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Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of

the intestinal mucosa involving both innate and adaptive immune responses.

Currently, new targeted therapies are urgently needed for UC, and neutrophil

extracellular traps (NETs) are new therapeutic options. NETs are DNA-based

networks released from neutrophils into the extracellular space after stimulation,

in which a variety of granule proteins, proteolytic enzymes, antibacterial

peptides, histones, and other network structures are embedded. With the

deepening of the studies on NETs, their regulatory role in the development of

autoimmune and autoinflammatory diseases has received extensive attention in

recent years. Increasing evidence indicates that excess NETs exacerbate the

inflammatory response in UC, disrupting the structure and function of the

intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs

are usually assigned a deleterious role in promoting the pathological process of

UC, they also appear to have a protective role in some models. Despite such

progress, comprehensive reviews describing the therapeutic promise of NETs in

UC remain limited. In this review, we discuss the latest evidence for the formation

and degradation of NETs, focusing on their double-edged role in UC. Finally, the

potential implications of NETs as therapeutic targets for UC will be discussed.

This review aims to provide novel insights into the pathogenesis and therapeutic

options for UC.
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Deoxyribonuclease; dsDNA, double-stranded DNA; GSDMD, gasdermin D; HIF-1a, hypoxia‐inducible

factor‐1a; HMGB1, high-mobility group box 1; IBD, inflammatory bowel disease; IEC, intestinal epithelial

cell; IL, interleukin; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MMP-9, matrix

metalloproteinase 9; MPO, myeloperoxidase; NADPH, nicotinamide adenine dinucleotide phosphate; NE,

neutrophil elastase; NETs, neutrophil extracellular traps; NF-kB, nuclear factor-kB; PAD4, peptidyl arginine

deiminase-4; PKC, protein kinase C; PMA, phorbol myristate acetate; ROS, reactive oxygen species; TCM,

traditional Chinese medicine; TLR, Toll-like receptor; TLR4, Toll-like receptor 4; TNF-a, tumour necrosis

factor a; UC, ulcerative colitis.
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1 Introduction

Ulcerative colitis (UC) is a complex chronic inflammatory

bowel disease (IBD) affecting the mucosa of the rectum and

colon. Its main clinical symptoms are recurrent diarrhea,

mucopurulent bloody stool, and may be accompanied by extra-

intestinal manifestations of varying degrees of severity (1). UC is

characterized by recurrent episodes and remissions, which may

result in prolonged and burdensome complications that seriously

affect patients’ quality of life. A substantial body of evidence

suggests that multiple factors are involved in the pathogenesis of

UC, including autoimmune disorders, genetic susceptibility, defects

in the intestinal epithelial mucosal barrier, and imbalances in the

gut microbiota (2–4). The main pathological change in UC is an

abnormal mucosal immune and inflammatory response, the main

features of which include pro-inflammatory cytokines, oxygen free

radicals, nitrogen production, and activation of inflammatory cells.

Among them, neutrophils play a key role in intestinal

homeostasis (5).

Neutrophils, as one of the most important immune cells in

innate immunity, are also the body’s first line of defense against

external microorganisms. It mediates antimicrobial activity through

phagocytosis and degranulation, resulting in immune defense and

killing of pathogens. In addition, activated neutrophils release

neutrophil extracellular traps (NETs), which are complex

networks comprised of DNA, histones, and granule proteins (6).

NETs effectively capture pathogens and secrete antimicrobial

proteins to kill them (7, 8). On the other hand, over-activated

NETs may further amplify the inflammatory response, leading to

tissue damage (9). Apart from infectious diseases, NETs have

successively been reported to play a significant role in numerous

non-infectious diseases, such as autoimmune diseases (10, 11),

cancers (12–15), cardiovascular diseases (16–20), and so on. UC,

an autoinflammatory disease, has not been fully elucidated in terms

of its specific pathogenesis. The potential role of NETs in the

pathogenesis of UC is a relatively new area of research. Here, we

focus on the latest evidence for the formation and degradation of

NETs, the mechanisms associated with their involvement in UC

pathophysiology, and their potential role in UC therapeutic targets.
2 The role of neutrophils in UC

Neutrophils are the most abundant immune cells in the body,

accounting for approximately 70% of peripheral blood leukocytes.

Neutrophils are known for their rapid recruitment to sites of

infection or tissue damage to accommodate pathogens. They can

activate pathways that ultimately facilitate sustained inflammation

reduction and mucosal healing (21–23). However, persistent

activation and over-recruitment of neutrophils is a common

feature of numerous inflammatory diseases. Neutrophils produce

inflammatory factors and large amounts of reactive oxygen species

(ROS), disrupt the intestinal epithelial mucosal barrier, recruit and

activate other immune cells, and activate redox-sensitive

inflammatory pathways (24–27). Neutrophil infiltration is
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associated with disease activity in UC (21, 28). Neutrophils are a

widely used and reliable component of the disease scoring system

for UC (29).

