HSP90B1, TNF, CALR cervical (234), breast (235)

miR-23a-3p CTL functions (236) HSP90B1, IL12B renal ↑ (237)

miR-125b-5p Macrophage M1 ↑ (238) breast (239), liver (240)

miR-21-5p Macrophage M1 (241) IL12A oral ↑ (242)

miR-24-2 Macrophage M1, M2 ↑ (222) renal ↑(222)

miR-17-5p MDSC (243) gastric ↑(244)
* ↑ indicates that some miRNAs upregulate their matched miRNA function and expression in cancer. Except for those indicated with the symbol ↑, the miRNAs exhibit inhibitory effects without
a symbol. NK, natural killer cells; CTL, cytotoxic lymphocytes; MDSC, myeloid-derived suppressor cells.
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CALR in osteosarcoma cells (Table 1) (Figure 3) (56). In chicken

embryo cells, TGFb upregulates HSPA4 and HSP90AA1, which are

downregulated by dactinomycin (57).

Accordingly, bleomycin and dactinomycin modulate DAMPs

and ICD-modulated cytokines’ effects.
2.3 Microtubule inhibitors

2.3.1 Paclitaxel
Paclitaxel is an ICD inducer whose activity is characterized by

the release of HMGB1 in osteosarcoma cells (58) and upregulation

of CALR in lung cancer cells (Table 1) (Figure 3) (59). Moreover,

paclitaxel regulates ICD-modulating cytokines. For example, it

upregulates CXCL8 and IL6 in ovarian cancer patients (60) and

CXCL10 expression in lung cancer cells (61). In in vivo studies,

paclitaxel upregulated the expression of IL12 in macrophages in

fibrosarcoma-xenografted mice (62), of IL17A in solid Ehrlich

carcinoma mouse models (63), and of TNF in hippocampus

tissue (64).

2.3.2 Colchicine and epothilone B
Originally isolated from Colchicum autumnale, colchicine

triggers dendritic cell maturation (65) and upregulates or
Frontiers in Immunology 08
downregulates DAMPs or ICD-modulating cytokines (Table 1)

(Figure 3). It upregulates DAMPs (HMGB1, HSPA4, and

HSP90AA1) in melanoma cells, for example (66). In comparison,

colchicine downregulates CXCL10 (67). Moreover, it downregulates

IL6 (68), IL17A (69), and LPS-induced TNF (70) expression in

cardiac fibroblasts, atrial fibrillation patients, and macrophages,

respectively. Additionally, epothilone B (patupilone), a Sorangium

cellulosum-derived microtubular inhibitor, is an ICD inducer in

ovarian cancer cells that upregulates IL12 and IL6 (71).

Accordingly, paclitaxel, colchicine, and epothilone B modulate

DAMPs and ICD-modulated cytokines’ functions.
2.4 Antibiotics

Septacidin, an L-heptopyranose isolated from Streptomyces

fibriatus, enhances CALR exposure and ATP and HGMB1

secretion from osteosarcoma cells (Table 1) (Figure 3) (72).

Bleomycin, a Streptomyces verticillus-derived antibiotic, induces

HMGB1, CALR, and IFNG expression in colon cancer cells (73).

It upregulates HSPA4 in the lung epithelium (75) and HSP90AA1

in the interstitial lung fibroblasts (76) of mice. Moreover, bleomycin

regulates several ICD-modulating cytokines. For example, it

increases gd T-cell populations and upregulates CXCL10, affecting
FIGURE 3

Classification of ICD inducers of natural products into different classes based on their targeting. The potential interaction for targets was analyzed by
STRING database. All the information was derived from Table 1. The symbols of “T” and “arrow-line” indicate that natural products downregulate and
upregulate their targets. HSP70 and HSP90 are labeled with HSPA4 and HSP90AA1 in the network, respectively. Dox, Doxorubicin; Shik, Shikonin;
Digi, Digitoxin; Digo, Digoxin; Ouab, Ouabain; LanC, Lanatoside C; Pac, Paclitaxel; Col, Colchicine; EpoB, Epothilone B; Wogo, Wogonin; Dau,
Daunorubicin; Lina, Linalool; Caps, Capsaicin; Asta, Astaxanthin; Para, Paramylon; Cphy, C-phycocyanin; Fuco, Fucoidan; Sep, Septacidin; Doco,
Docosahexaenoic acid; Bleo, Bleomycin; Dact, Dactinomycin.
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inflammation (77). Bleomycin upregulates IL6 and TNF in the lung

homogenates of CBA/J mice (78), as well as IL17A and IL23A in

C57BL/6 mice (80). In comparison, the transcription factor Fli-1 is

downregulated in systemic sclerosis. Bleomycin downregulates

IL12A in Fli-1+/− mice, a skin fibrosis model (79).
2.5 Multiple functions

2.5.1 Shikonin and wogonin
Shikonin promotes the release of HSP70, HSP90, and HMGB1

in melanoma cells by enhancing immunogenic apoptosis (Table 1)

(Figure 3) (81). It also upregulates DAMPs (HMGB1, HSP70, and

CALR) in glioma cells (82). In comparison, it inhibits several ICD-

modulating cytokines. For example, it suppresses TNF-induced IL6

and CXCL8 production in human periodontal ligament cells (273)

and inhibits T cell proliferation by downregulating IFNG and

IL17A (84). It also downregulates TNFA in rheumatoid arthritis-

like cell models (85).

Wogonin, a Scutellaria baicalensis-derived natural product,

induces DAMP responses (Table 1) (Figure 3). For example, it

promotes ICD and ER stress in dendritic cells, causes CALR

exposure on the cell surface, and triggers the release of HMGB1

and ATP (86). Subsequently, these released molecules cause

dendritic cells to secrete cytokines (86). In breast cancer cells,

wogonin inhibits proteins downstream of HSP90AA1 such as

EGFR, Cdk4, and survivin (87).

Moreover, wogonin regulates ICD-modulating cytokines. For

example, it suppresses IL-1b’s promotion of IL6 and CXCL8

expression in retinal pigment epithelial cells (88). It also induces

IL12 and TNF expression in breast cancer cells (89) and

downregulates IFNG generation in splenocytes (90).

Accordingly, shikonin and wogonin regulate DAMPs and ICD-

modulated cytokines’ functions.

