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Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T

cells that function at the interface between innate and acquired immunity. MAIT

cells recognize vitamin B2-related metabolites produced by microbes, through

semi-invariant T cell receptor (TCR) and contribute to protective immunity.

These foreign-derived antigens are presented by a monomorphic antigen

presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a

malleable ligand-binding pocket, allowing for the recognition of compounds

with various structures. However, interactions between MR1 and self-derived

antigens are not fully understood. Recently, bile acid metabolites were identified

as host-derived ligands for MAIT cells. In this review, we will highlight recent

findings regarding the recognition of self-antigens by MAIT cells.
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1 Introduction

Mucosal-associated invariant T (MAIT) cells are the most abundant T cell subset in

humans (1). They recognize non-peptidic antigens presented on a monomorphic antigen

presenting molecule, MR1 (2–4). T cell receptor (TCR) repertoires of MAIT cells are

composed of restricted TCRa and b chains (mice, TRAV1- TRAJ9/12/33–TRBV13/19;

human, TRAV1-2- TRAJ12/20/33–TRBV6/20) that recognize riboflavin-based metabolites

produced in microbes but not in mammals (2, 5, 6).

MAIT cells are positively selected in the thymus through the interaction with MR1-

expressing double-positive (DP) thymocytes (7) and/or thymic epithelial cells (8). The

development of MAIT cells is severely impaired in germ-free (GF) mice and microbiota-

derived antigen 5-OP-RU is reported to contribute to their thymic selection (8, 9). Judging

from its structure, 5-OP-RU is unlikely to cross the plasma membrane and, as no

transporter proteins have been identified thus far, it is still unclear how unstable 5-OP-

RU is transferred from gut to the thymus. Additionally, a small but significant number of

MAIT cells have been detected in the thymi of GF mice (5, 8, 10), potentially suggesting the

presence of endogenous antigen(s) that influence thymic development of MAIT cells (11).
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1424987/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1424987/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1424987&domain=pdf&date_stamp=2024-06-24
mailto:yamasaki@biken.osaka-u.ac.jp
https://doi.org/10.3389/fimmu.2024.1424987
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1424987
https://www.frontiersin.org/journals/immunology


Ito and Yamasaki 10.3389/fimmu.2024.1424987
Conventional T cells, which recognize peptidic antigens

presented by classical MHC molecules using variant TCRs, are

positively selected by weak affinity of self-peptides (12). In the

periphery, self-peptides also contribute to the survival and

maintenance of conventional T cells (13–15). Since the affinity of

bacteria-derived 5-OP-RU to MAIT TCR is strong enough to

induce negative selection (8), it is possible that host-derived weak

antigen(s) may also be involved in the development and/or

maintenance of MAIT cells. However, it is still unclear whether

the strength of antigen affinity can differentially regulate the fate

and function of MAIT cells, as is reported for conventional T cells.

One of the tissues in which human MAIT cells are most

abundant is the liver, particularly in the hepatic sinusoid around

bile ducts (16–19). Liver MAIT cells constitutively express

activation markers, suggesting that MAIT cells receive continuous

TCR signaling even in a steady state (20, 21). Thus, the unique

localization and/or maintenance of tissue residency may also be

regulated by tissue-derived endogenous factor(s) abundant in the

liver. However, such self-antigens have not been identified thus far.
2 Diverse ligands presented by MR1

2.1 Diversity and specificity of MR1 ligands

MR1 is a well-conserved MHC class I-like molecule and present

small compounds unlike CD1 molecules which can accommodate

large lipids. For ligand binding, MR1 utilizes the A-pocket, which is

flexible and accommodates a large variety of ligands (22, 23).

Within the A-pocket, K43 mediates a covalent bond with some

typical antigens (5-OP-RU, 6-FP and Ac-6-FP) (24, 25).