Neutrophils exhibit a dual role in UC, either favoring the

abatement of inflammation or being deleterious when over-

activated, leading to collateral tissue damage. In other words, both

functional defects and hyperreactivity of neutrophils contribute to

intestinal inflammation, and functional neutrophils are essential to

maintain intestinal homeostasis.
3 Neutrophil extracellular traps

In 1996, Takei et al. (30) first discovered that neutrophils exhibit

special morphological changes such as the dissociation of lobulated

nuclei and rupture of nuclear and cell membranes under the

stimulation of phorbol myristate acetate (PMA). In 2004,

Brinkmann et al. (6) defined this new type of specific cell death,

different from apoptosis and necrosis, as NETs by further

validation. With subsequent studies, NETs are thought to have a

DNA backbone in which a variety of active proteins are embedded,

including histones, cathepsin G (CG), neutrophil elastase (NE),

matrix metalloproteinase 9 (MMP-9), myeloperoxidase (MPO),

calprotectin and other granule proteins, protein hydrolases,

antimicrobial peptides, histones, etc. Although the NET proteome

composition is fairly stable, it may be enriched with different

protein components depending on the stimulus received (31).
3.1 NET formation

The generation of NETs by neutrophils is regulated by

neutrophil intrinsic and extrinsic factors and pathways (32). The

release of NETs occurs through a cell death process named NETosis

(33). It is triggered by a variety of stimulants such as bacteria,

viruses (34–36), fungi (37), activated platelets (38–40), immune

complexes, cytokines, and chemokines (41). Studies have shown

that the mechanism of NETs formation may vary depending on the

initial stimulus that activates the neutrophils (42). There are two

main modes of NET formation: lytic or suicidal NET formation and

nonlytic or vital NET formation (43, 44).

3.1.1 Lytic NETs formation
Lytic NET formation involves morphological changes in

neutrophils, where activated neutrophils become flattened, lose

their nucleoli, have their chromatin decondensed, and die after

NETs are formed (summarized in Figure 1). In contrast to other cell

death processes, such as apoptosis, necrosis, or pyroptosis,

chromatin decondensation is the main defining feature of

NETosis. NETs are generated by neutrophils stimulated by

bacteria, fungi, cytokines, lipopolysaccharide (LPS) and PMA,

with PMA being the most inducible (45). After stimulation with

PMA or IL-8, calcium is released from the endoplasmic reticulum

(ER), followed by the entrance of extracellular calcium through

channels in the cellular membrane (46–49). As a result, the
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intracellular calcium concentrations increase in activated

neutrophils (50). Interestingly, the activation of peptidyl arginine

deiminase-4 (PAD4) depends on high levels of intracellular calcium

concentration (51). As is well known, PAD4 is a key driver of

NETosis, which causes histone citrullination and thus induces

chromatin decondensation process (52, 53). Citrullinated histone

H3 (Cit-H3) is generally considered as a specific marker of NET

(54–57).

Apart from high intracellular calcium concentration, the

mechanism of NETosis is closely related to nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase. PMA stimulation leads

to the activation of the RAF/MEK/ERK pathway and protein kinase

C (PKC), which in turn contributes to the phosphorylation of

NADPH oxidase and the production of ROS (45). Then, NADPH

oxidase and ROS complexes induce the translocation of NE and

MPO from neutrophil granules into the nucleus (58), along with the

activation of PAD4 (33). Although MPO does not directly

decondense chromatin in isolated nuclei or degrade histones in

vitro, it was demonstrated to augment chromatin decondensation

mediated by NE (59). It is reported that MPO binds to chromatin

and activates NE in small azurophilic structures visible in vitro and

in vivo. NE disrupts actin filaments in the cytoplasm while
Frontiers in Immunology 03
translocating to the nucleus along with MPO (58). In the nucleus,

serine proteases and NE degrade histones, further promoting

chromatin decondensation. Upon rupture of the nuclear

membrane, the decondensed chromatin enters the cytoplasm and

mixes with granular proteins to form NET (33). Finally, the cell

membrane ruptures, releasing NET and causing neutrophil death.

This process is dependent on NADPH oxidase to promote ROS

production and occurs slowly, typically taking three to four hours.

Interestingly, emerging evidence suggests that Gasdermin D

(GSDMD), which is often considered an execution factor in

pyroptosis, also plays a crucial role in cell lysis and NET release

(60, 61). Inhibition of GSDMDwith disulfiram or genic deletion has

been shown to eliminate NET formation (62). In neutrophils,

GSDMD is usually cleaved and activated by two pathways. When

initiated by classical stimulus such as PMA or extracellular

pathogens, NE converts GSDMD to the active form GSDMD-NT,

which mediates the formation of pores in the nuclear, granular, and

plasma membranes and enhances the release of NE and other

granular components (60, 63). Additionally, it is well known that

GSDMD could be cleaved by caspases (64). When stimulated by

LPS or cytosolic Gram-negative bacteria, GSDMD is activated by

caspases. Among them, Caspase-11 is required for GSDMD-
FIGURE 1

Diagram of lytic neutrophil extracellular trap formation. The RAF/MEK/ERK pathway and protein kinase C are activated by PMA, resulting in the
phosphorylation of NADPH oxidase and ROS formation. This process depends on high calcium concentrations. Subsequently, PAD4 is activated and
NE and MPO are translocated from the azurophilic granules to the nucleus. NE, MPO and PAD4 lead to histone citrullination and chromatin
decondensation. Upon rupture of the nuclear membrane, the decondensed chromatin enters the cytoplasm and mixes with granular proteins.
Finally, the cytoplasma membrane ruptures and the modified chromatin is released from neutrophils, marking the completion of NETosis. PMA,
phorbol myristate acetate; PKC, protein kinase C; NADPH, nicotinamide adenine dinucleotide phosphate; ROS, reactive oxygen species; NE,
neutrophil elastase; MPO, myeloperoxidase; PAD4, peptidyl arginine deiminase-4; GSDMD, Gasdermin D.
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dependent NET formation (61). It has been reported that the

specific deletion of Caspase-11 in neutrophils significantly

inhibited NET formation (65). Caspase-11 and GSDMD are not

only required for plasma membrane rupture in neutrophils during

the final stages of NET release, but are also essential for the early

features of NETosis, including nuclear foliation and DNA

amplification, which are mediated by nuclear membrane

permeabilization and histone degradation induced by Caspase-11

and GSDMD (61).

