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metabolism network: modulating
the immune landscape
in osteosarcoma
Qingbiao Li1†, Jiarui Fang2†, Kai Liu2, Peng Luo2*

and Xiuzhuo Wang1*

1Department of Orthopedics, Southern Medical University Pingshan Hospital (Pingshan District
Peoples’ Hospital of Shenzhen), Shenzhen, Guangdong, China, 2Department of Sport Medicine,
Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital),
Shenzhen, China
Background: The current understanding of the mechanisms by which metal ion

metabolism promotes the progression and drug resistance of osteosarcoma

remains incomplete. This study aims to elucidate the key roles and mechanisms

of genes involved in cuproptosis-related sphingolipid metabolism (cuproptosis-

SPGs) in regulating the immune landscape, tumormetastasis, and drug resistance

in osteosarcoma cells.

Methods: This study employed multi-omics approaches to assess the impact of

cuproptosis-SPGs on the prognosis of osteosarcoma patients. Lasso regression

analysis was utilized to construct a prognostic model, while multivariate

regression analysis was applied to identify key core genes and generate risk

coefficients for these genes, thereby calculating a risk score for each

osteosarcoma patient. Patients were then stratified into high-risk and low-risk

groups based on their risk scores. The ESTIMATE and CIBERSORT algorithms

were used to analyze the level of immune cell infiltration within these risk groups

to construct the immune landscape. Single-cell analysis was conducted to

provide a more precise depiction of the expression patterns of cuproptosis-

SPGs among immune cell subtypes. Finally, experiments on osteosarcoma cells

were performed to validate the role of the cuproptosis-sphingolipid signaling

network in regulating cell migration and apoptosis.

Results: In this study, seven cuproptosis-SPGs were identified and used to

construct a prognostic model for osteosarcoma patients. In addition to

predicting survival, the model also demonstrated reliability in forecasting the

response to chemotherapy drugs. The results showed that a high cuproptosis-

sphingolipid metabolism score was closely associated with reduced CD8 T cell

infiltration and indicated poor prognosis in osteosarcoma patients. Cellular

functional assays revealed that cuproptosis-SPGs regulated the LC3B/ERK

signaling pathway, thereby triggering cell death and impairing migration

capabilities in osteosarcoma cells.
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Conclusion: The impact of cuproptosis-related sphingolipid metabolism on the

survival and migration of osteosarcoma cells, as well as on CD8 T cell infiltration,

highlights the potential of targeting copper ion metabolism as a promising

strategy for osteosarcoma patients.
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1 Introduction

Osteosarcoma, an intensely aggressive malignant tumor

originating from bone, predominantly affects adolescents (1–3).

Recent studies have revealed that disruptions in metabolic pathways

and alterations in the immune microenvironment significantly

contribute to the pathogenesis of osteosarcoma (4–7). In the

tumor microenvironment, tumor cells reprogram both the

immune and metabolic landscapes to augment their proliferative,

survival, and metastatic potential (8–10).

Sphingolipids are critical components of the cellular membrane

surface, essential for maintaining the structural integrity of

sphingolipids (11, 12). Sphingolipids and their metabolic

derivatives are involved in regulating processes including

apoptosis and autophagy. Sphingolipids and their metabolic

derivatives are involved in regulating processes including

apoptosis and autophagy (13, 14). The metabolism of

sphingolipids also plays a role in the interactions between tumor

cells and the immune system, influencing tumor cell behavior and

the functionality of immune responses (15–17). Regulation of these

metabolic pathways may reveal new therapeutic strategies

for osteosarcoma.

Copper is an essential trace element involved in the activity and

function of multiple enzymes, significantly impacting cellular

energy production, neural conduction, antioxidative defense, and

the absorption and metabolism of iron (18–21). The relationship

between copper ion metabolism and tumor development has

become increasingly clear, particularly with the discovery of a

new mode of cell death induced by copper-cuproptosis (22, 23).

Cuproptosis involves copper directly binding to certain intracellular

fatty acid synthases, leading to protein aggregation and cellular

dysfunction (24). This mechanism may provide targets for

developing new therapies against refractory tumors such

as osteosarcoma.

