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Conditions such as acute pancreatitis, ulcerative colitis, delayed graft function

and infections caused by a variety of microorganisms, including gram-positive

and gram-negative organisms, increase the risk of sepsis and therefore mortality.

Immune dysfunction is a characterization of sepsis, so timely and effective

treatment strategies are needed. The conventional approaches, such as

antibiotic-based treatments, face challenges such as antibiotic resistance, and

cytokine-based treatments have shown limited efficacy. To address these

limitations, a novel approach focusing on membrane receptors, the initiators of

the inflammatory cascade, is proposed. Membrane receptors such as Toll-like

receptors, interleukin-1 receptor, endothelial protein C receptor, m-opioid
receptor, triggering receptor expressed on myeloid cells 1, and G-protein

coupled receptors play pivotal roles in the inflammatory response, offering

opportunities for rapid regulation. Various membrane receptor blockade

strategies have demonstrated efficacy in both preclinical and clinical studies.

These membrane receptor blockades act as early stage inflammation

modulators, providing faster responses compared to conventional therapies.

Importantly, these blockers exhibit immunomodulatory capabilities without

inducing complete immunosuppression. Finally, this review underscores the

critical need for early intervention in acute inflammatory and infectious

diseases, particularly those posing a risk of progressing to sepsis. And,

exploring membrane receptor blockade as an adjunctive treatment for acute

inflammatory and infectious diseases presents a promising avenue. These novel

approaches, when combined with antibiotics, have the potential to enhance

patient outcomes, particularly in conditions prone to sepsis, while minimizing

risks associated with antibiotic resistance and immune suppression.
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GRAPHICAL ABSTRACT
1 Introduction

The intricate interplay between acute inflammatory diseases,

infectious diseases, and the development of sepsis poses a serious

challenge in modern healthcare (1). The timely intervention in these

diseases after their inception is of paramount importance (2–4).

Without initial treatment, these diseases progress and a substantial

number of patients develop sepsis, which is a life-threatening

condition due to a dysregulated host response to infection (5).

Sepsis has a high mortality rate (6). Sepsis affects nearly 49 million

people globally each year, resulting in approximately 11 million

deaths. These figures highlight sepsis as one of the major causes of

mortality worldwide, accounting for about 20% of all deaths (7). The

economic impact is substantial, with global healthcare systems

incurring billions of dollars annually due to long hospital stays and

intensive medical interventions (8). Particularly in regions with

limited healthcare infrastructure, the burden of sepsis is high, and

the prevalence of antibiotic-resistant infections further exacerbates

these challenges (9). Antimicrobial resistance (AMR) significantly
Frontiers in Immunology 02
impedes effective treatment options, extending the duration of illness

and increasing both mortality rates and healthcare costs (10).

Understanding the biological mechanisms that lead from initial

infection to sepsis is crucial. This involves delving into the

molecular intricacies that govern the immune response during the

early stages of these diseases.

Intricate signaling pathways are involved in the early stages of these

diseases. Intracellular signaling cascades are initiated by the recognition

of endogenous damage-associated molecular patterns (DAMPs) or

exogenous pathogen-associated molecular patterns (PAMPs) by

pattern recognition receptors (PRRs) (11, 12). This cascade activates

immune responses involving cytokines, alarmins, and other mediators,

aimed at eliminating pathogens and maintaining cellular homeostasis

(13, 14). However, within the context of inflammatory diseases, certain

signaling pathways are dysregulated, leading to the overproduction of

proinflammatory cytokines and alarmins (15). The resulting excessive

systemic inflammation and immune suppression contribute to disease

severity (16). Given the complexities of these pathways, it becomes

evident why traditional treatment strategies often fall short. This segues
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1424768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mun et al. 10.3389/fimmu.2024.1424768
into a discussion of how conventional treatments typically approach

these challenges, and why there’s a pressing need for innovative

therapeutic strategies.