3.1.2 Nonlytic NETs release
A nonlytic and NADPH-oxidase-independent mechanism of

NET formation was subsequently discovered, which appears to

maintain neutrophil integrity and viability by actively releasing

DNA-containing vesicles (33, 43). Unlike lytic NET formation, this

process releases NETs less than an hour after stimulation. Nonlytic

NET release plays a more important role in regulating pathogen

infection. This form of NET formation is triggered by a sudden

elevation of intracellular calcium that results in the expulsion of
Frontiers in Immunology 04
nuclear chromatin and granule proteins, causing anucleate

cytoplasm to remain capable of migration and phagocytosis

(summarized in Figure 2). Staphylococcus aureus and Candida

albicans activate Toll-like receptor 2 (TLR2) and complement

receptors, respectively, while platelets activated by LPS and

Escherichia coli activate TLR4 (66, 67). TLRs and complement

receptors activate PAD4 and activated PAD4 triggers histone

citrullination, resulting in chromatin decondensation. The

decondensed chromatin enters into the cytoplasm and binds

granzymes such as MPO, NE, and other proteins, eventually

releasing into the extracellular space. However, instead of plasma

membrane disruption through vesicle release, protein-modified

chromatin is secreted through vesicles. The nuclear and cellular

membranes remain intact during this process, and neutrophil

viability and functions such as phagocytosis and chemotaxis are

unaffected (44). Although this pathway is not dependent on

NADPH oxidase-derived ROS, a recent study has demonstrated

that calcium ion carriers induce the production of mitochondrial

ROS (68). After being stimulated by granulocyte-macrophage
FIGURE 2

Diagram of nonlytic neutrophil extracellular trap formation. Compared with suicidal NETosis, nonlytic NET formation is completed in a shorter period
of time and may occur in the absence of NADPH oxidase and ROS. This form of NET formation is also triggered by a sudden elevation of
intracellular calcium levels. Nonlytic NET formation is initiated by stimuli such as Staphylococcus aureus activating TLR2, or Escherichia coli
activating TLR4. PAD4 is activated and NE and MPO translocate to the nucleus to stimulate chromatin decondensation. Decondensed chromatin
decorated with granulin and histones is packaged in vesicles budding from the nucleus. Then, these vesicles are expelled from intact neutrophils and
form NETs near the neutrophils. Thus, the neutrophils remain intact and maintain their function.TLR, Toll-like receptor; LPS, lipopolysaccharide; NE,
neutrophil elastase; MPO, myeloperoxidase; PAD4, peptidyl arginine deiminase-4.
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colony-stimulating factor or LPS, neutrophils release mitochondrial

DNA (mtDNA) mixed with granule proteins (69). Additionally, it

has been proven that deletion of mtDNA results in a significant

reduction in NADPH-oxidase-independent NET production,

suggesting that mitochondria are also important in NET

formation (70). The specific mechanism of mitochondria in this

process requires further study.
3.2 NET degradation

Although numerous researchers have been focusing on the

molecular mechanisms of NET formation, little is known

regarding NET degradation. Actually, the balance between the

formation and degradation of NETs is critical for maintaining

NET homeostasis. Since DNA is the main component of NETs,

DNA degradation enzymes play an instrumental role in NET

degradation. In autoimmune diseases, reduced Deoxyribonuclease

(DNase) activity is strongly correlated with NET accumulation.

DNase is regarded as an essential enzyme for degrading NET in vivo

by cleaving circulating free DNA (71). DNase consists of two

families, DNase I and DNase II. The DNase I family is composed

of four members including DNase I, DNase1L1, DNase1L2, and

DNase1L3, whereas the DNase II family consists of DNase II a and

DNase II b (72). The kinetics of hydrolysis are influenced by the

structure and sequence of the DNA substrate. Double-stranded

DNA (dsDNA) is cleaved by DNase I 100-500 times faster than

single-stranded DNA (ssDNA) (73, 74). It was reported that

DNase1 inhibitors or anti-NET antibodies preventing DNase1

entry into NETs both resulted in impaired NET clearance (71). Li

et al. revealed that the downregulation of DNase1L3 expression is a

critical cause of impaired DNA clearance in NETs (75). In addition,

the accumulation of NETs and their components is associated with

the formation of anti-dsDNA, anti-histones, and anti-nucleosome

antibodies, which are recognized as pathogenic factors in systemic

lupus erythematosus (SLE) (76).

Apart from the DNase family, other enzymes have been

revealed to disrupt the structure of NETs, such as 3′-exonucleases
(TREX1 and TREX2) (77, 78). Interestingly, macrophages and

dendritic cells were found to exert an important role in the

intracellular and extracellular degradation of NETs. NET

degradation mediated by extracellular DNase1L3 was observed in

dendritic cells, while intracellular degradation of NETs by

macrophages relied on the function of TREX1 (77). A growing

number of researches emphasized the prominent role of

macrophages in NET degradation (79, 80). Farrera et al.

confirmed that macrophages effectively removed NETs by taking

up extracellular DNA (79). Macrophage-secreted DNase I facilitates

this process by extracellularly digesting large fragments of NETs,

whereas complement factor 1q (C1q) promotes NETs opsonization.

