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Comprehensive investigation
of tumor immune
microenvironment and
prognostic biomarkers in
osteosarcoma through
integrated bulk and single-cell
transcriptomic analysis
Shaoyan Shi, Li Zhang and Xiaohua Guo*

Honghui Hospital, Xi’an Jiaotong University, Xi’an Honghui Hospital North District, Xi’an, Shanxi, China
Osteosarcoma (OS) is an aggressive and highly lethal bone tumor, highlighting

the urgent need for further exploration of its underlying mechanisms. In this

study, we conducted analyses utilizing bulk transcriptome sequencing data of

OS and healthy control samples, as well as single cell sequencing data,

obtained from public databases. Initially, we evaluated the differential

expression of four tumor microenvironment (TME)-related gene sets

between tumor and control groups. Subsequently, unsupervised clustering

analysis of tumor tissues identified two significantly distinct clusters. We

calculated the differential scores of the four TME-related gene sets for

Clusters 1 (C1) and 2 (C2), using Gene Set Variation Analysis (GSVA, followed

by single-variable Cox analysis. For the two clusters, we performed survival

analysis, examined disparities in clinical-pathological distribution, analyzed

immune cell infiltration and immune evasion prediction, assessed differences

in immune infiltration abundance, and evaluated drug sensitivity. Differentially

expressed genes (DEGs) between the two clusters were subjected to Gene

Ontology (GO) and Gene Set Enrichment Analysis (GSEA). We conducted

Weighted Gene Co-expression Network Analysis (WGCNA) on the TARGET-

OS dataset to identify key genes, followed by GO enrichment analysis. Using

LASSO and multiple regression analysis we conducted a prognostic model

comprising eleven genes (ALOX5AP, CD37, BIN2, C3AR1, HCLS1, ACSL5,

CD209, FCGR2A, CORO1A, CD74, CD163) demonstrating favorable

diagnostic efficacy and prognostic potential in both training and validation

cohorts. Using the model, we conducted further immune, drug sensitivity and

enrichment analysis. We performed dimensionality reduction and annotation

of cell subpopulations in single cell sequencing analysis, with expression
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profiles of relevant genes in each subpopulation analyzed. We further

substantiated the role of ACSL5 in OS through a variety of wet lab

experiments. Our study provides new insights and theoretical foundations

for the prognosis, treatment, and drug development for OS patients.
KEYWORDS

osteosarcoma, tumor microenvironment, transcriptome sequencing, prognostic model,
single-cell sequencing
1 Introduction

OS is the predominant primary malignant bone tumor,

representing 20%-40% of all bone cancers (1). Globally, the

annual incidence is approximately 1–3 cases per million

individuals (2), with around 800 new cases diagnosed annually in

the United States (3). Among children and adolescents, OS has the

highest incidence, with a median age of 18 years, positioning it as

the third most prevalent malignant tumor within this demographic

(4, 5). The disease demonstrates a bimodal distribution, with the

initial peak typically manifesting during adolescence (with an

average age of 10–14 years for females and 15–19 years for

males), followed by a second peak occurring after the age of 65

(6). Among OS patients, the 5-year relative survival rates are

approximately 60% for individuals under 30 years old, 50% for

those aged 30–49, and diminish to 30% for patients aged 50 or older

(7). OS commonly affects the long bones of the limbs, whereas

tumors in the chest and pelvic bones present a higher risk of

metastasis OS (8). Chemical agents such as methylcholanthrene,

beryllium oxide, and zinc beryllium silicate are potential inducers of

OS, along with radiation exposure, electrical burns, and genetic

factors (9). Gender and race significantly influence the incidence of

OS. Males are more frequently affected than females across all age

groups. Additionally, the highest incidence rates are observed

among black individuals (10). Survival rates are highly correlated

with tumor location and staging (11). Tumors detected at an earlier

stage and located in more accessible regions generally have a better

prognosis compared to those found at advanced stages or in less

accessible areas such as the pelvis or chest. These factors underscore

the importance of early detection and tailored treatment strategies

for improving patient outcomes.

For suspected OS patients, initial cost-effective screening

involves X-ray examinations, followed by CT or MRI scans to

further evaluate tumor involvement (12). The standard treatments

for OS encompass neoadjuvant multidrug chemotherapy, typically

involving cisplatin, doxorubicin, methotrexate (commonly known

as MAP therapy), and ifosfamide. This is typically followed by

surgical intervention and subsequent postoperative chemotherapy

(13). Despite its rarity, OS carries a poor prognosis, with surgical

intervention being the primary curative treatment; however,

patients undergoing surgery alone have a survival rate of only
02
about 15% (14). For patients who are not candidates for surgical

resection or those with residual tumors at the resection margins, as

well as for OS patients with poor response to chemotherapy,

radiation therapy serves as an effective method for local control

and symptom relief (15). Additionally, many OS patients have small

lung metastases at diagnosis. The 5-year survival rate is over 78%

for localized disease but falls to 25% for metastatic or recurrent OS

(16). Metastatic OS is highly invasive with a poor prognosis,

emphasizing the urgent need for early diagnosis and targeted

therapy. Continued investigation into the mechanisms underlying

the onset and progression of OS, especially those contributing to

elevated recurrence and metastasis rates, is paramount. The

identification of pivotal biomarkers and exploration of essential

target genes are crucial for enhancing the diagnostic, therapeutic,

and prognostic approaches for OS.

Currently, numerous studies have investigated the role and

mechanisms of specific gene families in OS (17, 18), such as the

presence of pro-inflammatory FABP4+ macrophage infiltration

observed in pulmonary metastatic OS lesions. In comparison with

primary osteoblastic OS lesions, sub-osteoclast infiltration has been

observed in chondroblastic, recurrent, and pulmonary metastatic

OS lesions OS (19). It has been suggested that TME promotes tumor

cell proliferation and immune evasion (20), yet its value as an

immunotherapeutic target in OS remains unknown (21). We

analyzed bulk transcriptome sequencing data of OS and healthy

control samples, as well as single cell sequencing data, obtained

from public databases. Initially, we assessed the expression

differences of four TME-related gene sets between tumor and

control groups. Next, we performed unsupervised clustering

analysis on tumor tissues, identifying two distinct clusters. We

calculated the GSVA score differences of the four TME-related gene

sets between Clusters 1 (C1) and 2 (C2) and conducted single-

variable Cox analysis. For the two clusters, we analyzed survival

rates, clinical-pathological distribution differences, immune cell

infiltration, immune evasion, immune cell abundance, and drug

sensitivity. DEGs of the two clusters were subjected to GO and

GSEA. We performed WGCNA on the TARGET-OS dataset to

identify key genes, followed by GO enrichment analysis. Using

LASSO and multiple-factor regression analysis, we constructed a

prognostic model comprising eleven genes (ALOX5AP, CD37,

BIN2, C3AR1, HCLS1, ACSL5, CD209, FCGR2A, CORO1A,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1424950
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2024.1424950
CD74, CD163). The model demonstrated good diagnostic