Studies indicate that metal ions like copper and iron can affect

sphingolipid metabolism. These metal ions are involved in

regulating the activity of enzymes directly related to sphingolipid

metabolic pathways, affecting cell signaling and the physical

properties of membranes. Additionally, copper ions are

hypothesized to exert an indirect influence on the synthesis and

degradation pathways of sphingolipids. Recent discoveries have
02
delineated cuproptosis as a distinct form of cell death, uniquely

precipitated by copper exposure (25). This process is markedly

different from other established cell death mechanisms.

Experimental validations have demonstrated that copper can

provoke apoptosis through activation of aSMase, leading to

subsequent ceramide release (26 , 27) . Despi te these

advancements, the connection between sphingolipid metabolism

and cuproptosis remains nascent. However, it is understood that

any dysregulation in sphingolipid metabolism might influence

various cell death pathways. Since sphingolipids are crucial

components of the cell membrane and affect multiple cellular

signaling pathways, their metabolic changes may influence the

cellular stress responses induced by copper. Understanding how

sphingolipids regulate the pathways of copper-induced cell death

will provide crucial insights into the molecular mechanisms of

cuproptosis and the development of new anti-tumor strategies.

In elucidating the mechanistic progression of tumor diseases,

multi-omics plays a pivotal role (28–30). By integrating multi-

omic datasets with single-cell analysis methods, we explored the

value of cuproptosis-related sphingolipid metabolism

(cuproptosis-SPGs) in predicting outcomes and treatment

efficacy in osteosarcoma patients, and revealed the impact of

cuproptosis-SPGs on immune cell infiltration in osteosarcoma

tissues. These studies provide a theoretical basis for future

osteosarcoma research focusing on copper ion metabolism

therapies, highlighting the interactions between copper ions and

sphingolipid metabolism, and how they jointly regulate tumor cell

behavior and immune system functionality. In-depth research in

this field is expected to drive the development of a new generation

of anti-tumor therapies.
2 Materials and methods

2.1 Data collection

To conduct our study on sphingolipid metabolism, a total of

160 genes were retrieved from the InnateDB (https://

www.innatedb.com/), which are known to be implicated in this

metabolic pathway. Additionally, transcriptomic datasets along

with comprehensive clinical profiles for osteosarcoma patients
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were procured from the TARGET init iat ive (https ://

ocg.cancer.gov/programs/target). In total, transcriptomic profiles

were obtained for 88 individuals diagnosed with osteosarcoma.

However, complete clinical records were available for only 85 of

these patients. Consequently, transcriptomic data from the

remaining three patients were excluded from the study, thereby

enabling subsequent analyses to proceed with the cohort of 85

osteosarcoma patients. The U-2 OS cell line, characterized by its

epithelial morphology, originates from a sarcoma of moderate

differentiation. This line exhibits adherent growth characteristics

and displays significant chromosomal alterations. The

osteosarcoma cell line U2OS (KCB200962YJ) was procured

from Kmcellbank, serving as a crucial biological model for

our analyses.
2.2 Establishment of risk scoring model

To evaluate the prognostic influence of distinct cuproptosis-

SPGs, univariate Cox regression analyses were undertaken, linking

their differential expression with survival durations (31). Genes

demonstrating a significant association with survival metrics were

identified as prospective elements for subsequent LASSO regression

(32, 33). Selection of the optimal penalty parameter (l) for the

model was achieved through 10-fold cross-validation, utilizing a

criterion of minimality. Computation of the final risk score was

based on normalized expression values and coefficients of the

selected variables. The formula is presented as follows:

B4GALNT1*0.0314 + SGMS2*0.1847 + ABCA2*0.3275 -

B3GALT4*0 .0206 -ST3GAL2*0 .1409 - NPC2*0 .1068

- APOE*0.0882.

Following the development of the model, individuals in the

TARGET-OS cohort were stratified into high-risk and low-risk

categories, centered on the median score from the training set.