NETs phagocytosed by macrophages are degraded in the lysosomal

compartment. Interestingly, a recent study indicated that the

polarization of macrophages affected their ability to degrade

NETs (81). In particular, proinflammatory polarization promotes

NET degradation through enhanced macropinocytosis.
Frontiers in Immunology 05
3.3 Functions of NETs

NETs were originally described as host defense mechanisms for

trapping or killing neutrophilic pathogenic microorganisms. NETs

encapsulate proteins such as histone, NE, MPO, and CG, which trap

pathogens and prevent them from spreading to secondary sites of

infection, exerting anti-bacterial, fungal, and viral effects (6, 31). In

neutrophils, NADPH is produced by glucose 6-phosphate in the

oxidation branch of the pentose phosphate pathway. A recent study

by Ulrich and colleagues demonstrated that low levels of NADPH

and ROS in patients with defects in glucose-6-phosphate

dehydrogenase caused impaired formation of NETs and greatly

increased the risk of bacterial infection (82). Indeed, impairing NET

formation might exacerbate inflammation and worsen conditions

(7, 83). NET also modulates other immune cells. For instance, by

inhibiting dendritic cell activation, it promotes the Th2 response

and facilitates inflammation to subside (84). However, NET is a

double-edged sword. There is growing evidence that when there is

an imbalance between the formation and removal of NETs, the

deposition of excess NETs in tissues and organs promotes an

inflammatory response (85, 86) and drives disease progression (9,

87, 88). NETs recruit macrophages and other pro-inflammatory

cells or proteins, promote the release of inflammatory factors such

as IL-1b and IL-6, and activate NLRP3 inflammatory vesicles to

further amplify the inflammatory response (89–91). Overall, the

anti-inflammatory effects of NETs are counteracted by pro-

inflammatory effects in disease. A growing body of research

suggests that NETs are associated with the progression of several

diseases and may serve as potential biomarkers for disease diagnosis

and prognosis (92–95).
4 Increased NETs formation in UC

A growing number of studies have shown that NET-related

proteins have enhanced expression in the inflamed colon of UC

patients (96–99). Proteomic studies revealed that the abundance of

NET-associated proteins in colonic mucosal samples from patients

with UC was, on average, 42.2 times higher than in normal colons

(100). Western blotting analysis and quantitative immunoblotting

indicated that PAD4 expression was dramatically enhanced in

inflamed mucosa of UC patients compared to Crohn’s disease

(CD) patients or healthy individuals (98). Western blotting

analysis has also shown that the expression of NE, MPO, and Cit-

H3 was significantly up-regulated in colon samples from UC

patients. Moreover, the double-immunofluorescence assay

indicated that these three proteins were co-localized in UC

mucosa. Similarly, confocal microscopy analysis also exhibited

positive staining for citH3 and NE, overlapping with diffuse DNA

scaffolding, confirming NET deposition in the colon of patients

with active UC (101). Additionally, recent studies suggest that

plasma levels of NET are significantly elevated in UC patients

(101, 102). Other evidence points out that neutrophils isolated

from UC patients are more likely to form NETs when stimulated in

vitro (98, 101).
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Apart from patients with UC, it has been demonstrated that

NETs and related proteins are significantly increased in a mouse

model of experimental colitis (98, 103). A recent study by Li and

colleagues showed elevated serum levels of cell-free DNA (cfDNA)

and increased NET formation in mice with dextran sulfate sodium

(DSS)-induced colitis (101). Mechanistically, LINC00668, which is

highly enriched in intestinal epithelial cell (IEC)-derived exosomes,

mediates the translocation of NE from cytoplasmic granules to the

nucleus, thus stimulating histone cleavage and chromatin

decondensation and triggering NETs release (104). Other

evidence suggests that high levels of antineutrophil cytoplasm

autoantibodies (ANCA) in serum induce neutrophil aggregation

and foster NET generation (105).

Damage-associated molecular patterns (DAMPs) are molecules

released in response to cellular stress or tissue damage and have been

demonstrated to function as direct pro-inflammatory mediators (106,

107). Several researches have identified DAMPs capable of inducing

NET formation in UC (108). For example, cfDNA is a DAMP

capable of enhancing NET generation (109). Interestingly, cfDNA

is significantly increased in the serum of UC patients as well as in

murine UC models, and its plasma concentration is positively

correlated with clinical severity (110, 111). cfDNA has a strong

potential to trigger NETosis, resulting in endothelial cell injury

(112). High-mobility group box 1 (HMGB1) is another DAMP

known for its ability to promote NETs (113, 114). Recent evidence

suggests that TLR4 and C-X-C motif chemokine receptor 4 (CXCR4)

are specific receptors for HMGB1 (115). Notably, HMGB1 not only

induces NETosis but is also involved in the extrusion of NETs. Chen

et al. detected that HMGB1 was significantly higher in the inflamed

colon of UC patients (116). They also demonstrated that anti-

HMGB1 neutralizing-antibody improved intestinal barrier function

and inflammation in DSS-induced colitis mice.