2.5.2 Linalool and capsaicin
Linalool improves Th1 cellular immunity in breast cancer cells

by inducing the release of IFNG and TNF in lymphocytes (Table 1)

(Figure 3) (91). It downregulates HMBG1, TNF, and IL6 in

cisplatin-induced acute kidney injury in rat models (92).

Capsaicin, a red pepper-derived compound, suppresses the

proliferation of many cancer cells (Table 1) (Figure 3) (93). It

induces DAMPs in human bladder cancer cells by upregulating

HMBG1, CALR, HSPA4, and HSP90AA1 (94). Regarding ICD-

modulating cytokines, capsaicin downregulates TNF, IL6, and

CXCL8 in monocytes (95). It has an anti-inflammatory effect in

wound healing by downregulating TNF, IL6, and CXCL10 (96). In

comparison, it upregulates IFNG in murine Peyer’s patch cells (97).

Accordingly, daunorubicin, linalool, and capsaicin regulate

DAMPs and ICD-modulated cytokines’ functions.

2.5.3 Astaxanthin, paramylon, and C-phycocyanin
Astaxanthin, a carotenoid derived from the green alga

Hematococcus pluvialis, induces ICD (Table 1) (Figure 3) (1). It

attenuates spinal cord edema by downregulating HMGB1 in rat
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models (99). Moreover, it modulates several ICD-modulating

cytokines, such as by enhancing immunity through inducing the

release of IFNG in lymphocytes (98). Astaxanthin downregulates

IL6 expression in activated microglia (100) and cerulein-/resistin-

stimulated pancreatic acinar cells (101) and TNF expression in LPS-

treated macrophages (102).

Paramylon, a Euglena gracilis-derived beta-(1–>3)-D-glucan,

induces ICD (Table 1) (Figure 3) (274). Regarding cytokine

regulation, paramylon nanofibers upregulate TNF and IL6 mRNA

expression in lymphocytes (103).

Spirulina microalgae-derived C-phycocyanin induces ICD

(104). It enhances the secretion of IL6 and TNF in murine

macrophages (Table 1) (Figure 3) (104). HMGB1 induces ulcers,

which, in turn, are suppressed by its downregulation. C-

phycocyanin attenuates ethanol-induced gastric ulcers in rats by

downregulating HMGB1 and TNF (105). Similarly, dietary C-

phycocyanin increases the lifespan of Drosophila melanogaster by

downregulating HSPA4, a member of the HSP70 family (106). In

comparison, some cytokines are induced by C-phycocyanin, which

upregulates IFNG and IL17A in BALB/c mice (107).

Accordingly, astaxanthin, paramylon, and C-phycocyanin can

regulate DAMPs and ICD-modulated cytokines.

2.5.4 Fucoidan and docosahexaenoic acid
Fucoidan can modulate DAMPs and ICD-modulated cytokines

(Table 1) (Figure 3). For example, it inhibits HSPA4 and HSP90AA1

protein expression in liver cancer cells (110), while downregulating

HMGB1, IL6, and TNF levels in ischemia–reperfusion rats (109). It

also induces IL6 and TNF expression, promoting the maturation of

spleen dendritic cells (108). Fucoidan-rich Ascophyllum nodosum

extract (Ascophyscient®) downregulates TNF, IL6, and CXCL8 in

bronchial epithelial cells (111). Fucoidan downregulates IL17A and

IFNG in T helper cells (Th1/Th2/Th17) (275).

Docosahexaenoic acid (DHA) enhances myeloma apoptosis by

improving CALR exposure, HMGB1, and HSP90 secretion and

activating dendritic cells (Table 1) (Figure 3) (112). DHA also

upregulates HSPA4 in rainbow trout leukocytes (113). In

comparison, it downregulates several ICD-modulating cytokines,

such as Cxcl10 in the lupus flaring mouse model (114). DHA

downregulates IL6 and TNF secretion in LPS-activated dendritic

cells, preventing their maturation (115). It also downregulates

IL17A in T cells in psoriatic skin models (116). Moreover, DHA

intake downregulates IFNG production in mice (117).

Accordingly, fucoidan, septacidin, and DHA show a regulating

effect on DAMP and ICD-modulated cytokines.
3 DAMP-modulating miRNAs

Several miRNAs that modulate DAMPs can regulate ICD and

tumor proliferation (2). miRNAs exhibit tumor-promoting and

tumor-suppressing effects by targeting various DAMPs, whose

expression levels are changed in cancers (2). Therefore, the ICD

response of the immune system and the cell death responses of

ICD-modulating miRNAs need further investigation.
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This section presents an overview of the impacts of miRNAs on

immune and cell death responses. The immune responses affected

by DAMP-modulating miRNAs (Section 3.1), and cell death

responses affected by DAMP-modulating miRNAs (Section 3.2)

and DAMP-targeting miRNAs (Section 3.3) are described (Table 2).
3.1 Immune responses affected by DAMP-
modulating miRNAs

Some DAMP-targeting miRNAs modulate immune responses

(Table 2). For example, miR-181b-5p upregulation in chronic

lymphocytic leukemia B cells enhances cytotoxic T cell function,

inhibiting tumor growth (131). miR-200c-3p inhibits the tumor-

infiltrating function of macrophages (147), while miR-34a-5p

enhances that of CD8+ T lymphocytes (169).

miR-142-3p is highly expressed in immune cells, such as CD3+

spleen lymphocytes derived from experimental autoimmune

encephalomyelitis mice, compared to Complete Freund’s

Adjuvant CD3+ (188) (Table 2). miR-223-3p enhances the

differentiation of macrophages via M2 polarization (203).

miR-27b-3p enhances ammonia-triggered apoptosis by

targeting TNF receptor-associated death domain (TRADD), Fas-

associated death domain (FADD), and apoptotic protease activating

factor-1 (APAF1) (Table 2). Ammonia induces apoptosis and

immunosuppression by causing a T helper cell type 1 (Th1)/Th2

imbalance and regulatory T cell (Treg)/Th17 imbalance in chicken

peripheral blood lymphocytes (196). Accordingly, miR-27b-3p

promotes immunosuppression through Th1/Th2 and Treg/

Th17 imbalances.