Neutralization of this positively charged K43 is required for the

stabilization of MR1 (22). However, some other ligands (RL-7-Me,

RL-6, 7-diMe, diclofenac (DCF), DB28 and NV18.1) non-covalently

bind to MR1 (2, 22, 23, 26, 27). It is unknown whether these ‘non-

covalent ’ ligands induce MR1 stabilization beyond K43

neutralization. MR1 additionally requires the ligand to possess a

hydroxy group to be ‘pinched’ by two Arg residues found on MR1

(R9 and R94) (2, 6, 22). However, a comprehensive screening of

potential MR1 ligands demonstrates that MR1 can actually present

a notably broader range of small molecules regardless of these

requirements, including mono- and multi-cyclic chemical

compounds (22, 23). It is therefore possible that MR1 can bind to

previously unappreciated endogenous metabolites.
2.2 Self recognition by MAIT cells

There are some studies that support the possibility of self-

recognition by MAIT cells. Young et al. reports that a cell line

expressing a MAIT TCR was activated in the presence of MR1-

expressing antigen presenting cells (APC) in the absence of

infection (28). Additionally, cancer cells have been shown to be

targeted by MAIT cells utilizing an MR1-dependent mechanism,

although with an unidentified ligand (29). Some atypical MR1-

related T cells (MR1T cells) are reported to respond to self-derived
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antigen(s) (30, 31). Recently, Chancellor et al. discovered the rare

occurrence of self-reactive MAIT cells that display unique T-helper

functions (32). However, endogenous MAIT cell antigen(s)

presented by MR1 are yet to be identified.
3 Bile acid metabolites as host-
derived ligands

3.1 Cholic acid 7-sulfate is a MAIT
cell ligand

We recently purified and identified cholic acid 7-sulfate (CA7S)

as a host-derived ligand for MAIT cells (33). CA7S has a structure

that is distinct from those of previously-reported MR1 ligands in

that it uniquely possesses four rings. In addition to previously-

demonstrated small ligands (2, 6, 22), a large cholane skeleton can

also be accommodated within the MR1 pocket. Notably, a

competition assay (34) revealed that CA7S binds to the A-pocket

of the MR1 molecule (33) similar to known ligands (2, 25).

However, the chemical structure of CA7S and its ability to

increase surface expression of MR1 lacking K43 (K43A) suggested

that CA7S could bind toMR1 without forming a Schiff base. Indeed,

the relative affinity of CA7S to MR1 was estimated to be as weak as

that of DCF (33), which is also a non-covalent ligand (22). One of

the structural characteristics of CA7S is the presence of carboxy

group at position 24. This moiety might be interacted with cationic

residues in the A-pocket, which warrants further structural analysis.

Although we reported a potential function of CA7S on MAIT cell

development, comprehensive understanding of its role in MAIT cell

biology need further investigation.
3.2 Role of CAS in bile acid
metabolic pathway

CA7S is a primary bile acid produced from cholic acid by

sulfotransferase 2a (Sult2a), which is bile acid-specific

sulfotransferases (35–37) (Figure 1). As amphiphilic bile acids are

sometimes toxic, sulfotransferase function is essential for

neutralization and detoxification of bile acids like cholic acid. To

do this, Sult2a adds a hydrophilic SO3
− group to the hydrophobic

cholane skeleton, which generates sulfated cholic acids for excretion

in feces and urine (35, 38). Thus, the significance of CA7S was

previously thought to be as an excreted bile acid metabolite, and

only a few additional roles were reported (39, 40).

Although CA7S is biosynthesized in the host, levels of CA7S were

decreased in GF mice (33). This is likely due to the lack of

deconjugation of tauro-CA7S (TCA7S) by symbiotic bacteria

(Figure 1), as TCA7S was increased in GF mice (33, 41). Thus,

CA7S is an endogenous metabolite, but its quantities are largely

influenced by symbiotic bacteria. This is consistent with the

observation that MAIT cells dramatically decreased in GF mice (5,

8, 9). These results suggest that the reduction in CA7S levels might also

contribute to the impairment ofMAIT cell development in GFmice in

combination with the lack of microbial antigens like 5-OP-RU.
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3.3 Role of CAS in MAIT cell development