Moreover, in UC, cytokines are important mediators in inducing

NETosis. As is well known, IL-1b, IL-6, tumour necrosis factor a
(TNF-a), and other cytokines are expressed at relatively higher levels

in the intestinal tissues of UC patients (117). These cytokines trigger

macrophages and neutrophils to phagocytose and to release effector

mediators. It has been demonstrated that neutrophils from UC

patients produced significantly more NETs under the stimulation

of TNF-a (98). In addition, NET formation was significantly reduced

in colons of UC patients treated with infliximab, a TNF-a inhibitor,

indicating a strong stimulatory effect of TNF-a in NETosis (98). UC

patients show significantly enhanced expression of IL-8 (118, 119), a

cytokine that not only stimulates neutrophil recruitment but also

triggers NETosis (120, 121). Similarly, IL-6, a cytokine widely

increased in UC patients and colitis mice (122, 123), serves as

another potent inducer of NETosis (124, 125). However, there are

still substantial gaps in the upstream mechanisms of NETosis

induction in UC, which need to be further explored.
5 Impaired clearance of NETs in UC

As mentioned above, several autoimmune diseases have been

linked to dysregulated NET clearance (126). The balance between

generation and degradation of NETs is critical in UC and other
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autoimmune diseases. Some findings suggest that in UC, the

increase in NETs may be attributed to decreased clearance rather

than merely increased production (101). Li et al. (101)detected

impaired degradation of NETs in the plasma of patients with active

UC. DNase I activity has been reported to be significantly lower in

IBD patients than in healthy individuals (127). DNase I activity is

strongly negatively correlated with the serum concentration of anti-

nucleosome antibodies. Impaired DNaseI-mediated NET clearance

is probably related to the pathogenesis of IBD. Thus, the ability of

UC patients to clear NETs and specific mechanisms deserve

further research.
6 The double role of NETs in UC

6.1 The role of NETs in the pathogenesis
of UC

6.1.1 NETs exacerbate inflammatory response
in UC

UC mainly manifests as a chronic, recurrent, non-specific

inflammatory response in the intestinal mucosa. Neutrophil

infiltration correlates with endoscopic severity and systemic

inflammatory indices, whereas serum levels of C-reactive protein

and fecal lactoferrin and calprotectin may serve as sensitive markers

of intestinal inflammation (128–130). Notably, both lactoferrin and

calprotectin are key components of NETs (128). NET is associated

with diverse immune and inflammatory diseases, including UC, and

is thought to maintain mucosal inflammation in this disease (98).

It has also been shown in vitro that NETs enhance the secretion

of TNF-a and IL-1b in UC lamina propria mononuclear cells by

promoting the phosphorylation of ERK (98). As shown in Figure 3,

NETs induce the release of pro-inflammatory cytokines from

macrophages, thus stimulating local and systemic inflammatory

responses (131). A recent study showed that NETs significantly

boosted the response of monocyte-derived macrophages to low-

dose LPS and increased the release of TNF-a, IL-6, and monocyte

chemotactic protein-1 (MCP-1) (101). PAD4 is considered a

biomarker of NETosis as its suppression or gene deficiency in

neutrophils inhibits this process (132). Numerous researchers have

been focusing on the critical role of PAD4 in NETs of UC.

Considerable studies have revealed that PAD4 expression is

significantly elevated in colonic samples from UC patients (96,

133). Immunohistochemistry analysis of paired colon sections from

UC patients showed more pronounced PAD4 expression in

inflamed areas compared to uninvolved mucosa from the same

patients (98). Blocking the formation of NETs by PAD4 knockout

alleviates clinical colitis indices, intestinal inflammation, and barrier

dysfunction (134).

Increasing studies have shown that cellular autophagy may play

an essential role in the formation of NETs (135–137). Inhibition of

autophagy leads to reduced generation of ROS and NETs (138).

Another researcher revealed that inhibition of ATG7, a critical

autophagy-associated protein, suppressed autophagy and

significantly reduced NET formation (139). Moreover, increased

NET formation in UC patients has been demonstrated to be
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autophagy-dependent and is associated with increased expression of

regulated in development and DNA damage response 1 (REDD1) in

neutrophils. The REDD1/autophagy/NETs axis is involved in the

IL-1b-driven inflammatory response in UC patients (97).

6.1.2 NETs impair epithelial barrier function in UC
Impaired intestinal epithelial barrier function due to IEC injury

is one of the key features of the pathophysiology of UC. Also,

damage to the vascular endothelium cell results in delayed healing

of the localized ulcerated mucosa, exacerbating intestinal damage. It

was found that in mouse with DSS-induced colitis, the presence of

NET structures was not limited to the lamina propria and

epithelium, but also in the intestinal lumen (103). NETs increase

bacterial translocation by increasing intestinal barrier permeability

and disrupting colonic epithelial barrier function. Further studies

revealed that the NET-induced deterioration of barrier function was

attributed to the promotion of apoptosis in IECs (103). Compared

with control mice, expression of the tight junction proteins occludin

and ZO-1 as well as the adhesion junction component E-cadherin

was reduced in Caco-2 monolayers treated with NETs or histones

(103). NETs-associated histones alter the integrity of tight junctions

and adhere to junctional proteins and induce IEC death, leading to

increased intestinal epithelial permeability (140). Whether NETs

are cytotoxic to endothelial cells, leading to intestinal tissue damage

in UC, remains to be investigated.
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6.1.3 NETs and thrombotic tendency in UC
Patients with IBD face three times the risk of thromboembolic

events than the general population (141). In recent years, the

association between NETs and arteriovenous thrombosis has

attracted widespread attention. The network structure of NETs

provides a scaffold for the deposition of platelets, erythrocytes,

fibrinogen, platelet adhesion factor, and other substances that favor

thrombosis (142). At the same time, a number of components of

NETs actively trigger platelet activation and blood coagulation.

There is already considerable evidence of a link between NETs and

thrombosis in IBD (101, 143, 144). Research has shown that

incubation of normal platelets with NETs from patients with

active UC and CD resulted in a significant 32% increase in their

procoagulant activity and a 42% increase in their ability to support

fibrin formation. Another study (101) revealed that NET-induced

platelet activation is mediated by signaling through TLR2 and

TLR4. NETs from patients with active UC trigger increased

exposure to phosphatidylserine in endothelial cells in a time-

dependent manner, which promotes thrombin generation as well

as the production of intrinsic and exogenous FXa complexes.