Notably, most of the miRNAs listed in Table 2 are rarely

investigated in terms of their involvement in the immune

response. In the future, the immune-regulating function of these

ICD-modulating miRNAs should be carefully and more

thoroughly investigated.
3.2 Cell death responses of DAMP-
modulating miRNAs

ICD is a general term that includes various cell death responses,

such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis

(276, 277). These responses exert synergistic effects by enhancing or

suppressing antitumor immune responses (277). Currently, the cell

death responses of ICD-modulating miRNAs are rarely highlighted.

To address this gap, we outline miRNAs that modulate ICD (Table 2)

by regulating apoptosis, autophagy, ferroptosis, necroptosis, and

pyroptosis in the following (Sections 3.3 to 3.5).
3.3 DAMP-targeting miRNAs

DAMPs, such as HMGB1, HSP70, HSP90, and CALR (Sections

3.3.1-3.3.4), are targeted by various miRNAs (Table 2). Based on a

search of miRDB, we describe the potential targets of DAMPs and

cytokines (270). The cell death responses they influence, including
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apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis, are

summarized (Table 2) (Figure 2).
3.3.1 HMGB1-targeting miRNAs
A series of investigations have reported that many miRNAs

have HMGB1-modulating functions. By targeting HMGB1, these

miRNAs (let-7e-5p, miR-107, miR-1179, miR-1284, miR-129-5p,

miR-181b-5p, miR-193a-3p, miR-200a-3p, miR-200c-3p, miR-205-

5p, miR-218-5p, miR-320a-3p, miR-325, miR-34a-3p, miR-34a-5p,

miR-449a, miR-505-3p, miR-519d-3p, miR-665, and miR-142-3p)

exhibit anticancer effects associated with various cell death

responses (Table 2) (Figure 2) (Sections 3.3.3.1-3.3.3.6).
3.3.1.1 let-7e-5p, miR-107, miR-1179, and miR-1284

let-7e-5p overexpression suppresses the proliferation and

migration of thyroid cancer cells by targeting and downregulating

HMGB1 (118) (Table 2). Regarding cell death responses, let-7e-5p

downregulation triggers apoptosis but blocks autophagy in articular

chondrocytes (119). miR-107 is underexpressed in breast cancer cell

lines and tissues. Its overexpression inhibits proliferation,

migration, and autophagy by downregulating HMGB1 (120),

while its upregulation triggers apoptosis in glioma cells (121).

Moreover, miR-107 enhances proliferation by downregulating the

LPS-triggered pyroptosis of chondrocytes (122) (Table 2).

Gastric cancer shows low levels of miR-1179. The overexpression of

miR-1179 inhibits gastric cell migration and proliferation and promotes

apoptosis by targeting HMGB1 (123) (Table 2), while its

downregulation promotes autophagy in oral cancer cells (124).

Moreover, miR-1284 is underexpressed in cervical cancer cell lines

and tissues. Its overexpression sensitizes cells to cisplatin and promotes

apoptosis in cervical cancer cells by downregulating HMGB1

(125) (Table 2).

Accordingly, let-7e-5p, miR-107, miR-1179, and miR-1284

modulate cell death responses.
3.3.1.2 miR-129-5p, miR-181b-5p, and miR-193a-3p

miR-129-5p is less expressed and HMGB1 is more expressed in

gastric cancer than in normal tissues (126) (Table 2). The former

regulates several cell death responses. For example, its upregulation

triggers apoptosis in gastric cancer cells by downregulating

HMGB1. miR-129-5p improves the radiosensitization of colon

cancer cells by downregulating autophagy (127). It blocks

ferroptosis in intestinal epithelial cells (128), while a miR-129-5p

antagomir attenuates LPS-triggered neuronal pyroptosis in rat

pheochromocytoma cells (129) (Table 2).

miR-181b-5p is underexpressed in AML patients. Its overexpression

sensitizes cells to doxorubicin, suppressing proliferation and inducing

apoptosis in AML cells, by targeting HMGB1 (130) (Table 2). This

miRNA also regulates several cell death responses. For example, it

inhibits ginsenoside Rg3’s suppression of proliferation in gallbladder

cancer cells by upregulating autophagy (132). miR-181b-5p is highly

expressed in osteoarthritic cell models, while in osteoarthritic

chondrocytes, its downregulation inhibits ferroptosis by upregulating

GPX4 (133). Atrazine triggers inflammation and necroptosis in carp

lymphocytes by downregulating miR-181-5p (134). The overexpression
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of the latter attenuates NLRP3 inflammasome-mediated pyroptosis in

vascular endothelial cells (135) (Table 2).

miR-193a-3p is more downregulated in lung cancer than in

normal cells (278). It inhibits the migration and proliferation of

lung cancer cells and downregulates HMGB1 (136) (Table 2). miR-

193a-3p modulates several cell death responses. For example, it

suppresses proliferation and causes apoptosis in colon cancer cells

(137). miR-193a-3p mimics downregulated autophagy in liver

cancer cells, which was reverted by miR-193a-3p inhibitors (138).

miR-193a-3p downregulation caused congenital heart disease by

upregulating ferroptosis in rat cardiomyocytes (139) (Table 2).

Accordingly, miR-129-5p, miR-181b-5p, and miR-193a-3p

modulate cell death responses.

3.3.1.3 miR-200a-3p, miR-200c-3p, and miR-205-5p

miR-200a-3p shows low expression in liver cancer, while HMGB1

is highly expressed (140) (Table 2). This miRNA inhibits liver cancer

cell proliferation by downregulating HMGB1 andmodulates several cell

death responses. For example, miR-200a-3p upregulation suppresses

proliferation and promotes apoptosis (141) in prostate cancer cells. Its

upregulation also attenuates diabetic cardiomyopathy damage in mice

by upregulating autophagy (142), while its downregulation suppresses

hypoxia/reoxygenation (H/R)-triggered ferroptosis and protects the

myocardial cells (143). Moreover, miR-200a-3p mimics suppress

lipopolysaccharide-induced inflammation and necrosis in intestinal

epithelial cells (144). miR-200a-3p’s downregulation suppresses

pyroptosis in human aortic endothelial cells (145) (Table 2).

miR-200c-3p shows low expression in non-small cell lung cancer

(NSCLC) (146). It suppresses epithelial–mesenchymal transition,

invasion, and migration in lung cancer cells by downregulating

HMGB1 (146) (Table 2). It modulates several cell death responses.