Differences in survival rates between these categories were assessed

using Kaplan-Meier survival plots and log-rank tests, facilitated by

the “survival” and “survivalminer” software packages. Additionally,

the model’s predictive accuracy was evaluated over 1, 3, and 5 years,

using receiver operating characteristic (ROC) analysis (34, 35),

implemented via an R package.
2.3 Decision curve analysis

To assess the clinical relevance of the prognostic framework,

decision curve analysis (DCA) curves were generated using the

“ggDCA” package. This methodology facilitates the identification of

patient risk and quantifies the net benefit of the predictive model

across varying threshold probabilities.
2.4 Functional enrichment analysis

For functional enrichment assessment, the “clusterProfiler” R

package was employed to analyze functional enrichment based on

differentially expressed genes (DEGs) between high-risk and low-
Frontiers in Immunology 03
risk groups. Additionally, single-sample Gene Set Enrichment

Analysis (ssGSEA) was performed for each individual in both

cohorts (36). Pathways that were significantly enriched were

depic ted through heatmaps i l lus t ra t ing the average

ssGSEA scores.
2.5 Evaluation of immune landscape

The algorithms CIBERSORT and ESTIMATE were employed

to determine the relative abundance and infiltration levels of

immune cell subtypes, respectively (37). Spearman’s method was

utilized to assess the correlation between the Riskscore and the

degree of immune infiltration as per ESTIMATE. Additionally, the

immune scores for TIL subgroups were derived using ssGSEA.

Furthermore, ssGSEA in the GSVA packages was applied to

quantify immune features within each sample.
2.6 Single-cell analysis of cuproptosis-
SPGs expression in osteosarcoma tissues

For the processing of single-cell RNA sequencing data, we

employed the R package Seurat (38, 39), version 4.1.0, to facilitate

the log-normalization and standardization of single-cell

transcriptomic profiles (40). Rigorous quality control measures

were implemented, evaluating cells based on gene expression

within the count matrix and the proportion of mitochondrial

gene counts. Cells expressing more than 1500 genes were

excluded, along with those exhibiting over 5% mitochondrial gene

count. Subsequently, data normalization across the library size was

conducted using the “normalize_total” function from the Scanpy

toolkit. This normalization facilitated the generation of a

logarithmically transformed data matrix, which was utilized in

subsequent analytical processes. Ultimately, eight distinct cell

types were annotated.
2.7 Drug sensitivity analysis and cell
cytotoxicity detection

To investigate variations in drug responsiveness between low-

risk and high-risk cohorts, we utilized the R package “pRRophetic”

(41). Subsequently, differentially expressed genes (DEGs)

distinguishing these groups were integrated into the Connectivity

Map to pinpoint therapeutic agents that could potentially benefit

patients at higher risk. Following this, the U2OS cell line was treated

with roscovitine to assess the impact of cuproptosis-SPGs on drug

sensitivity via cytotoxic assays.
2.8 Migration ability impacted by
cuproptosis-SPGs

The impact of cuproptosis-SPGs on the migratory abilities of

U2OS cells was evaluated utilizing both wound-healing and
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transwell migration assays (42). In the wound-healing assay,

siRNA was employed to disrupt U2OS cells over a period of 72

hours. Subsequently, a deliberate “wound” was created within the

cell monolayer, and cell migration rates were assessed after 48

hours. Additionally, siRNA-treated U2OS cells were placed in the

upper chamber of a transwell setup. The lower chamber was

supplied with 15% fetal bovine serum to serve as a

chemoattractant for the U2OS cells. The number of cells present

in the lower chamber after 36 hours was quantified to gauge

cellular migration capabilities (43).
2.9 Statistical analysis

In this study, the analytical procedures were performed using

RStudio, release 4.1.3. To assess overall survival differences, we

utilized the log-rank test along with Kaplan-Meier survival analysis.

For processing Western blot data, software such as ImageJ and

GraphPad Prism were applied. Pearson’s method of correlation

analysis was employed to execute all correlation assessments.