Researchers found a significant increase in NETs in inferior vena

cava thrombosis in DSS-induced IBD mice (104). Further studies

discovered that this was related to exosomes released by IECs under

inflammatory conditions. The specific mechanism of NETs on the

thrombosis tendency in UC deserves further in-depth study.
FIGURE 3

Potential implications of NETs in the pathogenesis of UC. Inflammatory factors such as IL-6 and TNF-a are potent inducers of NETosis in UC
models. In addition, high levels of antineutrophil cytoplasm autoantibodies (ANCA) in serum induce neutrophil infiltration and foster NET generation.
Several researches have identified DAMPs capable of inducing NET formation in UC, including cfDNA and HMGB1. Increasing evidence indicates that
excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the
risk of thrombosis. IL-6, interleukin 6; TNF-a, tumour necrosis factor a; cfDNA, cell-free DNA; HMGB1, high-mobility group box 1; DAMP, damage-
associated molecular pattern; ROS, reactive oxygen species; PS, phosphatidylserine.
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6.2 The beneficial role of NETs in UC

Although NETs are often assigned a deleterious role in promoting

inflammatory responses, there is growing evidence that they exert

beneficial anti-inflammatory effects in a variety of conditions. For

example, during severe sepsis, NETs have proved indispensable in

trapping circulating bacteria to prevent systemic infection (67). NETs

have been demonstrated to promote the regression of gouty

inflammation through the degradation of cytokines and chemokines

by serine proteases (7). When NET formation is impaired,

monosodium urate crystals induce uncontrolled production of

inflammatory mediators. Hahn and other researchers have also

found that NETs work through a similar mechanism to reduce

inflammation in periodontitis (145). In rheumatoid arthritis, NETs

inhibit IL-6 secretion from LPS-activated macrophages and induce

secretion of the anti-inflammatory factor IL-10 (146).

The formation of NETs during necrotizing enterocolitis has

been reported to reduce intestinal bacterial translocation and

attenuate systemic inflammation (83). Conversely, the reduction

of NETs may lead to increased systemic inflammation in mice,

ultimately resulting in the severe consequences of bacteremia and

significantly reduced survival. Another study confirmed that

activation of triggering receptor expressed on myeloid cell-1

(TREM-1) clears pathogens and protects the intestinal barrier by

increasing the production of NETs and IL-22 by CD177

neutrophils, which is likely to be an effective therapeutic strategy

for IBD (147). In addition, a recent study showed that PAD4-

deficient mice had an exacerbated course of colitis and a significant

increase in rectal hemorrhage compared to controls (133). The

PAD4-dependent NET formation is closely associated with the

remodeling of the blood clot into a secondary immune thrombus,

thereby preventing rectal hemorrhage in UC. Therefore, caution

must be exercised when targeting NET as a treatment for UC.
7 NETs as potential therapeutic
targets in UC

The higher expression of NETs in UC plays an influential part

in its pathogenesis and development, so targeting NETs to treat UC

has gradually become a research hotspot. The regulation of NET

generation or DNA degradation appears to be two possible effective

strategies in UC therapy, and a balance of these two approaches may

be better for positive outcomes. Recent studies have identified a

number of drugs, including phytomedicine, that suppress UC

through targeting NETs, as outlined in Table 1.
7.1 PAD4 inhibitors

Theoretically, any important link in the formation of NETs may

become a potential target for the treatment of UC (summarized in

Table 1). As mentioned above, PAD4 is a key enzyme in the formation

of NETs. Therefore, it is also an important target for blocking the

pathological effects of NETs. At present, the most representative PAD
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inhibitor in the UC field is the irreversible inhibitor Cl-amidine.

According to reports, Cl-amidine blocked the formation of NET

structure, reduced the expression of PAD4 and cit-H3 in the colon

tissue, and effectively alleviated clinical colitis index in TNBS-induced

colitis mice (149). The inhibition of PAD4 mediated by CL-amidine

reduces the expression of pro-inflammatory cytokines such as TNF- a,
IL-1 b, and IL-6, while the expression of anti-inflammatory factor IL-10

is also upregulated (149). CL-amidine also has antioxidant

consequences in a colitis mouse model, with the ability to suppress

leukocyte activation and prevent colon epithelial DNA damage (157).

In addition, streptonigrin, a selective PAD4 inhibitor, has also

been shown to reduce the expression of pro-inflammatory cytokines

such as TNF-a and IL-1 b, as well as NETs-associated proteins,

alleviating colonic inflammation (98). Interestingly, a recent study

showed that H2S donor significantly inhibited PAD4, Cit-H3 and

MPO expression in TNBS-induced colitis rats (151). It appears to

exert an anti-inflammatory effect by inhibiting NET formation and

downregulating NF-kB and HMGB1 expression.
7.2 NADPH/ROS inhibitors

Similarly, NET formation is suppressed by inhibiting the

expression of proteins such as Ne (158) and ROS (153).