For example, miR−200c−3p mimics promote proliferation and

suppress apoptosis in trabecular meshwork cells (148). miR-200c-3p

induces autophagy in prostate cancer cells (149), and its

downregulation attenuates high glucose-induced pyroptosis in human

retinal microvascular endothelial cells (HRMECs) (150), suggesting that

miR-200c-3p has a pyroptosis-inducing function (Table 2).

miR-205-5p shows low expression in breast cancer cells,

enhancing EMT and invasion (151). Its overexpression suppresses

the migration and proliferation of breast cancer cells by targeting

HMGB1 (Table 2). Similarly, miR-205-5p is underexpressed in

gastric cancer. Its overexpression suppresses proliferation and

metastasis and triggers apoptosis in gastric cancer cells (152).

miR-205 inhibits autophagy, improving the cisplatin sensitivity of

prostate cancer cells (153). lncAABR07025387.1, highly expressed

in myocardial ischemia/reperfusion (MI/R) injury, sponges miR-

205-5p and upregulates ferroptosis (154) (Table 2), suggesting that

miR-205-5p downregulates ferroptosis.

Accordingly, miR-200a-3p, miR-200c-3p, and miR-205-5p

modulate cell death responses.

3.3.1.4 miR-218-5p, miR-320a-3p, and miR-325-3p

miR-218-5p is underexpressed in NSCLC (279). The

overexpression of miR-218-5p inhibits migration in lung cancer

cells by targeting and downregulating HMGB1 (155) (Table 2).

miR-218-5p modulates several cell death responses. For example, its
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upregulation promotes apoptosis in cervical cancer cells (156). miR-

218-5p silencing suppresses proliferation by triggering apoptosis

and autophagy in rheumatoid arthritis synovial fibroblasts (RASFs)

(157). Moreover, necrotic and hypoxic mesenchymal glioblastomas

exhibit low miR-218-5p levels (158), suggesting that miR-218-5p

downregulates necrosis in mesenchymal glioblastoma cells.

miR-320a-3p is downregulated in liver cancer tissues (159). Its

overexpression suppresses the invasion and metastasis of liver

cancer cells by targeting HMGB1 (Table 2). miR-320a-3p

modulates several cell death responses. For example, LINC00963

overexpression induces the apoptosis and autophagy of diffuse large

B-cell lymphoma by downregulating miR-320a, which is reversed

by miR-320a-3p mimics (160). LINC00460 downregulation inhibits

proliferation but enhances ferroptosis in breast cancer cells by

upregulating miR-320a-3p (161) (Table 2).

In lung cancer patients, miR-325-3p and HMGB1 are

underexpressed and overexpressed, respectively (162) (Table 2).

The overexpression of miR-325-3p inhibits the proliferation of lung

cancer cells by targeting HMGB1. miR-325-3p modulates several

cell death responses. For example, it inhibits the proliferation of

gastric cancer cells by triggering apoptosis (163). Its downregulation

suppresses myocardial ischemia/reperfusion-induced autophagy

and cell death in cardiomyocytes (164) (Table 2).

Accordingly, miR-218-5p, miR-320a-3p, and miR-325-3p

modulate cell death responses.

3.3.1.5 miR-34a-3p, miR-34a-5p, and miR-449a

miR-34a-3p is expressed at low levels in retinoblastoma cells

(280). Its overexpression inhibits proliferation and autophagy and

triggers apoptosis in retinoblastoma cells by targeting HMGB1

(165) (Table 2). It also modulates other cell death responses. For

example, anti-miR-34a-3p inhibits late apoptosis and necrosis in

meningioma cells (166). LncRNA SNHG7 suppresses pyroptosis in

liver cancer cells by sponging miR-34a-3p (167). This suggests that

miR-34a-3p promotes apoptosis, necrosis, and pyroptosis.

miR-34a-5p shows low expression in colon cancer tissues (168).

Its upregulation in colon cancer cells inhibits proliferation and

migration by targeting HMGB1 (Table 2). It modulates other cell

death responses. For example, apigenin triggers apoptosis in lung

cancer cells by upregulating miR-34a-5p (170). miR-34a-5p

enhances autophagy in chicken ovarian granulosa cells (171),

while its downregulation inhibits pyroptosis in doxorubicin-

induced cardiomyopathy (172) (Table 2).

miR-449a is poorly expressed in lung cancer cells and tissues

(173). Its upregulation suppresses the proliferation and migration of

lung cancer cells by targeting HMGB1 (Table 2). miR-449a

modulates several cell death responses, suppresses proliferation

and promotes apoptosis in liver cancer cells (174), and suppresses

autophagy in T lymphocytes (175) (Table 2).

Accordingly, miR-34a-3p, miR-34a-5p, and miR-449a

modulate cell death responses.

3.3.1.6 miR-505-3p, miR-519d-3p, miR-665, and miR-142-3p

miR-505-3p is downregulated in liver cancer cells. Its

overexpression inhibits the proliferation and invasion of liver

cancer cells by targeting HMGB1 (176) (Table 2). miR-505-3p
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modulates other cell death responses. For example, its upregulation

promotes apoptosis in lung cancer cells, which is reversed by its

downregulation (177). miR-505-3p blocks autophagy in rat primary

neurons by downregulating HMGB1 (178) (Table 2).

miR-519d-3p shows low expression in lung cancer tissues,

promoting proliferation and migration by upregulating HMGB1

(179) (Table 2). Hence, it potentially targets HMGB1. Moreover, it

triggers apoptosis and autophagy in liver cancer cells (180).

miR-665 is underexpressed in glioma (181). Its upregulation

inhibits glioma cell proliferation, migration, and invasion by

downregulating HMGB1 (Table 2). miR-665 modulates several

cell death responses. For example, its mimics stimulate cell

proliferation and suppress lung (281) and breast (183) cancer cell

apoptosis. lncRNA MIAT promotes autophagy in Bacillus

Calmette-Guerin (BCG)-infected macrophages by sponging miR-

665 (184), suggesting that the latter inhibits macrophage autophagy.