The conventional treatments for sepsis, which includes acute

inflammatory and infectious diseases, often involve the use of

antibiotics such as cefepime, piperacillin-tazobactam, and

ceftobiprole as the primary intervention (17, 18). These antibiotics

work by targeting and killing the bacteria responsible for the

infection, thus reducing the bacterial load and aiding in infection

control. Additionally, standard sepsis treatments include supportive

measures like fluid resuscitation, vasopressors, mechanical

ventilation, and renal replacement therapy to stabilize patients and

maintain vital organ function, but these do not directly address the

underlying infection (19, 20). These supportive measures are essential

for maintaining patient stability and managing the immediate life-

threatening symptoms of sepsis. However, they do not directly target

the underlying infection or the immune dysregulation associated with

sepsis. In addition to these challenges, the efficiency of antibiotic

treatments may be impaired due to the emergence of antibiotic

resistance and delayed drug response. For instance, methicillin-

resistant Staphylococcus aureus (MRSA) and carbapenem-resistant

Enterobacteriaceae (CRE) are examples of antibiotic-resistant

bacteria that complicate sepsis treatment, leading to higher

mortality rates (8, 21). These resistant strains are not effectively

killed by standard antibiotics, necessitating the use of alternative or

combination therapies, which may not always be readily available or

as effective. Moreover, delays in administering appropriate

antibiotics, often due to the time required for microbial culture and

sensitivity testing, can result in worsening patient outcomes. Early

and appropriate antibiotic administration is critical for improving

sepsis survival rates; however, the need for precise identification of

the causative pathogen can lead to significant delays in treatment

initiation (22–24). To address these issues, recent approaches have

focused on the coadministration of antibiotics with other therapeutic

agents that can modulate the immune response. Inflammatory

regulators are a representative example of such combination

therapies. These agents target various components of the

inflammatory signaling pathway, including membrane receptors

and intermediate substances (25–28). This evolution in treatment

underscores the growing importance of targeting specific

components of the inflammatory cascade, which leads us to

examine innovative methods for inflammation regulation that

address broader issues such as sepsis and antibiotic resistance.

Among the new methods for regulating inflammation, membrane

receptor blockade can be used to address the issues related to sepsis,

antibiotic resistance, and the use of conventional treatments (29).

Therapeutic candidates targeting membrane receptors show the

ability to rapidly control inflammation (30–32), so could be

effectively applied for the treatment of acute inflammatory diseases,

infectious diseases, and sepsis, for which the initial treatment is crucial.

Membrane-receptor-targeting substances have immunomodulatory

abilities to restore immune function rather than just inducing

complete immunosuppression (33, 34). It is important to distinguish

between immunosuppressants and immunomodulators.

Immunosuppressants are characterized by low therapeutic indexes,

meaning there are close windows between therapeutic ranges and toxic
Frontiers in Immunology 03
zones. They also exhibit significant intra- and interindividual drug

kinetic variations. These shortcomings are mitigated by correct drug

doses, which are calculated based on ideal body weight (a calculated

weight considered optimal for health) or lighter body weight (used to

avoid overdosing in underweight patients). Additionally, end-organ

toxicity testing and, in some cases, close monitoring of plasma drug

levels (parent or metabolite peak and depth levels) are used. In contrast,

immunomodulators have a broader therapeutic index, a higher safety

margin, more predictable drug behavior properties and fewer intra-

individual variability. In addition, although immunosuppressants

typically affect host immune reactions globally, immunomodulators

can act selectively on specific parts of the immune system and therefore

reduce the risk of complications related to immune failure (35). In this

context, the drugs investigated in the referenced papers did not induce

cytotoxicity or cell death.