Cyclosporine A (CsA), a well-known immunosuppressive drug, is

routinely prescribed for the treatment of patients with steroid-

refractory acute severe ulcerative colitis (ASUC) (159, 160). It not

only suppresses IL-2 secretion by T cells, but also interferes with

dendritic cell (DC) migration (161, 162). Strikingly, CsA suppresses a

variety of neutrophil processes, including ROS production and NET

formation (70, 163). It has been demonstrated to decrease ROS

generation in isolated human neutrophils (159, 164). A recent study

revealed that CsA inhibits apoptosis andmigration as well as the release

of ROS, MPO, and antimicrobial peptides from neutrophils in ASUC

patients (165). Mechanistically, CsA inhibits Sirtuin 6 (SIRT6)

expression and subsequently promotes hypoxia‐inducible factor‐1a
(HIF-1a) expression in neutrophils as well as glycolysis and the

tricarboxylic acid cycle to limit neutrophil overactivation, thus

alleviating mucosal inflammation in ASUC patients. Recently, Xu

et al. (102) identified that CsA directly reduces the activity of pentose

phosphate pathway (PPP) rate-limiting enzyme G6PD via activating

P53 protein and represses PPP metabolism to produce ROS, thereby

reducing ROS-dependent NETs release and attenuating colitis.
7.3 DNase I

In addition, several studies have demonstrated that DNase I is a

promising treatment for UC (101, 103). DNase I is an enzyme that

dissolves reticulated DNA filaments of NET. In mice with DSS-

induced colitis, DNase I improved fecal consistency and reduced

fecal occult blood and rectal bleeding (103). In addition to improved

intestinal inflammation, DSS mice treated with DNase I showed

significantly increased expression levels of tight junction protein

occludin and ZO-1. Meanwhile, the disruption of NET structure by
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DNase I was demonstrated to also restore the structure and function

of the intestinal mucosal barrier in mice with TNBS-induced colitis,

reduce the levels of pro-inflammatory cytokines, and alleviate

intestinal inflammation (103).
7.4 Bioextracts

The treatment of autoimmune and inflammatory diseases by

modulating NETs in traditional Chinese medicine (TCM) is an area
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of great interest. For instance, crocetin inhibits PMA-induced NETs

formation, as evidenced by reduced expression of NE, PAD4, and

CitH3, and alleviates symptoms in adjuvant-induced arthritis mice

(166). Apart from inhibiting the activation of the nuclear factor-kB
(NF-kB) and mitogen-activated protein kinase (MAPK) pathways, the

mechanism involves inhibiting the formation of NETs by suppressing

autophagy. Moreover, celastrol is a triterpenoid compound. Celastrol

has been shown to completely inhibit neutrophil oxidative burst and

NET formation induced by TNF-a. Celastrol downregulates the

activation of spleen tyrosine kinase (SYK) and the concomitant
TABLE 1 Summary of potential NETs-targeted therapies in UC.

Modulation
on NETs

Targets
NETs

treatment
Dose/

concentration

Models
and

participants
Mechanism of action References

Inhibit
NETs formation

PAD4

Cl-amidine
5, 25, and 75 mg/kg/

day (mice)
DSS-induced
colitis mice

Inhibition of PAD activity and
protein citrullination

(148)

Cl-amidine 30 mg/kg/day (mice)
TNBS-induced
colitis mice

PAD4↓, Cit-H3↓, MPO↓, TNF-
a↓,

IL-1b↓, IL-6↓, IL-17A↓, IFN-g↓,
IL-10↑

(149)

Cl-amidine 30 mg/kg/day (mice)
TNBS-induced
colitis mice

Cit-H3↓, MPO↓, IL-1b↓ (150)

streptonigrin
0.4 mg/kg/
day (mice)

DSS-induced
colitis mice

citH3↓, LCN-2↓, TNF-a↓,
IL-1b↓

(98)

H2S donor
18.75 µM/kg/
day (rat)

TNBS-induced
colitis rat

PAD4↓, Cit-H3↓, MPO↓, NF-
kB↓, HMGB1↓

(151)

Huang
Qin Decoction

500, 1000, and 1500
mg/kg/day (mice)

AOM/DSS-generated
CAC mice

PAD4↓, Cit-H3↓, MPO-DNA
complex↓, TNF-a↓, IL-1b↓,
MMP-9↓, ZO-1↑, occludin↑

(152)

ROS

5-aminosalicylic acid
0.005, 0.25, and
0.5 mM (cell)

Human peripheral
blood neutrophil

ROS↓, superoxide↓ (153)

Cyclosporine A
not mentioned

(mice)
100 nM (cell)

DSS-induced acute
colitis mice,

peripheral blood
neutrophil from
UC patients

P53↑, G6PD↓, ROS↓, Cit-H3↓,
NE↓, TNF-a↓, IL-1b↓,

(102)

butyrate
200 mM in drinking

water (mice)
DSS-induced acute

colitis mice
ROS↓, CitH3↓, IL-6↓, TNF-a↓,

IFN-g↓, CXCL1↓,
(154)

Ne berberine 1 mg/kg/day (mice)
DSS-induced
IBD mice

NE↓, MPO↓, CitH3↓ (104)

TNF-a infliximab
5 mg/kg at weeks 0,

2 and 6
UC patients PAD4↓, Cit-H3↓, MPO↓ (98)

FcRn anti-Fc-mAb
80 and 160 mg/kg/

7 days
DSS-induced UC rat

ANCA↓, PAD4↓, Cit-H3↓,
MPO↓, NE↓, TNF-a↓, CRP↓

(105)

MPO Ferulic acid 50mg/kg/day (mice)
DSS-induced
colitis mice

MPO-DNA complex↓, Il-17↓,
Il-22↓

(155)

Degrade NETs DNA matrixes

DNase I 250 U, qod (mice)

DSS-induced colitis
mice;

TNBS-induced
colitis mice

MPO-DNA complex↓, CitH3↓,
TNF-a↓, IL-1b↓, ZO-

1↑, occludin↑
(103)

DNase 1
65 U DNase 1,
qod (mice)

DSS-induced
colitis mice

MMP-9↓, TNF-a↓, IL-6↓, MCP-
1↓, IL-1b↓, CXCL2↓, CXCL10↓

(101)

staphylococcal
nuclease

25 and 75 mg/kg/
day (mice)

DSS-induced
UC mice

MPO↓, NE↓, TNF-a↓, IL-6↓,
IL-1b↓, ZO-1↑, occludin↑

(156)
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phosphorylation of MAPKK/MEK and ERK, as well as the

citrullination of histones (167). It suggests that celastrol probably has

the potential to modulate inflammation involving neutrophils and

NETs and to have therapeutic implications for autoimmune diseases.