Moreover, dexmedetomidine downregulates miR-665, attenuating

myocardial ischemia–reperfusion injury (MIRI) by inhibiting

pyroptosis (185) (Table 2) , suggest ing that miR-665

promotes pyroptosis.

HMGB1 is a target of miR-142-3p (186) in breast cancer cells

(Table 2). miR-142-3p is expressed at lower levels in breast cancer

than in normal cells (282). Moreover, doxorubicin-resistant breast

cancer cells exhibit lower levels of miR-142-3p than parental cells.

miR-142-3p modulates several cell death responses. For example, its

overexpression induces apoptosis and inhibits breast cancer cell

autophagy, attenuating doxorubicin resistance by downregulating

HMGB1 (186). miR-142-3p triggers ferroptosis in M1

macrophages, improving liver cancer development (189), and its

upregulation attenuates coronary microembolization (CME)-

induced pyroptosis in myocardial injury (190) (Table 2).

Accordingly, miR-505-3p, miR-519d-3p, miR-665, and miR-

142-3p modulate cell death responses by targeting HMGB1.

3.3.2 HSP70 and HSP90-targeting miRNAs
Some members of the HSP70 family were chosen as DAMP

targets in this review, including HSPA1B and HSPA1A (Section

3.3.2.1). Some members of the HSP90 family were also selected,

including HSP90AA1 and HSP90B1 (Section 3.3.2.2). These are

targeted by several ICD-modulating miRNAs (Table 2) (Figure 2),

and these HSP70 and HSP90-targeting miRNAs exhibit anticancer

effects that are associated with various cell death responses

(Table 2) (Figure 2).

3.3.2.1 HSP70-targeted miRNAs

HSPA1B and HSPA1A are targeted by miR-223-5p and miR-

142-3p (Table 2). Osteosarcoma overexpresses HSP70, which is

downregulated by miR-223-5p (191). The overexpression of the

latter enhances cisplatin sensitivity in osteosarcoma, while the

upregulation of miR-142-3p in pancreatic cancer cells inhibits

proliferation by targeting HSPA4 (HSP70) (187).

Regarding cell death responses, the apoptosis- and necroptosis-

modulating effects of miR-223-5p are summarized (Table 2). miR-

223-5p inhibitors suppress apoptosis signaling, such as caspase-3 in
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spinal cord injury rats (192), suggesting that miR-223-5p induces

apoptosis. Moreover, miR-223-5p and miR-223-3p jointly inhibit

necroptosis in ischemic/reperfused mouse hearts (194).

3.3.2.2 HSP90-targeted miRNAs

HSP90AA1 and HSP90B1 are targeted by miR-27b-3p/miR-

361-5p/miR-628-3p and miR-223-3p, respectively (Table 2). miR-

27b-3p is underexpressed in lung cancer (283). LncRNA

KCNQ1OT1 enhances the proliferation of lung cancer cells by

upregulating HSP90AA1 and downregulating miR-27b-3p (195).

Accordingly, miR-27b-3p suppresses HSP90AA1 expression in lung

cancer cells. Moreover, miR-27b-3p promotes tamoxifen-triggered

apoptosis in breast cancer cells (197) (Table 2).

miR-361-5p shows lower levels in cervical cancer than in

normal tissues and cells (198). Its upregulation suppresses EMT

and the invasion of cervical cancer cells by targeting HSP90

(Table 2). miR-361-5p also triggers cell death responses. For

example, ovarian cancer cells exhibit high levels of the miRNA,

whereas, in these cells, its downregulation promotes apoptosis

(199). Moreover, miR-361-5p inhibits autophagy’s ability to

improve chemoresistance in gastric cancer cells (200). Sp1

knockdown inhibits prostate cell growth and hypoxia-triggered

autophagy by upregulating miR-361-5p (193). In comparison,

miR-628-3p mimics cause apoptosis and suppress the migration

of lung cancer cells by targeting and downregulating HSP90AA1

(201) (Table 2).

By targeting HSP90B1, miR-223-3p can induce anticancer effects

and cell death responses (Table 2). For example, osteosarcoma shows

a low level of oncogenic heat shock protein 90 kDa beta member 1

(HSP90B1) (202), a member of the HSP90 family. The upregulation

of miR-223-3p suppresses osteosarcoma cell proliferation and

promotes apoptosis by downregulating HSP90B1.

miR-223-3p also triggers cell death responses (Table 2). For

example, doxorubicin induces autophagy in liver cancer cells by

downregulating miR-223-3p. The upregulation of the latter

suppresses doxorubicin-triggered autophagy, improving the

chemoresistance of liver cancer cells (204). miR-223-3p enhances

pyroptosis in cardiomyocytes (207). In comparison, exosomal miR-

223-3p isolated from mesenchymal stem cells inhibits HBV-X

protein (HBx)-triggered ferroptosis in podocytes (205), as well as

necroptosis in macrophage cell death (206) (Table 2).

3.3.3 CALR-targeting miRNAs
miR-27a-3p targets CALR (2). It is overexpressed in colon

cancer cells and tissues, improving proliferation, suppressing

apoptosis (208) (Table 2) (Figure 2), and triggering pre-osteoblast

cell autophagy (209). SLC7A11, which is highly expressed in lung

cancer patients, triggers the ferroptosis of lung cancer cells by

downregulating miR-27a-3p (210), suggesting that miR-27a-3p

inhibits ferroptosis.

Following treatment with ICD inducers (oxaliplatin and

mitoxantrone), miR-27a-3p knockdown induces more cell surface

CALR and HMGB1 secretion by colon cancer cells compared to

that observed in cells overexpressing miR-27a-3p (284).
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3.3.4 Potential targets for DAMPs and cytokines
according to miRDB search

Based on a search of the miRDB, in addition to targeting

HMGB1, miR-181b-5p, miR-320a-3p, and miR-34a-5p/miR-449a

potentially target DAMPs (CALR/HSP90B1, HSPA4, and HSPA1B)

(270) (Table 2) (Figure 2). let-7e-5p, miR-1284, miR-181b-5p, miR-

200a-3p, miR-320a-3p, miR-34a-3p, miR-34a-5p, and miR-505-3p

also potentially target ICD-modulating cytokines, such as IL6,

IL12B, TNF, IL17A, IL12B, TNF, CXCL10, IFNG, and HSPA1B,

which are co-targeted by HMGB1 according to a search of miRDB

(270) (Table 2) (Figure 2).
4 Cytokine-modulating miRNAs

In addition to DAMPs, ICD inducers may promote the

secretion of inflammatory cytokines such as IL6 and CXCL8 (IL8)

from cancer cells. The DAMPs and cytokines activate dendritic cells

and NK cells, which then release effector cytokines, stimulating CTL

and Th1 cells to release IFNG and Th17 cells to release IL17 (15).