As CA7S is weakly recognized by MAIT cells, it may contribute

to the development of MAIT cells in the thymus (Figure 2). CA7S

was detected in the thymus, and in mice lacking all Sult2a isoforms,

thymic development of MAIT cells was impaired (33). Among

thymic MAIT cells, the most mature stage, stage 3 (CD44+CD24−)

(10), was severely affected. In mature thymic MAIT cells, MAIT17

occurs more frequently than MAIT1, whereas MAIT17 was fewer

than MAIT 1 in Sult2a-deficient mice (33). These phenotypes were

similar to those of GF mice (8, 10). While CA7S has been detected

in the thymus, it is still unclear whether CAS is taken up and

presented by thymocytes (Figure 2). Alternatively, Sult2a is also

expressed in thymus as well as hepatocytes, implying that CAS

might be synthesized within thymocytes when its substrate CA is

available (Figure 2). Conditional deletion of all Sult2a isoforms will

answer the key question whether CAS is de novo generated

in thymocytes.
3.4 Effect of CA7S on MAIT cells in
peripheral tissues

The role of CA7S in MAIT cells in peripheral tissues is not well

understood. Unlike GF mice, the number of MAIT cells in the liver

was not significantly decreased in Sult2a-deficient mice (33),

implying that the antigen(s) utilized for the maintenance of

MAIT cells vary by tissue. However, among liver-resident T cells,

only MAIT cells lost the expression of multiple T cell signature
Frontiers in Immunology 03
genes, which is in contrast to invariant natural killer T (iNKT) cells

and conventional T cells. Thus, CA7S might play an important role

in shaping the identity of MAIT cells in the liver. MAIT cell-

dependent protective immunity in the absence of CA7S function

would be a worthy subject of further investigation utilizing infection

models. Liver MAIT cells localize in the hepatic sinusoid, close to

bile duct where CA7S is abundantly present; however, it is currently

unknown whether bile acid metabolites play a role in MAIT cells

in ‘distant’ tissues, such as the skin or lungs. Quantitative analysis

of bile acid metabolites in these tissues would be required for

further clarification. Although Sult2a is mainly expressed in

hepatocytes, its transcript is also highly detected in other tissues

(42), such as in some regions of the small intestine (Figure 2) (42,

43). CA7S produced in non-liver tissues might contribute to the

maintenance of MAIT cells locally, which is a potential area of

further investigation.

In humans, instead of CA7S, CA3S is an abundant cholic acid

sulfate (35). Although the position of sulfation is different, CA3S

can be presented by MR1 and recognized by MAIT TCR. In

contrast to 5-OP-RU which triggers proliferation of peripheral

MAIT cells, CA3/7S only induces survival, not proliferation.

Thus, CA3/7S appears to induce qualitatively distinct MAIT cell

responses. Indeed, while 5-OP-RU upregulates pro-inflammatory

genes, CA3/7S induces gene signatures characterized by

homeostatic and tissue repair responses (33). Among these is

CXCR4, which contributes to migration and residency of

lymphocytes in the tissues. It is therefore possible that CA3/7S,

which is abundant in bile, may contribute to the residency of MAIT

cells in the liver sinusoid where MAIT cells are most enriched
FIGURE 1

Role of symbiotic bacteria in the generation and modification of MAIT cell antigens. Bacterial riboflavin biosynthesizing enzymes, such as ribA and
ribD, generate 5-A-RU, which is converted to 5-OP-RU in the presence of methylglyoxal (MGO) (left). CAS is produced by sulfation of cholic acid
(CA) by sulfotransferase 2a (Sult2a) in the host. CAS is further taurine-conjugated in the host by bile acid–CoA:amino acid N-acyltransferase (BAAT)
or bile acid–CoA synthetase (BACS) to generate TCA7S. Most intestinal bacteria have deconjugation enzymes, bile salt hydrolases (BSH), which
metabolize TCA7S to CA7S. Symbiotic bacteria are therefore required for the maintenance of both 5-OP-RU and CA7S.
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particularly in humans (16, 18, 19). Since the barrier composed of

liver sinusoidal endothelial cells (LSEC) is fragile, upon liver

damage, MAIT cells will likely come into contact with

cholangiocytes/biliary epithelial cells (BEC) that express MR1 (16,

44). One might speculate that bile acid metabolites presented by

MR1 on BEC promote tissue repair responses. Additionally, MAIT

cells may act as a sensor of bile acid homeostasis.