Evaluation of disparities between the groups was conducted

through the unpaired, two-tailed Student’s t-test, with a

significance threshold set at P<0.05.
3 Results

3.1 Cuproptosis-SPGs for predicting
osteosarcoma survivals

We conducted univariate Cox regression analysis on 158

cuproptosis-SPGs, identifying 32 of them as prognostically

significant genes in osteosarcoma. Of these, 12 were associated

with lower survival rates (Figure 1A). Subsequent to this

identification, we employed LASSO regression modeling based on

the same set of 32 cuproptosis-SPGs. This process culminated in the

selection of seven core cuproptosis-SPGs for the construction of a

prognostic model for osteosarcoma patients (Figures 1B, C).

Multivariable Cox regression analysis elucidated the risk

coefficients for these seven SPGs, categorizing patients into high

and low-risk groups (Figure 1D). Kaplan-Meier survival plots

revealed that patients in the high-risk category exhibited

significantly poorer prognoses compared to those scored as low-

risk (Figure 1E). The predictive capacity of the cuproptosis-SPGs

model was evaluated using ROC curves. The model demonstrated

impressive predictive accuracy with an AUC of 0.874 at two years

and 0.837 at five years (Figure 1F).
3.2 Cuproptosis-SPGs model provides
clinical benefits for osteosarcoma patients

Following the construction of the prognostic model, we

further assessed its overall accuracy and credibility using the C-

index (Figure 2A). Calibration curves additionally demonstrated

the predictive capacity of the model, showing good consistency
Frontiers in Immunology 04
with actual outcomes over 1, 3, and 5 years (Figure 2B). Moreover,

osteosarcoma patients classified as high risk exhibited an

increased cumulative hazard (Figure 2C), suggesting that

Cuproptosis-SPGs may serve as a potential marker for the

progression of osteosarcoma patients. Decision curve analysis

indicated that the drug decisions based on nomograms provided

greater benefits for osteosarcoma patients compared to other

individual indicators (Figure 2D).
3.3 The classification of osteosarcoma
groups based on Cuproptosis-SPGs reveals
distinct immune networks

The tumor microenvironment plays a pivotal role in the

development and progression of cancer. In this study, patients

with osteosarcoma were stratified into high-risk and low-risk

categories utilizing the Cuproptosis-SPGs model. Differential gene

expression analysis was conducted for both groups, followed by

functional enrichment studies. This approach identified 79

differentially expressed genes (DEGs), the majority of which were

upregulated (Figure 3A). Functional enrichment of these DEGs

highlighted extensive involvement in immune response processes

and sphingolipid metabolism between the high and low-risk groups

(Figures 3B, C). Among these, four Gene Ontology (GO) processes

showed significant alterations (Figure 3D). The copper ion binding

process and sphingomyelin metabolic process are linked through

the extracellular structure organization, suggesting that the

extracellular structure may act as a bridge in the sphingolipid-

cuproptosis network (Figure 3E).
3.4 Interactions between cuproptosis and
sphingolipid metabolic genes

To elucidate the interplay between cuproptosis metabolism and

sphingolipid metabolism, correlations between genes involved in

cuproptosis and sphingolipid pathways were investigated. As

depicted in Figure 4A, a notable, albeit negative, correlation persists

between these gene sets. Noteworthy, the correlation between FDX1

and B4GALNT1 was found to be the most significant (P < 0.01)

(Figure 4B). Additionally, the heatmap in Figure 4C illustrates the

correlation levels among cuproptosis genes, with DAL and DLD

exhibiting the highest correlation coefficient (R = 0.52).
3.5 Single-cell analysis exhibits
Cuproptosis-SPGs expression levels in
tumor microenvironment

Examination at the level of individual cells has unveiled a

significant presence of T cell and monocyte/macrophage subsets

within the immune context of osteosarcoma (Figures 5A, B). By

employing UMAP analysis, we identified 28 unique clusters across

eight cellular subtypes, revealing diverse subpopulations of cells

(Figures 5C, D). Employing heatmap visualization methods,
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distinctive patterns of interaction between osteoblasts and fibroblasts

were emphasized (Figure 5E). To delve into the expression patterns of

SRGs within the tumor microenvironment in osteosarcoma, we

explored the expression levels of the top six ranked SRGs in each

cell subtype (Figures 5F, G). A pivotal finding was the notable

decrease in peptide antigen binding pathways (Figures 6A, C),
Frontiers in Immunology 05
coupled with a notable increase in ATP synthase activity in T cells