performance and prognostic evaluation potential in both training

and validation cohorts. Next, using the model, we conducted

immune analysis, drug sensitivity analysis, and enrichment

analysis. In single-cell sequencing, we performed dimensionality

reduction and annotated cell subtypes, followed by analyzing the

expression of relevant genes in each subtype. We further validated

the potential impact of ACSL5 inhibition on the invasive behavior

of OS cells through various wet lab experiments. Our study offers

novel insights and a theoretical framework for the prognosis,

treatment, and drug development targeting OS patients.
2 Material and methods

2.1 Data acquisition and preprocessing

In this study, we used the “TCGAbiolinks” R package to retrieve

bulk transcriptomic data of OS from the public database The

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/),

specifically the TARGET-OS dataset comprising 86 patients. We

obtained healthy control bulk transcriptomic data from the public

database Genotype-Tissue Expression (GTEx, www.org/home/

index.html). Additionally, we downloaded bulk transcriptomic

datasets of OS, including GSE21257 (53 patients) and GSE16091

(34 patients), as well as single cell sequencing datasets GSE162454

and GSE198896, from the public database GEO (https://

www.ncbi.nlm.nih.gov/geo/). We excluded samples with missing

information from the analysis. Using the “ComBat” function from

the “sva” package, we standardized the TARGET-OS and GTEx

datasets into bulk matrices in Transcripts per million (TPM)

formats. All open-access public databases utilized in this study

allow unrestricted access and utilization without the need for

additional ethical approval. Our data retrieval and analysis

processes adhered to relevant regulations.
2.2 Investigation of expression levels of
tumor microenvironment-related gene sets

Utilizing the “signature_collection” function of the “IOBR”

package, we identified four TME-related gene sets (TMEscoreA_CIR,

TMEscoreB_CIR, TMEscoreA_plus, and TMEscoreB_plus) within the

merged dataset of TARGET-OS/GTEx. Subsequently, we employed

heatmaps to illustrate the expression disparities of these four relevant

gene sets between the tumor and normal groups.
2.3 Hierarchical clustering and TME
landscape analysis

We used the “ConsensusClusterPlus” package to perform

unsupervised clustering analysis on tumor tissues. The optimal

number of clusters (k) was determined by scoring and evaluating

matrix plots, Cumulative Distribution Function (CDF) curves, and

Proportion of Ambiguous Clustering (PAC) curves. High intra-cluster
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cohesion, low inter-cluster coupling, a smooth CDF curve, and the

lowest PAC curve value are included as our selection criteria. Following

multiple standard screenings, we identified two significantly different

clusters. Using the “GSVA” package, we calculated scores for four TME-

related gene sets in the TARGET-OS dataset (GSVA: gene set variation

analysis for microarray and RNA-seq data). We used heatmaps and box

plots to show the differences in GSVA scores of the four TME-related

gene sets between Clusters 1 (C1) and 2 (C2). We then performed

univariate Cox analysis on these gene sets and displayed the differences

in hazard ratios with forest plots. Additionally, we conducted survival

analysis on the two clusters and displayed the prognostic differences

using Kaplan-Meier curves. We used a stacked bar graph to show the

compositional differences in clinical pathological information such as

Age and Stage between the two clusters.

We utilized five immune cell infiltration prediction algorithms

(CIBERSORT, TIMER, MCPcounter, EPIC, quanTIseq) to assess

the immune cell infiltration status of the two clusters and visualized

the results using box plots. From the TISIDB database (http://

cis.hku.hk/TISIDB/), we downloaded 150 immunomodulators

and chemokines, including 41 chemokines, 24 immunoinhibitors,

46 immunostimulators, 21 MHC molecules, and 18 receptors.

Furthermore we generated a heatmap to illustrate the expression

differences of immune modulators between the two clusters.

We employed the TIDE (Tumor Immune Dysfunction and

Exclusion) database (http://tide.dfci.harvard.edu/) to predict

tumor immune escape via immune checkpoint analysis for the

two clusters. We visualized the different responses of the two

clusters to immune checkpoints using stacked bar graphs.

Additionally, we assessed the efficacy of immune checkpoint

blockade (ICB) through TIDE scoring. Three immune-

suppressive cell types (MDSCs, TAM.M2, and CAFs) were

selected, and violin plots were employed to demonstrate the

differences in immune-suppressive cell infiltration abundance

between the two clusters. Additionally, using the “OncoPredict”

package, we predicted the sensitivity of the two clusters to four

drugs (Bortezomib, XAV939, Selumetinib, Trametinib).
2.4 Enrichment analysis and weighted gene
co-expression network analysis

We employed the “limma” package to identify DEGs between

the two clusters and visualized the upregulated and downregulated

genes using volcano plots. Subsequently, we conducted GO

enrichment analysis on the DEGs and presented bar graphs

showing the top ten pathways in each of the BP, CC, and MF

subclasses. Following this, we performed GSEA on the DEGs and

demonstrated the downregulated pathways within the C2 category.

For the TARGET-OS dataset, we conducted WGCNA, selecting

appropriate soft thresholds based on Scale Independence and Mean

Connectivity. Utilizing the optimal soft threshold, we constructed a

co-expression network, partitioned genes into modules, and

depicted a Cluster Dendrogram for visualization. We computed

the correlation between modules and clinical traits (futime, fustat,

age, stage, cluster), illustrating the correlation heatmap. We

identified the module most correlated with the cluster as the key
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module and selected key genes within this module based on criteria

of MM (module membership) > 0.6 and GS (gene significance) >

0.3. We then performed GO enrichment analysis on these

key genes.
2.5 Construction and validation of machine
learning prognostic models

We chose the TARGET-OS dataset as the training set, while two

GEO datasets served as validation sets. Utilizing the Least Absolute

Shrinkage and Selection Operator (LASSO) and multiple regression

analysis, we constructed the prognostic model (22). In the

TARGET-OS dataset, we identified prognostic hub genes by

obtaining the optimal parameter l. Through multiple Cox

regression analysis, we determined the coefficients of each gene in

the model and visualized them using bar graphs. We determined the

risk score of the model by summing the product of the expression

level of each gene and its respective coefficient.

Risk score =o
n

i=1
½Expgenei*bi�

In this context, Expgenei denotes the expression level of the

model gene, and bi represents the coefficient corresponding to the

model gene. We divided the training and validation sets into high-

risk and low-risk groups based on the median score of each dataset.

We then observed survival differences over time between these

groups in all three datasets. Additionally, we conducted ROC curve

analysis to evaluate the model’s performance at 1-year, 3-year, and

5-year intervals.
2.6 Model-based immune analysis, drug
sensitivity analysis, and enrichment analysis

Immune cell infiltration analysis was conducted using the

CIBERSORT algorithm to identify relevant immune cell subtypes.

Box plot analysis was conducted to evaluate the distribution

disparities among various subtypes across two risk groups.