Recently, roles of secondary bile acid metabolites, which are

produced by the microbiota from primary bile acids, have been

highlighted in T cell development. 3-oxo-litho cholic acid (3-oxo-

LCA) has been shown to inhibit Th17 differentiation through the

interaction with RORgt (45). Furthermore, the 3-oxo-LCA

derivative, iso-allo-LCA, promotes regulatory T cell (Treg)

differentiation via mitochondria-mediated epigenetic regulation

(45) through Nr4a1 (46), which is supported by bacterial genetics

(47). A similar secondary bile acid, iso-deoxycholic acid (iso-DCA),

antagonizes FXR and the impairs immunogenic properties of

dendritic cells, leading to pTreg maturation (48). In contrast to

these indirect effects of secondary bile acids on T cells, CA3S and

CA7S are endogenous primary bile acids that are directly

recognized by TCR as antigens. Nevertheless, since CA3/7S also

potentially act on nuclear receptor and/or GPCR families (39),

sulfated bile acids may serve unknown pleiotropic functions within

the immune system.
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3.5 Role of CAS in disease settings

Thus far we have discussed CAS in a homeostatic context.

However, quantitative variations in CAS have been reported in

several diseases (35, 49–51). Furthermore, the expression of

SULT2A1 is reported to be decreased in cholestatic diseases (52–

55). Examination of the involvement of the CAS-MAIT cell axis in

these disorders would be intriguing (18, 56). In particular,

cholestatic autoimmune diseases, such as primary biliary

cholangitis (PBC) and primary sclerosis cholangitis (PSC), have

been associated with MAIT cells (57–60). The role of MAIT cells in

immune diseases related to bile duct abnormalities is therefore an

exciting area for future research.
4 Future perspective

Why should bile acids metabolites be recognized byMAIT cells?

Currently, there is still no clear answer to this teleological question.

The correlation of CAS-rich sites (bile duct) and MAIT cell-rich

sites (liver sinusoid) raise several hypotheses regarding their role in

tissue residency. As bile acids can sometimes harm the body,

excessive cholic acids are continuously excreted as sulfated forms.

Excreted forms are therefore stably and abundantly present in the
FIGURE 2

Circulation of CA7S in the body. CA7S is mainly biosynthesized in the liver from CA, stored in the gallbladder and excreted through the intestine
(left). The source of thymic CA7S is unknown (Thymus). CA7S in the bile duct may be presented to liver MAIT cells surrounding biliary epithelial cells
(BEC) expressing MR1 (Liver). Sult2a expressed by enterocytes can locally produce CA7S in some intestinal areas, which might control the
homeostasis of intestinal MAIT cells. Enterocyte-derived CA7S may also be transported through the enterohepatic vein (Intestine). .
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1424987
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ito and Yamasaki 10.3389/fimmu.2024.1424987
body, which make them effective for the maintenance of a host cell

lineage. Moreover, recycling ‘waste’ metabolites is considered as an

efficient strategy to make use of limited metabolites in the body.

Nevertheless, at present, the localization of MAIT cells in other

tissues, such as lung and skin where CAS is presumably less

abundant, cannot be simply explained by bile acids. Additionally,

the discovery of the ‘peculiar’ antigenic structure of the bile acid

skeleton may suggest that MR1 can present a far greater variety of

molecules than previously assumed, and that the MAIT TCR,

despite its lack of diversity, can recognize complexes of such

diverse antigens with MR1. It is exciting to imagine that further

diverse self-antigen(s) for MAIT cells are present in different tissues

and regulate their tissue-specific adaptation, which warrants

future studies.
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