(Figures 6B, D). Analysis of SRGs showed a consistent rise in APOE

expression among different cell types (Figure 7A). Given the variety of

T cell subsets discovered in osteosarcoma, additional studies were

initiated to explore the interactions between these lymphocytes and

the tumor cells (Figures 7B–D). Investigative efforts into the
B

C

D E

F

A

FIGURE 1

Cuproptosis-SPGs for predicting osteosarcoma survivals. (A) Differential gene analysis was employed to identify cuproptosis-SPGs correlated with
osteosarcoma. (B) Coefficients for 32 cuproptosis-SPGs. (C) Employing the Lasso technique, a prognostic model based on 7 SRGs was formulated.
(D) Expression levels of the foremost 7 cuproptosis-SPGs were graphically depicted to illustrate prognostic risk distribution. (E) KM plot was
conducted to further explore the prognostic relevance of the 7 cuproptosis-SPGs across diverse osteosarcoma subtypes. (F) The prognostic model’s
predictive efficacy was assessed via ROC analysis.
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transcription factors in tumor cells highlighted potential pathways

influencing differential expression (Figure 7E).
3.6 Alterations in CD8 T Cell infiltration
mediated by Cuproptosis-SPGs

In patients with osteosarcoma, there exists a stark contrast in the

levels of Cuproptosis-SPGs between those at high risk and those at low

risk (Figure 8A). An estimation of cellular proportions indicates a

diminished presence of CD8+ T cells in the high-risk group (Figure 8B).

Analyses of the tumor immune microenvironment (TME) reveal

significant variances not only in CD8 T cells but also in NK cells and

Tregs across different risk categories of osteosarcoma patients

(Figures 8C, D). These differences were corroborated by an analysis

linking risk scores with immune cell correlations (Figure 9A). Given that

risk scores are derived from Cuproptosis-SPGs, further investigation

into the association between Cuproptosis-SPGs and the infiltration

levels of CD8 T cells, NK cells, and Tregs was conducted. The results

demonstrate a significant negative correlation between ABCA2 and the

infiltration of CD8 T cells (Figure 9B), suggesting that ABCA2may be a

critical Cuproptosis-SPG gene influencing anti-tumor immunity.
Frontiers in Immunology 06
3.7 Drug response differences
and validations

The emergence of chemoresistance presents a significant

challenge in the treatment of tumors. Our predictive analyses

suggest that patients with high-risk osteosarcoma exhibit

enhanced sensitivity to roscovitine, metformin, and bortezomib

compared to those with low-risk osteosarcoma (Figure 10). Given

the substantial weight of ABCA2 in the risk assessment, further

investigations were conducted to explore its role in mediating drug

sensitivity in osteosarcoma. After transfection with siRNA,

osteosarcoma U2OS cells were exposed to varying concentrations

of roscovitine for 48 hours. Cytotoxicity assays revealed that,

relative to controls, cells with ABCA2 knockdown demonstrated

reduced cytotoxic response to roscovitine (Figure 11A), with more

pronounced differences at concentrations between 100–200 µM

(Figure 11B). These findings align with the predictions from the

drug sensitivity model, indicating that osteosarcoma patients with

elevated ABCA2 expression are more susceptible to roscovitine.

Future research should elucidate the mechanisms by which ABCA2

influences drug sensitivity through its interactions with pathways

such as cuproptosis and sphingolipid metabolism.
B

C D

A

FIGURE 2

Cuproptosis-SPGs model provides clinical benefits for osteosarcoma patients. (A) Time C-Index plot showcases the model’s discriminative ability
over time. (B) Calibration plot demonstrates the agreement between predicted and observed outcomes. (C) Cumulative risk curves illustrate the
evolving risk estimates. (D) Decision curve analysis evaluates the net benefit of utilizing the model in clinical decision-making.
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3.8 Cuproptosis-SPG regulates
osteosarcoma cells migration ability