Moreover, M0 macrophages are stimulated to differentiate into M1

or M2 macrophages by several cytokines. M1 macrophages regulate

many inflammatory, cytotoxic, and tissue damage functions. In

comparison, M2 macrophages inhibit inflammatory and immune

functions and promote tissue repair (285). MDSCs are responsible

for the immune suppression activity of macrophages and dendritic

cells (11). Several miRNAs regulating the cytokines that modulate

factors related to immune responses, such as NK cell maturation,

NK-mediated cytotoxicity, Th17 differentiation, CTL function,

macrophage M1/M2 polarization, and MDSC levels, have been

summarized (Table 3) (Figure 2) (Sections 4.1-4.5).
4.1 NK cell maturation

NK cell maturation is enhanced by miR-150-5p and miR-181a-5p

(Table 3) (Figure 2). By directly targeting c-Myb, miR-150-5p improves

the development and maturation of NK cells (211). miR-181a-5p

enhances NK cell maturation by downregulating nemo-like kinase

(NLK), an inhibitor of Notch signaling (Table 3) (213).Moreover, miR-

150-5p (212) and miR-181a-5p (214) are downregulated in adult T-cell

leukemia (ATL) and bladder cancer cells. Accordingly, they both

exhibit tumor-suppressive potential by improving NK cell

maturation; however, this needs further validation.
4.2 NK-mediated cytotoxicity

Several miRNAs, such as miR-30e-5p, miR-378a-3p, miR-302c-

3p, miR-520c-3p, miR-10b-5p, miR-20a-5p, miR-93-5p, and miR-

106b-5p, have inhibitory effects on NK-mediated cytotoxicity, while

miR-148a-3p has induces it (Table 3).

miR-30e-5p and miR-378a-3p inhibit NK cell cytotoxicity (215)

(Table 3) (Figure 2). Moreover, these miRNAs also exhibit

anticancer effects. Breast (216) and bladder (217) cancer tissues

and cells show low levels of miR-30e-5p (Table 3). miR-378a-3p is
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underexpressed in gastric cancer. When it is upregulated,

proliferation is inhibited and apoptosis is promoted in gastric

cancer cells (218). Similarly, 1,25(OH)2D3 inhibits miR-302c-3p

and miR-520c-3p expression, improving NK cell cytotoxicity in

breast cancer cells (219), suggesting that miR-302c-3p and miR-

520c-3p downregulate NK cell cytotoxicity. Moreover, miR-302c-

3p (220) and miR-520c-3p (221) are downregulated in cervical and

lung cancer cells. The overexpression of the former suppresses

proliferation and induces apoptosis in cervical cancer cells.

MHC class I chain-related protein B (MICB) is a stress-induced

ligand of the activating NK-cell receptor NKG2D. miR-10b-5p inhibits

MICB expression, suppressing NK cell cytotoxicity and thereby

promoting cancer immune evasion, suggesting that miR-10b-5p

downregulates NK cell cytotoxicity (286) (Table 3). In comparison,

and based on data from the TCGA database, breast cancer tissues

express lower levels of miR-10b-5p than normal controls (223).

Moreover, the overexpression of miR-93-5p and miR-106b-5p

downregulates MICA expression (224), suppressing NK cell

cytotoxicity (287). Colon (225) and ovarian (226) cancer tissues

exhibit low levels of miR-93-5p (Table 3), the upregulation of which

inhibits the proliferation of these two types of cancer. Accordingly,

miR-30e-5p, miR-378a-3p, miR-302c-3p, miR-520c-3p, miR-10b-5p,

andmiR-93-5p have tumor-promoting potential because they suppress

NK-mediated cytotoxicity, which warrants detailed study.

Furthermore, ovarian cancer tissues exhibit high levels of miR-

20a-5p, which downregulates NK cell cytotoxicity in ovarian cancer

cells (Table 3) and shows tumor-promoting effects (227). Hence,

miR-20a-5p overexpression promotes the immune escape of

ovarian cancer cells from NK cells. In comparison, miR-106b-5p

has a dual role in tumor suppression and in promoting

functionality. It is downregulated and upregulated in colon (229)

and lung (228) cancer tissues (Table 3), respectively, enhancing lung

cancer cell proliferation and suppressing colon cancer metastasis.

In contrast, some miRNAs exhibit NK-mediated cytotoxicity

(Table 3) (Figure 2). Classical human leukocyte antigen G (HLA-G)

is commonly expressed in renal cancer cells, inhibiting the cytotoxic

activity of T and NK cells (230). The overexpression of miR-148a-

3p downregulates HLA-G expression and induces cell death in renal

cancer cells, activating NK cell cytotoxicity (230) (Table 3).

Consequently, miR-148a-3p is downregulated in renal cancer cells

and, accordingly, possesses a tumor-suppressive function,

upregulating NK-mediated cytotoxicity. This warrants a

detailed investigation.
4.3 Th17 differentiation and CTL function

Some miRNAs, such as miR-326 and miR-181c-5p, induce

Th17 differentiation (Table 3) (Figure 2). Both enhance Th17

development by targeting the negative regulators ETS-1 (231) and

SMAD7 (233). miR-326 suppresses lung tumor growth in mice by

promoting T cell cytotoxicity (288). It also consistently suppresses

immune escape and metastasis in lung cancer cells (288). Th17 cells

are crucial for a host’s defense against specific bacteria and fungi

and for their anticancer functions (289–291). Accordingly, these

miRNAs have anticancer potential. miR-326 is underexpressed in
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lung, gastric, and breast cancers (232). Similarly, miR-181c-5p

shows low expression in cervical (234) and breast (235) cancer

cells (Table 3). Therefore, miR-326 and miR-181c-5p have

anticancer effects, in addition to promoting Th17 differentiation.