This review presents new therapeutic approaches for acute

inflammatory and infectious diseases that increase the risk of sepsis, as

well as complementary methods to enhance current sepsis treatments.
2 Methodology

For this review, we utilized PubMed and ClinicalTrials.gov to

search the literature using specific terms, including ‘sepsis,’ ‘membrane

receptor blockade,’ ‘damage-associated molecular patterns,’

‘pathogen-associated molecular patterns,’ and ‘inflammation.’ Our

focus was on English-language articles that present original research,

prioritizing significant and relevant studies in the domain. Although

our search was not restricted by publication date, we made a concerted

effort to cite the most recent studies, generally avoiding references

older than ten years.
3 Acute inflammatory and infectious
diseases, and their correlation
with sepsis

Acute pancreatitis (AP) often progresses to severe acute

pancreatitis (SAP), where systemic inflammation frequently leads

to multiple organ dysfunction syndrome (MODS) and, in some

instances, sepsis, significantly increasing mortality in about 20% of

these cases (36, 37). Moreover, AP results in the breakdown of

bacterial translocation and intestinal integrity, and an increased risk

of infection (38). Ulcerative colitis (UC) is a chronic inflammatory

condition that can lead to acute kidney injury, which is associated

with septic shock (39). In addition, delayed graft function (DGF),

which occurs in one in five patients receiving organ transplant,

provides a favorable environment for sepsis because repeated

biopsies of the transplanted organs are required (40). Patients with

acute inflammatory and infectious diseases and those who have

undergone DGF frequently develop sepsis, a systemic inflammatory

disease with a remarkably high mortality rate (41). Furthermore,

infections caused by injury can lead to sepsis. Sepsis can occur due to

other infections, such as viruses and fungi, but most infections are

caused by bacteria. Bacteria are classified into Gram-negative and
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Gram-positive types and are both capable of causing sepsis; however,

they have distinct differences. The most commonly isolated bacteria

in sepsis are Staphylococcus aureus (S. aureus), Streptococcus pyogenes

(S. pyogenes), Klebsiella species (Klebsiella spp.), Escherichia coli (E.

coli), and Pseudomonas aeruginosa (P. aeruginosa). To cause disease,

pathogens must use a number of factors called virulence factors to

protect themselves from host innate immune system, to cross mucous

membrane barriers, to spread, and to replicate to distant organs (42,

43). To understand the factors causing bacterial pathogenicity, it is

crucial to study how pathogenic agents escape host immune systems,

cross mucous membrane barriers, spread, and replicate in distant

organs. For example, S. aureus and S. pyogenes infect primarily the

skin and lung and activate toll-like receptor (TLR) 2. Some alleles of

the TLR2 pathway are associated with an increase in sensitivity and

severity to sepsis caused by large Gram-positive pathogens such as S.

aureus (44–47). Klebsiella spp. infects a variety of sites including the

lungs, urinary tracts, blood vessels, wounds, surgery, and the brain.

TLR2 recognizes the OmpA of Klebsiella pneumoniae (K.

pneumoniae) and activates the NF-kB signal, while TLR4

recognizes the LPS and K1-CPS of K. pneumoniae (48–50). E. coli,

commonly linked to intestinal diseases, also significantly contributes

to systemic infections like sepsis. Additionally, pathogenic E. coli,

especially strains like uropathogenic E. coli (UPEC), can cause severe

conditions such as bacteremia and sepsis. These extraintestinal

infections caused by pathogenic E. coli are the leading cause of

sepsis in healthcare environments and communities (51–53). P.

aeruginosa is a common pathogen found in severe burn injuries

and is associated with various nosocomial infections such as

pneumonia, surgical wounds, urinary tract infections, and bacterial

infections. Signals induced by TLR4 and flagellin mediate the acute

inflammatory response of pseudomonas, while TLR2 plays a counter-

regulatory role. The myeloid differentiation primary response 88

(MyD88)-dependent pathways, as well as the pathways downstream

of TLR2, TLR4 and TLR5, are necessary for lung defense against P.