Following the validation of the drug sensitivity model using

siRNA, the precision of the Cuproptosis-SPGs prognostic model

was assessed. It was observed that 48 hours post siRNA treatment,

the number of U2OS cells traversing the compartments was

diminished (Figure 11C) and exhibited statistically significant

differences (Figures 11D, E). Consistent with the transwell assay

results, wound healing experiments indicated that inhibition of

ABCA2 curtailed the migration distance of U2OS cells (Figure 11F),
Frontiers in Immunology 07
thus underscoring the role of ABCA2 in facilitating U2OS cell

migration (Figures 11G, H).
3.9 Cuproptosis-SPG regulation of
autophagy and MAPK proteins affects
apoptosis in U2OS cells

Tumor cells evade apoptosis by remodeling their metabolism.

We assessed the impact of the Cuproptosis-SPG gene ABCA2 on

apoptosis in osteosarcoma cells using flow cytometry. It was
B C

D E

A

FIGURE 3

Go and KEGG enrichment analysis. (A) Volcano plot illustrating differential genes in high- and low-risk osteosarcoma patients. (B) Mountain plot
depicting enrichment of differential genes in immune pathways. (C) Enrichment of differential genes in Gene Ontology (GO) terms related to
Biological Processes (BP), Cellular Components (CC), and Molecular Functions (MF). (D) Pathways enriched in GO analysis and corresponding
differential genes. (E) Interconnections between enriched pathways.
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observed that U2OS cells with disrupted ABCA2 were more

susceptible to apoptosis, exhibiting an increased apoptotic rate of

16.39% compared to the control group (Figures 11I, J).

Interestingly, after ABCA2 knockdown, autophagy levels in U2OS

cells were also suppressed, and this was associated with hindered

expression of ERK proteins (Figures 11K, L). These findings suggest

that Cuproptosis-SPG may regulate the apoptotic process in

osteosarcoma cells through both the autophagy and the

MAPK pathways.
Frontiers in Immunology 08
3.10 Cuproptosis-SPG expression patterns
in pan-cancer

We further tried to explore the potential utility of Cuproptosis-

SPG across additional tumor contexts. Our investigations

incorporated an expression analysis of ABCA2 in normal tissues

(Supplementary Figure S1A). The findings indicate a predominant

expression of ABCA2 in immune cells, such as Gdh T cells

(Supplementary Figure S1B). Notably, within a pan-cancer
B C

A

FIGURE 4

Interactions between cuproptosis and sphingolipid metabolic genes. (A, B) Relationship of cuproptosis-SPGs and cuproptosis genes. (C) Heatmap
exhibits the association among cuproptosis-SPGs. (*P < 0.05, **P < 0.01).
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analysis, ABCA2 exhibited a significantly elevated expression in

CHOL compared to normal tissues (Supplementary Figure S1C).

Despite this, the correlation between ABCA2 expression levels and

prognosis in CHOL was minimal (Supplementary Figure S1D).
Frontiers in Immunology 09
4 Discussion

Osteosarcoma is characterized by complex epigenetic features and a

high propensity for metastasis, frequently occurring in adolescents (44).
B C

D E

F

G

A

FIGURE 5

Single-cell analysis. (A) A pie chart illustrates the proportional representation of all cellular subpopulations. (B) Bar graphs depict the distribution of
cellular subpopulations for each osteosarcoma patient. (C, D) UMAP visualization demonstrates the clustering of cellular subpopulations. (E) A
heatmap displays the interaction counts among cellular subpopulations. (F, G) Distribution patterns of cuproptosis-SPGs between different cells
are depicted.
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Currently, chemotherapy and surgical interventions are effective

predominantly in early-stage osteosarcoma patients (45). Those

diagnosed with metastatic or recurrent osteosarcoma continue to face

grim outcomes, with less than 30% achieving long-term survival (46).

Clinical advancements for patients with advanced-stage osteosarcoma

remain limited. Immunotherapy, as an emerging therapeutic approach,

has yet to be extensively explored in osteosarcoma (47, 48).