Additionally, we utilized box plots to illustrate the expression

differences of M2 markers and depleted T cell markers between

the two risk groups. We obtained the data from the Progenitor Cell

Biology Consortium (PCBC, https://www.synapse.org), and violin

plots were generated to display the mRNAsi index of two risk

groups, allowing for an analysis of cellular stemness differences

between the two risk groups. We analyzed the sensitivities of nine

drugs in the two risk groups. Following this, we conducted

differential gene expression analysis between the groups and used

GSEA to identify dysregulated pathways.
2.7 Single-cell sequencing analysis

Analysis of single cell sequencing data was conducted utilizing both

the “Seurat” package and the “SCP pipeline.” Data underwent quality

control and data cleaning to ensure the accuracy and reliability of
Frontiers in Immunology 04
subsequent analyses, with quality control criteria set as follows:

nFeature_RNA< 9000, percent.mt< 25. We used the harmony

method for batch correction of data across multiple samples.

Utilizing the Uniform Manifold Approximation and Projection

(UMAP) method, we performed dimensionality reduction on the

integrated single-cell sequencing data. We annotated ten major cell

subtypes using specific markers for each and visualized them. To show

the correlation between these subtypes and individual genes, we created

violin plots. We used SingleR for automatic annotation and CopyKAT

to identify malignant cells. We computed the upregulated and

downregulated genes in each cell subtype and displayed the top five

of each in volcano plots. GO_BP analysis was conducted, with dot plots

illustrating the enriched upregulated pathways in each cell subtype.

Using Seurat, we evaluated the activity level of prognostic models in the

single-cell dataset.
2.8 Cell culture and siRNA transfection

We acquired OS cell lines MG63 and Saos-2 from Procell Life

Science & Technology, China, and cultured in Dulbecco’s Modified

Eagle’s Medium (DMEM) containing 10% fetal bovine serum (FBS)

at 37°C in a humidified atmosphere with 5% carbon dioxide. Small

interference RNA (siRNA) targeting ACSL5 was transfected using

sequences sourced from HANBIO, China, and LipoFiter 3.0

(HANBIO, China) was employed for the transfection process.

The specific sequences for siRNA were as follows:

si-NC Sense: UUCUCCGAACGUGUCACGUTT;

Antisense: ACGUGACACGUUCGGAGAATT;

Si-ACSL5–1 Sense: CAAATACTTTCGGACCCAAA;

Antisense: CTCTTCTTGACCTGAACAAT;

Si-ACSL5–2 Sense: CATGATAGTTTCTGGGACAA;

Antisense: CCAAGTTGTAAGGGAAGCCAT
2.9 Real-time PCR

Total RNA extraction utilized Trizol reagent (Solarbio Science &

Technology, China), with subsequent reverse transcription into cDNA

employing a two-step RNA reverse transcription kit (TaKaRa Bio Inc.,

Japan). The RT-qPCR reaction comprised cDNA, RT-qPCR SYBR

Green (TaKaRa Bio Inc., Japan), and primers, following cyclic

parameters: initial denaturation at 95°C for 30 seconds, succeeded by

40 cycles of denaturation at 95°C and annealing at 60°C for 34 seconds.

The primers used for cDNA amplification were as follows: ACSL5-F: 5′-
GGCATTGGTGCTGATAGG-3′ and ACSL5-R: 5′-TCTTC
TCCCCTCTTTGCTT-3′; b-actin-F: 5′-CAAGAGATGGCCACGGC
TGCT-3′ and b-actin-R: 5′-TCCTTCTGCATCCTGTCGGCA-3′
(23, 24).
2.10 Cell proliferation assay

We assessed cell viability employing the CCK-8 kit (Seven,

China). we seeded a 96-well plate with a single-cell suspension at a

density of 5 × 103 cells per well. Subsequently, we added 10 mL of
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CCK-8 solution to each well every 24 hours, and the plate was then

incubated for 2 hours. (25) We measured the optical density (OD)

at 450 nm using a multifunctional enzyme-linked immunosorbent

assay reader (Synergy H1, BioTek, USA).
2.11 Cell migration and invasion assays

We evaluated cell migration and invasion utilizing transwell

chambers featuring an 8.0-mm pore size (Corning, USA). We loaded

the lower chamber with 500 mL of medium supplemented with 10%

FBS, while 2 × 104 cells in serum-free medium were seeded onto the

upper chamber. For invasion assessments, we coated the transwell

membrane with 1 mg/ml Matrigel. After a 24-hour incubation at

37°C, we gently removed the non-migrated cells using cotton swabs.

Cells that migrated to or invaded the underside of the membrane

were stained with crystal violet and quantified. Three randomly

chosen microscopic fields were tallied for each well.
2.12 EdU assay

We assessed the proliferation capacity of cells post-knockdown

using the EdU Cell Proliferation Assay Kit (Beyotime, China). We

subjected MG63 and Saos-2 cells to knockdown and cultured them

on six-well plate. We prepared a 2x EdU working solution in serum-

free medium using a 10 mM EdU solution, preheated it, and mixed

it with the culture medium to obtain a 1x EdU solution. The cells

were incubated with this solution for 12 hours. After incubation, we

fixed the cells with 2.5 mL of PBS containing polyformaldehyde for

15 minutes at room temperature. We then washed the cells three

times with 2.5 mL of PBS for 5 minutes each. Next, we treated the

cells with 2.5 mL of permeabilization buffer for 20 minutes at room

temperature. After removing the permeabilization buffer, we

washed the cells twice with 2.5 mL of PBS and then removed the

washing solution. We prepared Click-iT reaction mixture and

added to each slide (100 μl), followed by incubation in the dark

at room temperature for 30 minutes. Subsequently, we removed the

reaction mixture, and each well was washed once with 2.5 mL of

PBS, followed by removal of the washing solution. We also

performed DAPI nuclear staining and captured images under a

microscope for further analysis.
2.13 Colony-formation assays

Cells in logarithmic growth phase were trypsinized,

resuspended in complete culture medium supplemented with 10%

fetal bovine serum, and counted. We seeded MG63 and Saos-2 cells

in six-well plates at a density of 700 cells per well and cultured for 14

days, with media changes every 3 days and continuous monitoring

of cell status. We captured images of the cells under a microscope,

followed by a single wash with PBS. Cells were then fixed with 1 mL

of 4% polyformaldehyde per well for 30 minutes, washed once with
Frontiers in Immunology 05
PBS, and stained with crystal violet solution (Beyotime, China) for

10 minutes. After several washes with PBS, the cells were air-dried

and photographed.
2.14 Statistical analysis

We performed statistical analyses using R software (version

4.1.3). For single cell sequencing analysis, we used the “Seurat”

package and “SCP pipeline.” We used the “IOBR” package for gene

set acquisition and immune infiltration analysis, and “oncoPredict”

for drug sensitivity analysis. We employed “SingleR” for cell

annotation and “copykat R” for tumor cell identification. We

used the “ConsensusClusterPlus” package for unsupervised

clustering analysis, and “clusterProfiler” for enrichment analysis.