Some miRNAs induce CTL cytotoxicity. miR-23a-3p inhibits

the cytotoxicity of CD8+ CTLs, while miR-23a-3p knockdown

attenuates TGF-b-induced immunosuppression (236) (Table 3)

(Figure 2). Additionally, miR-23a-3p is highly expressed in renal

cancer tissues and cells (237), whereas its knockdown inhibits cell

proliferation in these cells. Accordingly, miR-23a-3p has regulatory

effects on CTL and causes anticancer.
4.4 Macrophage M1/M2 polarization and
MDSC level

M1 macrophage polarization exhibits pro-inflammatory and

anti-tumor functions, whereas M2 macrophage polarization causes

immunosuppression and promotes tumor formation (292). Some

miRNAs have modulating effects on macrophages (Table 3)

(Figure 2). miR-125b-5p is upregulated in M1 macrophages,

enhancing antigen presentation for T-cell activation and inhibiting

tumor growth (238). Moreover, miR-125b-5p is underexpressed in

breast (239) and liver (240) cancer cells, while their proliferation and

migration are inhibited by its overexpression. This suggests miR-

125b-5p has tumor-suppressive effects.

In contrast, miR-21-5p and miR-24-2 are downregulated in M1

macrophages. miR-21-5p depletion promotes pro-inflammatory

and tumoricidal macrophage (M1) polarization (293) (Table 3)

(Figure 2), while its overexpression inhibits lymphocyte migration

and enhances immunotherapeutic resistance to breast cancer (241).

M1 macrophage stimulation downregulates miR-24-2 expression,

but M2 macrophage stimulation has the opposite effect (294),

suggesting that miR-24-2 induces M2 macrophages and promotes

tumor growth. Moreover, miR-21-5p and miR-24-2 are highly

expressed in oral cancer patients (242) and renal cancer tissues

(295) (Table 3). Consequently, both have tumor-promoting effects.

Furthermore, MDSCs have immunosuppressive effects (296)

and are modulated by miRNAs. miR-17-5p inhibits immune

suppression in MDSCs derived from colon tumor-bearing mice

(243) (Table 3) (Figure 2). Moreover, miR-17-5p is highly expressed

in gastric cancer patients (244) and, consequently, has tumor-

promoting effects.
4.5 Potential targets for cytokine-
regulating miRNAs

As previously mentioned, target information for these cytokine-

modulating miRNAs (Table 3) is rarely reported. By applying miRDB

data mining (270), their potential targets can be described as follows:

miR-150-5p, miR-181a-5p, miR-148a-3p, miR-181c-5p, and miR-

23a-3p potentially target HSP90B1; miR-150-5p, miR-181a-5p, and

miR-181c-5p can target TNF; and miR-181a-5p and miR-181c-5p

potentially target CALR. Moreover, IL12A and IL12B are potentially

targeted by miR-21-5p and miR-23a-3p, respectively. In the future, a
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detailed examination is warranted to explore the role of these targets

in miRNA-regulating immune and anticancer activity.
5 Relationship between ICD-
modulating natural products
and miRNA

We analyzed the relationship between ICD-modulating natural

products (Table 1) and miRNAs (Tables 2 and 3). From a miRNA-

centric view (Table 4), different miRNAs may be regulated by

various ICD inducers of natural products; meanwhile, different

natural products may regulate the same miRNAs.

From the point of view of natural products, the regulation of

miRNAs by doxorubicin, shikonin, colchicine, capsaicin,

astaxanthin, C-phycocyanin, fucoidan, docosahexaenoic acid, and

bleomycin is summarized in Figure 4.
5.1 Doxorubicin

In both non-cancer and cancer studies, oxorubicin has exhibited

miRNA-modulating effects. In non-cancer studies (cardiomyocytes),

doxorubicin has caused cardiotoxicity by upregulating miR-34a-3p

(250), miR-34a-5p (251), and miR-21-5p (267). In comparison,

doxorubicin downregulated miR-107 (245), miR-93-5p (260), and

miR-17-5p (264) in cardiomyocytes. In animal models, doxorubicin

induced cardiotoxicity in mice by upregulating miR-24-2 (269) and

downregulating miR-200a-3p (247).

In cancer studies, doxorubicin may downregulate or upregulate

miRNAs depending on the type of cancer cell. miR-200c-3p suppresses

the migration of lung cancer cells by downregulating HMGB1 (146)

but enhances the doxorubicin sensitivity of breast cancer cells (249).

This finding suggests that doxorubicin may be associated with the

upregulation of miR-200c. In comparison, doxorubicin downregulates

miR-223-3p in liver cancer cells (204). Under short-term starvation,

doxorubicin downregulates miR-23a-3p and miR-106b-5p in breast

cancer cells (262). Moreover, miR-150-5p inhibitors suppress the

migration and viability of doxorubicin-treated breast cancer cells,

suggesting that doxorubicin inhibits breast cancer cell proliferation

by downregulating miR-150-5p (259). Accordingly, doxorubicin may

differentially regulate miRNAs in various cancer cells.
5.2 Shikonin, colchicine, capsaicin,
astaxanthin, and C-phycocyanin

Shikonin promotes apoptosis in lung cancer cells by increasing

miR-628-3p expression, which is reversed by its inhibition (257).

Shikonin inhibits the migration of breast cancer cells by

downregulating miR-17-5p, which is overexpressed in breast

cancer (265). This suggests shikonin has miR-628-3p-

upregulating and miR-17-5p-downregulating abilities.

Colchicine downregulates miR-17-5p and miR-223-3p in acute

coronary syndrome (ACS) patients (255). Colchicine upregulates miR-

181a-5p but downregulates miR-34a-5p in Familial Mediterranean
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Fever (FMF) patients (252). Capsaicin upregulates miR-449a in

prostate cancer cells (253). Astaxanthin exhibits anti-metastatic

effects on colon cancer cells by upregulating miR-200a-3p (248).

@Moreover, C-phycocyanin induces miR-93-5p expression in lung

cancer cells (297). Accordingly, these miRNAs are differentially

regulated by these natural products.
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5.3 Fucoidan, docosahexaenoic acid,
and bleomycin

Fucoidan and docosahexaenoic acid exhibit inhibitory effects on

various ICD-modulating miRNAs. For example, fucoidan

downregulates human plasma miR-27a-3p and miR-20a-5p in
TABLE 4 Relationship between ICD-modulating miRNAs and natural products.