In this study, we focused on the prognostic capabilities of

copper metabolism and sphingolipid metabolism networks in

osteosarcoma patients, elucidating the potential mechanisms

through which cuproptosis-related sphingolipid genes

(cuproptosis-SPGs) impact patient outcomes. We initially

identified seven cuproptosis-SPGs and developed a prognostic

model demonstrating robust predictive performance. Indeed,

effective prediction models are crucial for the treatment of

osteosarcoma patients, given the significant variability in

pathological patterns among patients, which markedly influences

treatment outcomes (49–51). Previous studies have shown that

single genes or proteins can exhibit strong prognostic abilities (52–

54). Metabolic alterations are key factors in cancer development and

progression (55, 56), with sphingolipid metabolism playing a broad

role in disease onset and serving a critical function in cancer

progression and prognosis. It has been demonstrated that

sphingolipid metabolism can modulate iron metabolism (57),

such as ferroptosis, thereby inducing autophagy-related changes

that lead to drug resistance (58). Additionally, sphingolipid

metabolism regulates T lymphocyte calcium channels,
Frontiers in Immunology 10
contributing to tumor immune evasion (13, 59). Studies have

explained the network between copper and aSMase, indicating the

potential regulation mechanism in diseases’ development. However,

no studies have yet disclosed the link between sphingolipid and

copper metabolism in osteosarcoma. In our research, we identified

seven cuproptosis-related sphingolipid metabolism genes

(cuproptosis-SPGs) and clarified the connection between

cuproptosis and sphingolipids (Figure 4). Extracellular structure

organization may be a crucial hub in the cuproptosis-SPGs process

(Figure 3E). The extracellular matrix (ECM) and other components

provide structural and biochemical support to surrounding cells,

facilitate intercellular communication, and influence cellular

functions such as differentiation, migration, and adhesion.

Sphingolipids are involved in the formation of focal adhesions

(FAs), affecting the migratory capacity of cancer cells (60, 61).

Our study found that knockdown of the cuproptosis-SPG gene

ABCA2 significantly inhibited the migration ability of osteosarcoma

cells (Figures 11C, F), suggesting that the sphingolipid-cuproptosis

metabolic network jointly influences the formation of focal

adhesions, thereby regulating cancer cell migration.

Drug resistance remains one of the greatest obstacles to

successful cancer therapy (62, 63). Due to tumor heterogeneity,

the molecular expression patterns vary among cancer patients (64–

66), leading to significant differences in responses to anti-cancer

treatments (67, 68). Based on cuproptosis-SPGs, we stratified

osteosarcoma patients into high-risk and low-risk groups. The

study demonstrated that the sphingolipid-cuproptosis metabolic
B

C D

A

FIGURE 6

Analysis of GO terms in osteosarcoma patients. (A, B) Upregulated and downregulated gene sets in GOMF. (C, D) Upregulated and downregulated
gene sets in GOCC.
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network affects osteosarcoma patients’ drug sensitivity (Figure 10).

Research by Vu NT et al. found that sphingolipids can regulate

mitochondrial functions to drive ferroptosis in tumors, thereby

altering tumor cell sensitivity to cisplatin (58). Our research is the

first to reveal the significant role of the sphingolipid-cuproptosis

metabolic network in osteosarcoma drug sensitivity and

preliminarily identified autophagy and MAPK as key downstream

regulatory pathways (Figure 11K).

Osteosarcoma patients exhibit unique immune infiltration

characteristics associated with poor prognosis (69). Stratification
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of cancer patients based on multi-omics data facilitates the

guidance of precision treatment strategies (70–72). Our study,

using seven core cuproptosis-SPGs, developed a prognostic model

that demonstrated excellent predictive performance (Figure 1F),

offering clinical benefits to stratified osteosarcoma patients.