Differential expression analysis was implemented using the “limma”

package. A threshold of p< 0.05 was considered statistically

significant (* p< 0.05; ** p< 0.01; *** p< 0.001; **** p< 0.0001).
3 Results

3.1 Exploration of expression levels of
tumor microenvironment-related gene sets

We analyzed the expression differences of four TME-related

gene sets (TMEscoreA_CIR, TMEscoreB_CIR, TMEscoreA_plus,

and TMEscoreB_plus) between tumor and normal groups using

integrated bulk expression matrices from the TARGET-OS and

GTEx datasets. Heatmaps illustrate that most genes within the four

gene sets exhibit significantly higher expression in the tumor group

(Figures 1A–D).
3.2 Hierarchical clustering and TME
landscape analysis

Utilizing the “ConsensusClusterPlus” package, we conducted

unsupervised clustering analysis on tumor tissues based on

scoring. We computed GSVA scores for four TME-related gene

sets in the TARGET-OS dataset and presented heatmap illustrations

depicting score disparities of these genes between clusters C1 and

C2. Notably, TMEscoreA_CIR and TMEscoreA_plus exhibited

significantly higher scores in C2 compared to C1, whereas

differences in scores for TMEscoreB_CIR and TMEscoreB_plus

between the two groups were minimal (Figure 2A).Univariate Cox

analysis was performed on the four TME-related gene sets, revealing

significantly higher hazard ratios for TMEscoreA_CIR and

TMEscoreA_plus compared to TMEscoreB_CIR and

TMEscoreB_plus, indicating an unfavorable prognosis associated

with the scores of TMEscoreA_CIR and TMEscoreA_plus (HR>1,

Figure 2B). The matrix plot indicates high intra-cluster cohesion and

low inter-cluster coupling (Figure 2C). Results for cluster numbers

ranging from k=2 to k=9 were demonstrated, with k=2 showing a
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smooth CDF curve (Figure 2D) and the lowest PAC score

(Figure 2E), thus suggesting k=2 as the optimal cluster number.

Boxplots based on GSVA scores demonstrated that, except for

TMEscoreB_CIR, scores for each TME-related gene set were

higher in cluster C2 than in C1, with TMEscoreA_CIR and

TMEscoreA_plus showing particularly significant differences

(Figure 2F). Survival analysis was conducted on clusters C1 and

C2, with KM curves illustrating a superior prognosis for C2

compared to C1 (Figure 2G). Additionally, stacked bar plots

depicted distribution disparities of C1 and C2 across different

clinical-pathological parameters. While patients aged over 15 years

were slightly more predominant in C1 compared to C2 in terms of

age distribution (Figure 2H), C2 exhibited a higher proportion of

late-stage cases than C1 based on tumor stage distribution

(Figure 2I). For immune cell infiltration analysis, we employed five

algorithms, namely CIBERSORT, TIMER, MCPcounter, EPIC, and
Frontiers in Immunology 06
quanTIseq. Boxplots revealed that in CIBERSORT analysis, most

immune cell infiltration levels were lower in cluster C1 compared to

C2, whereas the infiltration level of Macrophages_M0 was lower in

C2 than in C1. Results from MCPcounter indicated that the

infiltration levels of various cell types were significantly higher in

C2 than in C1. In quanTIseq analysis, the difference in infiltration

levels between the two groups was minimal overall, but in the

“Other” category, infiltration levels were slightly higher in C1 than

in C2. EPIC analysis showed that CD4_Tcells and Endothelial cell

infiltration levels were higher in C2 than in C1, while in the

“OtherCells” category, infiltration levels were higher in C1 than in

C2. TIMER analysis showed similar infiltration levels between the

two groups, with C2 being higher than C1 in most cases (Figure 3A).

Heatmaps of immunomodulators and chemokines along with the

two clusters demonstrated higher expression of these 150

immunomodulators and chemokines in C2 (Figure 3B). We
B

C D

A

FIGURE 1

Expression profiles of TME-related Signatures in OS. The expression patterns of four TME-related signatures including TMEscoreA_CIR (A), TMEscoreA_plus
(B), TMEscoreB_CIR (C), and TMEscoreB_plus (D).
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predicted tumor immune escape by examining immune checkpoints

in clusters C1 and C2, with a stacked bar graph showing a higher

response to immune checkpoints in C2 compared to C1 (Figure 4A).

Violin plots displaying TIDE scores for the two clusters showed no

statistically significant differences (Figure 4B).We selected three

immune-suppressive cell types, CAFs, MDSCs, and TAM.M2, and

presented violin plots illustrating the abundance of immune-

suppressive cells between the two groups. In MDSCs and
Frontiers in Immunology 07
TAM.M2, infiltration was higher in C1 than in C2, with TAM.M2

showing particularly significant differences, while there was no

s ign ificant d i ff e rence be tween C1 and C2 in CAFs

(Figure 4C).Furthermore, we conducted drug sensitivity analysis

on four relevant drugs, Bortezomib, XAV939, Selumetinib, and

Trametinib, for clusters C1 and C2. The IC50 values for all four

drugs were lower in C2 than in C1, indicating higher sensitivity and

better drug efficacy in C2 (Figure 5).
B
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A

FIGURE 2

Distinct TME landscapes in OS. (A) The GSVA scores of each TME-related signature between two TME subclusters. (B) Forest plot illustrating the
hazard ratio of each TME-related signature determined by Univariate Cox regression analysis. (C) The consensus score matrix of glioma samples in
TARGET-OS when the clustering number k = 2. The consensus score represents the intensity of interaction between two samples. (D, E) The CDF
curves (D) and PAC scores (E) of the consensus matrix for each (k) (F) Boxplots showing the distribution of GSVA scores of each TME-related
signature between two TME subclusters. (G) The survival differences between two TME subclusters, analyzed by Kaplan-Meier curves with the log-
rank test. (H, I) Stacked Bar plots illustrating the distributions of age populations (H) and stages (I) between two TME subclusters. P values were
calculated by the Chi-squared tests. ** p<0.01; **** p<0.0001.
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3.3 Enrichment analysis and weighted gene
co-expression network analysis

We evaluated the differences between groups C1 and C2 in two

directions: differential fold change and differential significance level.

We identified DEGs between the two groups and displayed

upregulated and downregulated genes using volcano plots

(Figure 6A). Next, we performed GO enrichment analysis on the

DEGs and illustrated the top ten pathways in the BP, CC, and MF

categories using lollipop plots. In the MF category, the DEGs were

enriched in pathways like gated channel activity, monoatomic

cation channel activity, and monoatomic ion gated channel

activity. The CC category showed consistent enrichment levels. In

the BP category, the genes were enriched in pathways related to

feeding behavior, response to hydrogen peroxide, and regulation of

dendrite development. (Figure 6B). Furthermore, we performed

GSEA on the DEGs, displaying the downregulated pathways in C2

(Figure 6C). Subsequently, we applied WGCNA to the TARGET-
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OS dataset, determining an appropriate soft threshold based on

Scale Independence and Mean Connectivity (Figure 7A). Using the

optimal soft threshold, we constructed a co-expression network,

partitioned genes into modules, and visualized a dendrogram for

clustering (Figure 7B). We computed the correlation between

modules and clinical traits, depicting the results in a heatmap.