ICD-modulating miRNAs
ICD inducers from
natural products*

Cell/animal models (natural product effects)

miR-107 doxorubicin (245) cardiomyocytes (cardiotoxicity)

miR-142-3p bleomycin (246) lung epithelial (apoptosis; inflammation)

miR-200a-3p doxorubicin (247), astaxanthin ↑(248) cardiotoxicity mice (cardiotoxicity), colon ca (metastasis inhibition)

miR-200c-3p doxorubicin ↑ (249) breast ca (apoptosis)

miR-34a-3p doxorubicin ↑ (250) cardiomyocytes (cardiotoxicity)

miR-34a-5p doxorubicin ↑ (251), colchicine (252) cardiomyocytes (cardiotoxicity), FMF patients

miR-449a capsaicin (253) prostate ca (androgen receptor inactivation)

miR-665 bleomycin ↑ (254) vascular smooth muscle cells (senescence)

miR-223-3p doxorubicin (204), colchicine (255) liver ca (autophagy), ACS patients

miR-27b-3p docosahexaenoic acid (256) colon ca rat (carcinogenesis)

miR-628-3p shikonin ↑ (257) lung ca (apoptosis)

miR-27a-3p fucoidan (258) healthy patients

miR-150-5p doxorubicin (259) breast ca (antiproliferation)

miR-181a-5p colchicine ↑ (252) FMF patients

miR-20a-5p fucoidan (258) healthy patients

miR-93-5p
doxorubicin (260), C-phycocyanin ↑ (261),
docosahexaenoic acid (256)

cardiomyocytes (apoptosis), lung ca (antiproliferation), colon ca
rat (antiproliferation)

miR-106b-5p doxorubicin (262) breast ca

miR-326 doxorubicin (263) breast ca (resistance)

miR-23a-3p doxorubicin (262) breast ca

miR-17-5p
doxorubicin (264), shikonin (265), colchicine
(255), fucoidan (266)

cardiomyocytes (apoptosis), breast ca (migration inhibition), ACS
patients, breast ca (antiproliferation)

miR-21-5p doxorubicin ↑ (267), docosahexaenoic acid (268) cardiomyocytes (cardiotoxicity), breast ca (antiproliferation)

miR-24-2 doxorubicin ↑ (269) heart injury mice (heart injury)
* ↑ indicates that some natural products upregulate their matched miRNAs (left). Except for those indicated with the symbol ↑, the natural products downregulate their matched miRNAs without
a symbol. ca, cancer cells; ACS, acute coronary syndrome; FMF, Familial Mediterranean fever.
FIGURE 4

Relationship between ICD inducers of natural products and the regulation of ICD-modulating miRNAs.
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healthy patients (258). It also suppresses the proliferation of breast

cancer cells by downregulating miR-17-5p (266). Similarly,

docosahexaenoic acid downregulates miR-27b-3p and miR-93-5p

in azoxymethane-induced colon cancer in Sprague–Dawley rats

(256). Docosahexaenoic acid downregulates miR-21-5p in breast

cancer cells (268).

In comparison, bleomycin may exhibit a dual function in

regulating ICD-modulating miRNAs. miR-142-3p upregulation

attenuates bleomycin-induced injury in lung epithelial cells (246),

suggesting that bleomycin downregulates miR-142-3p. In

comparison, bleomycin promotes the senescence of vascular

smooth muscle cells by upregulating miR-665 (254). Accordingly,

these miRNAs are differentially regulated by these natural products.
6 Conclusion

ICD is the spatiotemporal immune cell death process caused by

the exposure of DAMPs from damaged or dying cancer cells, which

triggers the release of many cytokines involved in cancer cell killing.

Different DAMPs may be either translocated or show altered

secretion in a spatiotemporal manner. However, the functions of

DAMPs and cytokines are not limited to the immune response.

DAMPs exhibit intracellular functions but generate extra

immunogenic effects when responding to extracellular stimulation

(2). Accordingly, they have anticancer and immune-modulating

effects. Moreover, natural products and miRNAs have been

reported to modulate the immune (DAMPs and cytokines) and

cancer cell death responses.

However, there are gaps in the literature regarding the interplay

between ICD inducers of natural products and ICD-modulating

miRNAs, between natural products and ICD targets, between ICD-

modulating miRNAs and ICD targets, and between ICD-

modulating miRNAs and immune and cell death responses.

To address these gaps, we have provided an integrated view

connecting ICD, cell death responses, miRNAs, and natural

products. In this review, we organized reports from the literature

regarding the impacts of natural products and miRNAs on the

DAMP, cytokine, and cell death responses (apoptosis, autophagy,

ferroptosis, necroptosis, and pyroptosis) in various cancer types.

We collated and mapped out the potential DAMP and cytokine

targets and responses of ICD-modulating miRNAs and natural

products. This improvement proves the rationale that ICD inducers

of natural products modulate miRNAs, and they, in turn, target

DAMPs and cytokines, triggering immune and cancer cell

death responses.

Notably, we used miRDB to process target retrieval. This is a

comprehensive and reliable database constituting a vast array of

experimental data, but the target information acquired may be

derived from different cells. This target information needs to be

further validated in future ICD studies. Moreover, the functions of

DAMPs and miRNAs are context-dependent (2). For instance,

HMGB1 exhibits pro- and anti-tumoral functions depending on
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its location in extracellular or intracellular environments. Besides its

immune functions, HMGB1 exhibits tumor suppression and

oncogenic functions in the context of receptors, targeted cells,

and redox status (298). Moreover, miRNAs can regulate different

immune responses and modulate death responses in cancer cells. A

detailed investigation of the relationship between the natural

products and miRNA-modulated immune and cell death

responses needs to be conducted in the future.

Altogether, this review summarizes the changes in DAMPs and

cytokines and cell death responses in cancer cells, linking these with

natural products and miRNAs with ICD-modulating effects. This

work sheds light on the anticancer effects of natural products and

the mechanisms by which they modulate ICD with respect

to miRNAs.
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