Interestingly, different stratifications of osteosarcoma patients

showed distinct immune infiltration. As delineated by the

single-cell analysis, monocytes/macrophages represent the

predominant cell type within the osteosarcoma tissue matrix,

followed by CD8+ T cells (Figure 5A). These observations
B C

D E

A

FIGURE 7

Cell communication. (A) Expression profiles of cuproptosis-SPGs within cellular subgroups clusters. (B–D) Interactions among Mono/Macro, T cells,
and malignant cells within the osteosarcoma cellular subgroups. (E) Transcription factor regulation of osteosarcoma cells.
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suggest that cuproptosis-SPGs may predominantly influence the

infiltration levels of these two cell types. Subsequent multi-omic

analyses revealed that within the macrophage population, the M0,

M1, and M2 phenotypes indeed constituted the majority
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(Figure 8B). However, no significant differences were observed

in the macrophage infiltration levels between the high-risk and

low-risk groups, indicating that macrophage seems to influence

limited in the progression of osteosarcoma. Notably, CD8 T cells,
B

C

D

A

FIGURE 8

Immune features of cuproptosis-SPGs classified osteosarcoma subtypes. (A) UMAP visualization showcases the expression levels of cuproptosis-
SPGs within immune cells. (B) CIBERSORT reveals the proportions of immune cell components in osteosarcoma patients. (C) The level of immune
cell infiltration for each osteosarcoma patient is illustrated. (D) Variations in immune cell infiltration between high-risk and low-risk osteosarcoma
patients are delineated.
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crucial for effective recognition and killing of tumor cells during

the immune response (73, 74), were observed to have lower

infiltration levels in high-risk osteosarcoma patients compared

to those at low risk (Figure 8D). This suggests that the

sphingolipid-cuproptosis metabolic network participates in the

recruitment of CD8 T cells. Therefore, targeting cuproptosis-SPGs
Frontiers in Immunology 13
may enhance the efficacy of immunotherapies such as CAR-T in

combating osteosarcoma.

Although our study has revealed the impact of cuproptosis-

SPGs on the immune microenvironment and drug sensitivity in

osteosarcoma, and has preliminarily identified potential

regulatory mechanisms, there are several limitations to be
B

A

FIGURE 9

The association between immune cells and riskscore. (A) Correlation exists between CD8 T cells, Treg cells, NK cells, and riskscore. (B) The
correlation between CD8 T cells, Treg cells, NK cells, and cuproptosis-SPGs.
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acknowledged. Firstly, more osteosarcoma samples need to be

collected to adjust the reliability and applicability of the model.

Secondly, despite single-cell analysis revealing the immune

infiltration landscape, these conclusions still require further

validation in in vivo experiments. Similarly, experiments on

drug sensitivity also need further validation in in vivo

experiments. In future studies, we will delve deeper into in vivo

mechanistic research to elucidate the significant role of

cuproptosis-SPGs in the progression of osteosarcoma.
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5 Conclusion

In summary, by integrating multi-omics datasets and single-cell

analysis methods, our study explored the interplay between

cuproptosis and sphingolipid metabolism and identified seven

cuproptosis-related sphingolipid metabolism genes (cuproptosis-

SPGs), used to construct a prognostic model for osteosarcoma

patients. Our results delineate the value of this model in

predicting patient outcomes and treatment efficacy, elucidate the
FIGURE 10

Drug sensitivity prediction.
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regulation of immune cell infiltration by cuproptosis-SPGs, and

validate these effects through cellular experiments. This study

provides a theoretical foundation for future osteosarcoma studies

focusing on copper ion metabolism therapies, highlighting

the interactions.
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FIGURE 11

The impact of ABCA2 on tumor migration ability. (A) CCK-8 cell viability examination. (B) Bar graph showing the synergistic effect of ABCA2
inhibition at different concentrations of Roscovitine. (C) Transwell assay demonstrating osteosarcoma cells crossing through chambers after
interference with ABCA2. (D, E) Bar graph and scatter plot illustrating the influence of ABCA2 on osteosarcoma cell migration capability. (F) Wound-
healing assay showing migrated osteosarcoma cells after interference with ABCA2. (G, H) Bar graph and scatter plot demonstrating the inhibition of
osteosarcoma cell migration capability by ABCA2. (I, J) Flow cytometry tests. (K, L) Western blot shows the influence of inhibition of ABCA2.
(*P < 0.05, **P< 0.01, ***P< 0.001).
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