The correlation between modules and the futime trait was generally

low with minimal variation, while more modules exhibited negative

correlations with the fustat trait. Modules were mainly positively

correlated with age and stage. The MEbrown module had a strong

positive correlation with the cluster trait, while the MEgrey module

had a strong negative correlation. (Figure 7C). We identified the

MEbrown module, which had the highest correlation with the

cluster trait, as the key module. Subsequently, we filtered out key

genes of the module based onModule Membership (MM) and Gene

Significance (GS) criteria (MM > 0.6 & GS > 0.3) (Figure 7D). We

conducted GO enrichment analysis on the key genes, revealing

enrichment in pathways such as immune receptor activity in MF,
BA

FIGURE 3

The C2 TME subcluster shapes a hot-TME in OS. (A) The infiltration abundances of immune cell subsets evaluated by CIBERSORT, MCP-counter,
quanTIseq, EPIC, and TIMER for two TME subclusters. (B) The expression patterns of immunoregulators for two TME subclusters. * p<0.05; **
p<0.01; *** p<0.001; **** p<0.0001.
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FIGURE 4

Immunotherapeutic response between the two TME subclusters. (A) Stacked Bar plots illustrating the distributions of predicted ICB responders
between the two TME subclusters. (B) The TIDE scores between the two TME subclusters. (C) Violin plots showing the infiltration abundances of
MDSC, M2-TAM, and CAF between the two TME subclusters.
FIGURE 5

Drug sensitivity between the two TME subclusters.
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secretory granule membrane in CC, and positive regulation of

cytokine production in BP. Overall, the number of genes enriched

in BP pathways was significantly higher than those in MF and CC

pathways (Figure 7E).
3.4 Construction and validation of machine
learning prognostic model

We selected TARGET-OS as the training set and two GEO

datasets as the validation sets. LASSO and multivariable Cox

regression analyses were performed, retaining coefficients for 11

genes. The optimal parameter l=0.040 was determined through

coefficient distribution analysis (Figure 8A). A lollipop plot

displayed the coefficients of the 11 genes obtained (Figure 8B).

Using the median of each dataset, we divided the training

and validation sets into high-risk and low-risk groups.

Throughout both the training set TARGET-OS and the validation

sets GSE21257 and GSE16091, the low-risk cohort consistently

demonstrated markedly superior survival prognosis compared to

the high-risk cohort, with the disparity in survival rates escalating
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over time. ROC curve analysis revealed that the area under the

curve (AUC) for all three datasets at 1, 3, and 5 years was greater

than 0.8, indicating good diagnostic performance of the model at

these time points (Figure 8C).
3.5 Further analysis of the model and
drug prediction

Using CIBERSORT, we conducted immune cell infiltration

analysis to screen for relevant immune cell subgroups. Interestingly,

we did not observe any significant differences between the two groups

in terms of various immune cell populations (Figure 9A). We

generated box plots to show the expression differences of M2

markers and exhausted T cell markers between the high and low-

risk groups. In the high-risk group, most markers had higher

expression levels compared to the low-risk group, except for

CXCL13, which was lower in the high-risk group. (Figures 9B, C).

Violin plots visually depicted the disparity in cellular stemness

analysis between the high and low-risk groups based on the

mRNAsi index, revealing a higher mRNAsi index in the high-risk
B

C

A

FIGURE 6

DEGs between the two TME subclusters. (A) Volcano plot showing the upregulated (colored in red) and downregulated (colored in blue) genes
between the two TME subclusters. (B) Top ten enriched GO terms of hub genes. (C) GSEA of dysregulated pathways in the C2 TME subcluster.
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group (p=0.01, Figure 9D). We also conducted drug sensitivity

analyses for nine selected drugs, comparing the high and low-risk

groups. Violin plots demonstrated higher IC50 values in the high-risk

group, indicating reduced drug sensitivity (Figure 10). Differential

gene expression analysis between the two risk groups was followed by

Gene Set Enrichment Analysis (GSEA) to identify commonly

dysregulated pathways. The high-risk group exhibited upregulation

in most frequently altered tumor pathways (Figure 11).
3.6 Single-cell sequencing analysis

We conducted an analysis of the acquired single cell sequencing

data. We used UMAP dimensionality reduction clustering on the

integrated single-cell data (Figure 12A), and ten cell subgroups

annotated and visualized ten cell subgroups based on cell-specific

markers (Figure 12B). We examined the expression of various genes

across the ten cell subgroups, revealing higher expression of COL3A1

in MSCs, Malignant cells, and Osteocytes, with significant

upregulation of IGF1R in Malignant cells (Figure 12C).Utilizing
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SingleR for automated annotation combined with copycat for

malignant cell identification, we computed the upregulated and

downregulated genes in each cell subgroup and presented volcano

plots showing the top five upregulated and downregulated genes

(Figure 12D). GO_BP analysis indicated significant upregulation of

multiple pathways in Macrophages, monocytes, T cells, NK cells, and

B cells (Figure 12E). Furthermore, we evaluated the distribution of

prognostic model scores within the single-cell dataset, revealing a

significant regional pattern (Figure 12F).
3.7 Knockdown of ACSL5 inhibited the
proliferation, invasion, and migration of
OS cells

To assess the potential impact of ACSL5 inhibition on the

aggressive behavior of OS cells, we used siRNA to downregulate

ACSL5 expression in MG63 and Saos-2 cells. We selected two

siRNA sequences and confirmed by RT-qPCR. As depicted in

Figure 13A, both sets of sequences effectively reduced ACSL5
B

C

D E

A

FIGURE 7

WGCNA identifies subcluster-related modules and hub genes inside. (A) Analysis of network topology for different soft-threshold power. The left
panel shows the impact of soft-threshold power (power = 3) on the scale-free topology fit index; the right panel displays the impact of soft-
threshold power on the mean connectivity. (B) Cluster dendrogram of the coexpression modules. Each color indicates a co-expression module.
(C) Module-trait heatmap displaying the correlation between module eigengenes and clinical traits. (D) Correlation between module membership
and gene significance in the brown modules. Dots in color were regarded as the hub genes of the corresponding module (MM > 0.6 & GS > 0.3).
(E) Top ten enriched GO terms of hub genes.
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expression in MG-63 and Saos-2 cells, with si-ACSL5–2

demonstrating notably superior knockdown efficacy compared to

si-ACSL5–1. As illustrated in Figure 13B, ACSL5 knockdown

significantly curtailed cell proliferation within 72 hours.