HMGB1 protein secreted by NETs promotes the release of cytokines

and chemokines, causing inflammatory responses. While celastrol

effectively suppresses the expression of HMGB1, NF-kB and IL-1b to

reduce inflammatory pain (168). Triptolide alleviates chronic arthritis

by reducing neutrophil recruitment and suppressing the expression of

IL-6 and TNF-a (169). It also inhibits the expression of pro-

inflammatory cytokines and NETosis in neutrophils. Furthermore,

glycyrrhizin has been demonstrated to inhibit TLR9/MyD88 activation

by decreasing HMGB1 expression, thereby reducing NET formation

and alleviating sepsis-induced acute respiratory distress syndrome

(170). Moreover, forsythiaside B improves coagulopathy in septic rats

by inhibiting the formation of PAD4-dependent NETs (171). Luteolin

significantly inhibits superoxide anion production, ROS generation, NE

release, and NET formation in human neutrophils (172). Ginsenoside

Rg5 reduces the inflammatory response by inhibiting the activation of

the ERK/NF-kB signaling pathway while lowering the cellular Ca2+

concentration, thereby suppressing the activity and expression of

PAD4 to inhibit NETosis (173).

The potential of these active ingredients to mitigate

inflammation by modulating NETs is evident. Modern

pharmacological studies suggest that numerous natural products

have significant advantages in the treatment of UC (174–178). For

example, baicalin was shown to exert its anti-inflammatory effects

in UC rats by modulating the IKK/IKB/NF-kB signaling pathway

and apoptosis-related proteins (179). Puerarin is one of the major

isoflavonoid components of the root of Pueraria lobata. In DSS-

induced colitis mice, it was demonstrated to exert an anti-

inflammatory effect via inhibition of MPO activity and down-

regulation of NF-kB and pro-inflammatory mediator secretion. It

also possesses antioxidant potential as well as improves intestinal

epithelial barrier function (180). Berberine, an isoquinoline alkaloid

extracted from Coptidis Rhizoma, exerts a therapeutic role in UC

that may involve several aspects such as anti-inflammatory, anti-

oxidative stress, maintenance of the structure and function of the

intestinal mucosal barrier, modulation of intestinal mucosal

immune homeostasis, and regulation of intestinal flora (181–184).

Interestingly, berberine has been found to suppress the nuclear

translocation of NE and subsequent formation of NETs by

inhibiting the interaction of LINC00668 with NE, thus exerting

its antithrombotic effect in IBD (104).
7.5 Compound prescriptions in TCM

Huang Qin Decoction, a traditional Chinese prescription for UC,

inhibits colonic neutrophil infiltration, restores the levels of the

intestinal tight junction proteins Occludin and ZO-1, and alleviates

intestinal inflammation induced by TNF-a, and IL-1b (152). At the

same time, it down-regulates the expression of PAD4 and citH3 to

inhibit the production of NETs, which in turn inhibits colitis-

associated carcinogenesis (152). In addition, Sijunzi Decoction is

also likely to treat UC by decreasing the level of intestinal NETs (185).
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It has also been found to inhibit the expression of pro-inflammatory

cytokines (TNF-a, IL-1b, IL-6) while promoting the expression of

anti-inflammatory cytokines (IL-10, IL-37, TGF-b). In light of this

evidence, we propose compound prescriptions and active ingredients

as a promising therapeutic approach for targeting NETs.

In conclusion, various biological agents and drugs seem to

inhibit the formation of NET, but the mechanism needs further

investigation. The changes in other physical activities during NET

inhibition and the consequences of NET inhibition should not be

ignored. Indeed, further studies on the balance between NET

induction, inhibition, and degradation are necessary to

pharmacologically target NET and its compounds without

damaging the immune defenses of patients.
8 Conclusions and future perspectives

Excessive NETs cause abnormal activation of the body’s

immune system, leading to tissue damage. However, increasing

evidence suggests that NETs exert their anti-inflammatory effects by

capturing, killing, and clearing pathogenic microorganisms. NETs

play an important role in the pathophysiology of many diseases,

including UC. NETs are closely related to the inflammatory

response, disruption of intestinal epithelial barrier function, and

thrombotic trend in UC.

Although NETs have long been shown to be involved in UC,

their potential role in UC pathogenesis remains elusive. Obviously,

it is necessary to explore the multifaceted biology of neutrophils,

especially the regulatory mechanisms controlling the formation and

degradation of NETs in the context of UC, to expand our

understanding of the pathways leading to increased NETs. In

particular, little is known about NET clearance in UC.

In summary, the balance between NET generation and

clearance is essential for health. And NETs seem to play a dual

role in UC. Targeting NETs opens the door to new therapeutic

options for UC. Meanwhile, the beneficial effects of moderate

amounts of NETs in UC and the serious consequences of

excessive inhibition of its formation cannot be ignored. Therefore,

the treatment methods for UC need to be carefully balanced rather

than eliminating neutrophil responses.
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