Figures 13C, D further demonstrated that ACSL5 knockdown

markedly impeded the invasion and migration of both MG-63

and Saos-2 cells. We further used more experiments to explore the

effect of ACSL5 on proliferation. EdU staining results indicated that

the proliferation capacity of both MG63 and Saos-2 knockdown

groups was significantly lower compared to the NC group,

indicating inhibited cell proliferation post-knockdown

(Figures 14, 15A). Colony formation assay results revealed that

the proliferation capacity of the NC group was significantly superior

to that of the knockdown groups (Figures 15B, C). Hence, our

findings suggest that silencing ACSL5, a pro-oncogene, could

attenuate the oncogenic behaviors of proliferation, migration, and

invasion in OS cells.
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4 Discussion

OS stands as the prevailing primary malignant bone tumor,

presenting with the highest occurrence in children and adolescents,

thereby securing the third position among malignant tumors within

this age group. Though rare, OS has a poor prognosis. Surgery is the

main curative treatment, but patients undergoing only surgery have

a survival rate of about 15%. The 5-year survival rate is over 78% for

localized OS but drops to 25% for metastatic or recurrent cases. For

those unable to have surgery, radiotherapy is effective for local

control and symptom relief. However, advanced-stage OS is highly

invasive and has a poor prognosis. Therefore, investigating the

mechanisms underlying OS-related genes, particularly those

implicated in its elevated metastatic potential and recurrence

rates, deciphering pivotal biological markers, and exploring

essential target genes emerge as critical endeavors for enhancing

the diagnosis, treatment, and prognosis of OS.
B CA

FIGURE 8

TME-related prognostic signature construction and validation. (A) The selection of prognostic hub genes based on the optimal parameter l that was
obtained in the LASSO regression analysis. (B) Lollipop chart of the coefficients of signature genes determined by the multiCox regression analysis.
(C) Survival differences between two groups in the three datasets. Time-dependent ROC analysis of the model in the three datasets.
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B C D

A

FIGURE 9

TME phenotypes between risk groups. (A) Box plot illustrating the distributions of 22 immune cell subsets determined by CIBERSORT between two
risk groups. (B, C) Box plot illustrating the expression profiles of M2 polarization regulators (B) and TEXterm features (C) between two risk groups.
(D) Violin plot displaying the mRNAsi index between two risk groups. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001.
FIGURE 10

Therapeutic sensitivity between two risk groups.
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We conducted a multi-layered analysis using various types of

transcriptome data downloaded frommultiple public databases. We

analyzed the expression differences of four TME-related gene sets

between tumor and normal groups in the integrated bulk matrix

obtained from the TARGET-OS and GTEx datasets. We performed

unsupervised clustering analysis on tumor tissues, selecting k=2 as

the optimal number based on matrix plots, CDF curves, and PAC

scores. We calculated GSVA scores for four TME-related gene sets

in the TARGET-OS dataset and conducted univariate Cox analysis.

C2 had higher scores than C1 in most TME scoring items. The

analysis revealed TMEScoreA_CIR and TMEscoreA_plus as

prognostic risk factors. We explored the differences between the

two clusters through Kaplan-Meier curves, distribution of clinical

pathological information, analysis of immune cell infiltration,

prediction of tumor immune escape, and abundance of immune

inhibitory cells. The results showed that C1 had a poorer prognosis

but was more relevant to OS treatment. We analyzed drug

sensitivity in C1 and C2 using four drugs, finding that C2 was

more sensitive to them, though this needs further validation. We

identified DEGs between the clusters and performed GO

enrichment analysis and GSEA.

Performing WGCNA on the TARGET-OS dataset, we obtained

the optimal soft threshold power=3 to construct a co-expression

network and partition gene modules. We identified the key module,
Frontiers in Immunology 14
MEbrown, and filtered critical genes with MM > 0.6 and GS > 0.3,

then performed GO enrichment analysis. We used TARGET-OS as

the training set and two GEO datasets as validation sets, defining two

risk groups based on the median score of each dataset. Using LASSO

and multiple regression analysis, we built a prognostic model and

identified 11 genes: ALOX5AP, CD37, BIN2, C3AR1, HCLS1,

ACSL5, CD209, FCGR2A, CORO1A, CD74, and CD163. Among

these, ALOX5AP is a crucial enzyme that converts arachidonic acid

to leukotrienes, serving as an important immunomodulatory lipid

mediator. Diseases associated with ALOX5AP include stroke,

ischemia, and myocardial infarction (26). Prior research also

suggests widespread expression of ALOX5AP in 20 different types

of epithelial cancer cell lines, implicating its potentially crucial role in

influencing cancer patient prognosis (27). CD37, encoding a protein

member of the transmembrane 4 superfamily, also known as the

tetraspanin family, is associated with osteogenesis imperfecta, III-

type, and mantle cell lymphoma, playing a critical role in regulating

tumor onset and progression (28). CD37 serves as a significant

immune marker in various immune cells (e.g., T cells, B cells, and

macrophages), with high expression possibly indicating adequate

filtration and immune competence in the tumor microenvironment

(29). BIN2, encoding a cytoplasmic protein, influences podosome

formation, movement, and phagocytosis through interactions with

the cell membrane and cytoskeleton (30). Meanwhile the role of BIN2
FIGURE 11

Dysregulated cancer hallmarks between two risk groups.
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in cancer remains yet unclear, TCGA studies have observed an

association between upregulated BIN2 and favorable survival

outcomes in all cervical, endometrial, breast, and ovarian cancers

(31). C3AR1, as the orphan G protein-coupled receptor for the

allergic toxin C3a released during complement system activation,

plays a crucial role in immune responses, particularly implicated in

immune infiltration in sepsis (32). Endothelial C3AR1 regulates

vascular inflammation in aging or neurodegenerative diseases (33).

HCLS1, containing a Src homology 3 (SH3) domain, facilitates the

activation of receptor tyrosine kinases (34). Levels of HCLS1 were

linked to chronic lymphocytic leukemia, though its role in cancers,

particularly OS, remains unclear. ACSL5, a mitochondrial enzyme,

aids in the synthesis of long-chain fatty acyl-CoA and induces cellular

apoptosis. Its predominant isoform in mitochondrial cardiolipin

biosynthesis might also support cancer cell survival (35, 36).

Previous studies suggest its crucial role in the malignant
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progression and metastasis of gliomas (37). CD209, also known as

DC-SIGN, belongs to the C-type lectin superfamily primarily

expressed in dendritic cells (38). CD209 binds Lewis antigens

highly expressed in cancers, facilitating T-cell priming and

initiating immune cascades (39). FCGR2A, a member of the

immunoglobulin Fc receptor gene family found on various

immune response cells, participates in immune surveillance and

validation (40). Its association with the pharmacodynamics of

monoclonal antibodies varies across different cancer types like

colorectal, breast, and metastatic squamous cell carcinoma of the

head and neck (41). CORO1A, encoding a member of the WD repeat

protein family, is involved in multiple cellular processes, including

cell cycle, apoptosis, signal transduction, and gene regulation (42).

Previous studies identified CORO1A as a pro-proliferative target in

breast cancer cells (42). CD74, also known as invariant chain, acts as

an MHCII chaperone crucial in antigen presentation (43). Research
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FIGURE 12

The highly activated TME-related signature in scRNA-seq datasets of OS. (A) UMAP visualization of 40864 cells from four public OS scRNA-seq
cohorts. (B) 10 major cell types were manually annotated. (C) Vlnplots illustrating the expression values of cell type-specific markers. (D) Volcano
plots illustrating the top five labeled markers upregulated (colored in red) or downregulated (colored in blue) in each cell cluster. (E) Dot plot
showing the enriched GO_BP terms of each cell cluster. (F) The signature genes expression at single cell level determined by AddModuleScore()
function in Seurat.
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suggests its diverse roles within cells and the entire immune system,

highlighting its potential as a therapeutic target for cancer and

autoimmune diseases (44). CD163, an abundant endocytic receptor

for various ligands, is particularly enriched in the inflammatory and
Frontiers in Immunology 16
tumor microenvironments with CD163+ macrophages (45). Studies

indicate CD163-positive M2-polarized macrophages as robust

biomarkers for diagnosis and stratification of OS patients (46). We

divided the cohorts into high and low-risk groups based on the
B
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FIGURE 13

(A) The downregulation of ACSL5 expression in MG63 and Saos-2 cells was confirmed by RT-qPCR using two distinct siRNA sequences.
(B) Differential knockdown efficacy of ACSL5 expression in MG-63 and Saos-2 cells was observed between the two siRNA sequences. (C) Following
knockdown of ACSL5 using both sets of sequences, differential invasion capacities were observed in MG-63 and Saos-2 cells. (D) Subsequent to the
knockdown of ACSL5 expression using both sets of sequences, differential migration capacities were observed in MG-63 and Saos-2 cells. * p<0.05;
** p<0.01; ****p<0.0001.
FIGURE 14

EdU assay between the control group and ACSL5 knockdown cells.
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median scores of each dataset. Survival analysis showed a poorer

prognosis for the high-risk group, while ROC curve analysis

confirmed the model’s strong performance at 1, 3, and 5 years.

Immune cell infiltration analysis identified relevant immune cell

subtypes. Box plots illustrated differential expression of M2 and

exhausted T cell markers between the two risk groups, with

significantly higher expression observed in most of the high-risk

group. Both markers are associated with tumor immune suppression,

indicating a poorer immune microenvironment in the high-risk group

(47). Violin plots depicted higher mRNAsi indices in the high-risk

group. Sensitivity analysis to nine drugs indicated lower drug sensitivity

in the high-risk group. Differential gene expression analysis between

the two risk groups, followed by GSEA analysis of dysregulated

pathways, revealed upregulation of numerous common tumor

pathways in the high-risk group, suggesting activation of multiple

tumor progression pathways and resistance to drug therapy and

immune cell cytotoxicity. The malignant characteristics of tumors in

the high-risk group are multifaceted and interrelated. Further

exploration of tumor characteristics is necessary to develop targeted

therapies for such patients. UMAP dimensionality reduction clustering

of integrated single-cell data annotated ten cell subtypes based on cell-

specific markers, with subsequent analysis of gene expression within

each subtype. We annotated and identified malignant cells and

calculated upregulated and downregulated genes in each subtype.

GO_BP analysis showed significant pathway upregulation in certain

cell subtypes. Using Seurat, we evaluated our prognostic model’s

activity in single-cell datasets, confirming its effectiveness.

ACSL5 belongs to an activating enzyme family of long-chain fatty

acids (LCFAs), the role of which are not well understood. ACSL5

expression correlates with improved survival in lung cancer patients,

and plasma EA levels predict immunotherapy success. Targeting

ACSL5 may enhance immunotherapy by reprogramming antigen

presentation (48). Research indicates that the protein PPARGC1A is

linked to the development of hepatocellular carcinoma (HCC),

although its exact functions and related pathways are not fully
Frontiers in Immunology 17
understood. PPARGC1A is under-expressed in HCC and correlates

with a poorer prognosis. As regard to the underlying mechanisms, a

PPARGC1A/BAMBI/ACSL5 axis is found to be responsive to hypoxia

(49). In an effort to identify crucial biomarkers for pancreatic cancer

prognosis, a study discovered a total of four genes, ACSL5, SLC44A4,

LOX, and TOX3, showing correlation with PFS as indicated by qPCR

and immunohistochemical staining. Further analysis revealed that

differentiation status, tumor stage, LOX expression, and ACSL5

expression were independent factors predicting prognosis (50). In the

context of OS, as one of ferroptosis-related genes, ACSL5 was

integrated into a prognostic model for OS patient prognosis (51).

However, the mechanic role of ACSL5 in the OS carcinogenesis

remains to be further clarified. In our study, we validated that

silencing ACSL5 (a pro-oncogene) via cell culture, siRNA

transfection, RT-qPCR, cell proliferation assays, and cell migration

and invasion assays reduced oncogenic behaviors like proliferation,

migration, and invasion in OS cells.
5 Conclusion

This study conducted an in-depth analysis of the TME in OS,

revealing two significantly distinct subgroups. Our prognostic model,

based on eleven key genes (ALOX5AP, CD37, BIN2, C3AR1, HCLS1,

ACSL5, CD209, FCGR2A, CORO1A, CD74, CD163), demonstrated

good performance in predicting patient survival and disease

progression. Additionally, we conducted immune analysis, drug

sensitivity analysis, and gene enrichment analysis, providing new

insights and theoretical foundations for the treatment and drug

development of OS patients. Single cell sequencing analysis further

revealed the expression profiles of cell subgroups, deepening our

understanding of the immune microenvironment in OS. In

summary, our study provides valuable insights and guidance for

improving the prognosis of OS patients. It highlights key areas for

optimizing treatment strategies and supports the development of more
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FIGURE 15

Colony formation experiments between the control group and ACSL5 knockdown cells. (A) The statistical data of the EDU assay. (B, C) The colon
formation assay of ACSL5. ** p<0.01; *** p<0.001.
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effective drugs. By identifying crucial genes and pathways, our research

lays the groundwork for targeted therapies and personalized medicine

approaches in OS, ultimately aiming to enhance patient outcomes and

survival rates.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/supplementary material.
Ethics statement

Ethical approval was not required for the studies on humans in

accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.

Ethical approval was not required for the studies on animals in

accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.
Author contributions

SS: Conceptualization, Data curation, Writing – original draft.

LZ: Conceptualization, Formal analysis, Investigation, Project
Frontiers in Immunology 18
admin i s t r a t i on , Wr i t i n g – r e v i ew & ed i t i n g . XG :

Conceptualization, Data curation, Writing – original draft.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by Natural Science Foundation of Shanxi Province,

Grant/Award Number: 2021SF-241.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Valery PC, Laversanne M, Bray F. Bone cancer incidence by morphological
subtype: a global assessment. Cancer causes control CCC. (2015) 26:1127–39.
doi: 10.1007/s10552-015-0607-3

2. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of
osteosarcoma. Nat Rev Cancer. (2014) 14:722–35. doi: 10.1038/nrc3838

3. Simpson E, Brown HL. Understanding osteosarcomas. JAAPA. (2018) 31:15–9.
doi: 10.1097/01.JAA.0000541477.24116.8d

4. Wittig JC, Bickels J, Priebat D, Jelinek J, Kellar-Graney K, Shmookler B, et al.
Osteosarcoma: a multidisciplinary approach to diagnosis and treatment. Am Fam
Physician. (2002) 65:1123–32.

5. Corre I, Verrecchia F, Crenn V, Redini F, Trichet V. The osteosarcoma
microenvironment: A complex but targetable ecosystem. Cells. (2020) 9:976.
doi: 10.3390/cells9040976

6. Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns
in children and adolescents, middle ages and elderly persons. Int J Cancer. (2009)
125:229–34. doi: 10.1002/ijc.24320

7. Damron TA, Ward WG, Stewart A. Osteosarcoma, chondrosarcoma, and Ewing's
sarcoma: National Cancer Data Base Report. Clin orthopaedics related Res. (2007)
459:40–7. doi: 10.1097/BLO.0b013e318059b8c9

8. Nie Z, PengH. Osteosarcoma in patients below 25 years of age: An observational study of
incidence, metastasis, treatment and outcomes. Oncol Lett. (2018) 16:6502–14. doi: 10.3892/ol

9. Fuchs B, Pritchard DJ. Etiology of osteosarcoma. Clin orthopaedics related Res.
(2002) 397):40–52. doi: 10.1097/00003086-200204000-00007

10. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates
from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results
Program. Cancer. (2009) 115:1531–43. doi: 10.1002/cncr.24121

11. Nishida Y, Isu K, Ueda T, Nishimoto Y, Tsuchiya H,Wada T, et al. Osteosarcoma
in the elderly over 60 years: a multicenter study by the Japanese Musculoskeletal
Oncology Group. J Surg Oncol. (2009) 100:48–54. doi: 10.1002/jso.21287

12. Zhao X, Wu Q, Gong X, Liu J, Ma Y. Osteosarcoma: a review of current and
future therapeutic approaches. Biomed Eng Online. (2021) 20:24. doi: 10.1186/s12938-
021-00860-0
13. Cersosimo F, Lonardi S, Bernardini G, Telfer B, Mandelli GE, Santucci A, et al.
Tumor-associated macrophages in osteosarcoma: from mechanisms to therapy. Int J
Mol Sci. (2020) 21:5207. doi: 10.3390/ijms21155207

14. Bernthal NM, Federman N, Eilber FR, Nelson SD, Eckardt JJ, Eilber FC, et al.
Long-term results (>25 years) of a randomized, prospective clinical trial evaluating
chemotherapy in patients with high-grade, operable osteosarcoma. Cancer. (2012)
118:5888–93. doi: 10.1002/cncr.27651

15. Mahajan A, Woo SY, Kornguth DG, Hughes D, Huh W, Chang EL, et al.
Multimodality treatment of osteosarcoma: radiation in a high-risk cohort. Pediatr
Blood Cancer. (2008) 50:976–82. doi: 10.1002/pbc.21451

16. Gaspar N, Occean BV, Pacquement H, Bompas E, Bouvier C, Brisse HJ, et al. et
al: Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in
osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur J
Cancer (Oxford Engl 1990). (2018) 88:57–66. doi: 10.1016/j.ejca.2017.09.036

17. Song XJ, Bi MC, Zhu QS, Liu XL. The emerging role of lncRNAs in the
regulation of osteosarcoma stem cells. Eur Rev Med Pharmacol Sci. (2022) 26:966–
74. doi: 10.26355/eurrev_202202_28006

18. Su H, Wang Y, Li H. RNA m6A methylation regulators multi-omics analysis in
prostate cancer. Front Genet. (2021) 12 doi: 10.3389/FGENE.2021.768041

19. Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, et al. et al: Single-cell RNA
landscape of intratumoral heterogeneity and immunosuppressive microenvironment in
advanced osteosarcoma. Nat Commun. (2020) 11:6322. doi: 10.1038/s41467-020-
20059-6

20. Wu S, Zhao K, Wang J, Liu N, Nie K, Qi L, et al. Recent advances of tanshinone
in regulating autophagy for medicinal research. Front Pharmacol. (2023) 13
doi: 10.3389/fphar.2022.1059360

21. Jianfeng W, Yutao W, Jianbin B. Long non-coding RNAs correlate with genomic
stability in prostate cancer: a clinical outcome and survival analysis. Genomics. (2021)
113(5):3141-51. doi: 10.1016/j.ygeno.2021.06.029

22. Qi L, Zhong F, Chen Y, Mao S, Yan Z, Ma Y. An integrated spectroscopic
strategy to trace the geographical origins of emblic medicines: Application for the
quality assessment of natural medicines. J Pharm Anal. (2020) 10(4):356-64.
doi: 10.1016/j.jpha.2019.12.004
frontiersin.org

https://doi.org/10.1007/s10552-015-0607-3
https://doi.org/10.1038/nrc3838
https://doi.org/10.1097/01.JAA.0000541477.24116.8d
https://doi.org/10.3390/cells9040976
https://doi.org/10.1002/ijc.24320
https://doi.org/10.1097/BLO.0b013e318059b8c9
https://doi.org/10.3892/ol
https://doi.org/10.1097/00003086-200204000-00007
https://doi.org/10.1002/cncr.24121
https://doi.org/10.1002/jso.21287
https://doi.org/10.1186/s12938-021-00860-0
https://doi.org/10.1186/s12938-021-00860-0
https://doi.org/10.3390/ijms21155207
https://doi.org/10.1002/cncr.27651
https://doi.org/10.1002/pbc.21451
https://doi.org/10.1016/j.ejca.2017.09.036
https://doi.org/10.26355/eurrev_202202_28006
https://doi.org/10.3389/FGENE.2021.768041
https://doi.org/10.1038/s41467-020-20059-6
https://doi.org/10.1038/s41467-020-20059-6
https://doi.org/10.3389/fphar.2022.1059360
https://doi.org/10.1016/j.ygeno.2021.06.029
https://doi.org/10.1016/j.jpha.2019.12.004
https://doi.org/10.3389/fimmu.2024.1424950
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2024.1424950
23. Wang J, An G, Peng X, Zhong F, Zhao K, Qi L, et al. Effects of three Huanglian-
derived polysaccharides on the gut microbiome and fecal metabolome of high-fat diet/
streptozocin-induced type 2 diabetes mice. Int J Biol Macromol. (2024) 273(Pt
1):133060. doi: 10.1016/j.ijbiomac.2024.133060

24. Zhao K, Wu X, Han G, Sun L, Zheng C, Hou H, et al. Phyllostachys nigra (Lodd. ex
Lindl.) derived polysaccharide with enhanced glycolipid metabolism regulation and mice gut
microbiome. Int J Biol Macromol. (2024) 257(Pt 1):128588. doi: 10.1016/j.ijbiomac.2023.128588

25. Zeng X, Wang S, Peng Z, Wang M, Zhao K, Xu BB, et al. Rapid screening and
sensing of stearoyl-CoA desaturase 1 (SCD1) inhibitors from ginger and their efficacy
in ameliorating non-alcoholic fatty liver disease. Food Measure. (2024). doi: 10.1007/
s11694-024-02697-2

26. Li KL, Chen CY, XuM, Zhu XQ, Yang XJ. ALOX5AP rs10507391 polymorphism
and the risk of ischemic stroke in Caucasians: an update meta-analysis. Cell Mol Biol
(Noisy-le-Grand France). (2017) 63:137–40. doi: 10.14715/cmb/2017.63.10.22
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