aeruginosa (54, 55). Sepsis is an inflammatory response in the host to

serious infections that pose a threat to life and accompany organ

dysfunctions (56) and initiates a complex interaction of host pro-

inflammatory and anti-inflammatory processes. Sepsis involves

dynamic interaction between the host immune system and

pathogens (57), the result of which depends on a delicate balance

between anti-inflammatory and pro-inflammatory pathways. Septic

shocks are a subgroup of sepsis with profound circulatory, cellular

and metabolic abnormalities that are associated with a higher

mortality risk than sepsis alone. In the current definition of sepsis,

the term “abnormal regulation and host response” is not explicitly

defined, but is conceptualized as a maladaptive response within the

immune and non-immune systems that leads to organ failure and

death (58). In the sepsis context, adherence to an initial treatment

response timeframe is crucial for controlling mortality rates (59). As

such, there is an increasing need for a novel approach that includes

the use of inflammatory regulators as adjunctive therapy with

antibiotics, not only to manage the excessive inflammation caused

by sepsis but also to prevent septic shock and organ dysfunction,

thereby effectively controlling and preventing the progression of

sepsis within the required timeframe.
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4 Signaling pathways and limitations
of acute inflammatory and infectious
disease treatment

When inflammatory and infectious diseases develop, a cascade of

events is set in motion, including the release of DAMPs and PAMPs,

leading to cellular damage (Figure 1). At the onset of these diseases,

the host recognizes endogenous DAMPs or PAMPs, which interact

with membrane proteins such as a series of PRRs located on the cell

membrane or in the intracellular space (60, 61). Intracellular

signaling pathways are activated, culminating in the production of

diverse end-products with the potential to serve as DAMPs. DAMPs

and PAMPs interact and directly bind tomembrane receptors such as

TLRs, interleukin-1 receptor (IL-1R), C-type lectin receptors (dectin

1 and dectin 2), and receptor for advanced glycation end products

(RAGE) (62–64). As a result of these interactions, interferon

regulatory factor (IRF) (which is responsible for the production of

type I interferon (IFN)) (65), nuclear factor-kB (NF-kB), and the

activator protein 1 signaling pathway (which is involved in the early

activation of genes encoding inflammatory and endothelial cell

surface molecules) are activated (66). DAMPs and PAMPs are

recognized by various membrane receptors, initiating intracellular

signaling cascades. PRRs encompass diverse membrane receptors,

which are activated in a cell-specific manner. To identify which

membrane receptor activation is responsible for initiating the

intracellular signaling cascades in specific cells, we referred to

Human Protein Atlas data. Among endothelial, epithelial, adaptive

immune cells, and innate immune cells, innate immune cells,

including Macrophages, Dendritic cells, and neutrophils, expressed

TLR2, TLR4, and Dectin 1 most abundantly. endothelial protein C

receptor (EPCR), Dectin 2, IL1R, and RAGE were predominantly

expressed in epithelial cells. Notably, TLR2 was highly expressed in

epithelial cells following innate immune cells, while TLR4 showed a

sequence of expression in innate immune cells, followed by

endothelial cells, and then epithelial cells. EPCR exhibited

abundant expression in epithelial cells, followed by endothelial

cells, adaptive immune cells, and innate immune cells, while Dectin

2 was prominently expressed in epithelial cells followed by innate

immune cells. IL1R demonstrated significant expression in epithelial

cells, followed by immune cells and endothelial cells, whereas RAGE

showed prominent expression in epithelial cells followed by immune

cells. We posit that such differential expression of these membrane

receptors contributes to cell-specific membrane receptor activation.

Immune cells can engage and interact with complex intracellular

signaling systems, leading to the activation of the innate immune

responses aimed at eliminating invading pathogens and maintaining

cellular homeostasis (67). However, under the conditions in

inflammatory and infectious diseases, specific host signaling

pathways are drastically upregulated, resulting in the robust release

of cytokines (such as tumor necrosis factor (TNF)-a, interleukin-1
(IL-1) and interlukin-6 (IL-6)) and alarmins proteins (such as high

mobility group box 1 (HMGB1) and S100 family proteins) (68–70).

These cytokines and alarmins act as potent mediators that contribute

to immunosuppression and excessive systemic inflammation.
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Numerous factors operating at the endogenous level are central to

the regulation of the inflammatory response; therapeutic strategies

aimed at controlling these factors are under development.

Furthermore, drugs such as pentoxifylline, simvastatin, N-acetyl

cysteine (NAC), tofacitinib, hydrocortisone, cobitolimod, and

ulinastatin (UTI), which target endogenously positioned molecules

such as phosphodiesterase, 3-hydroxy-3-methylglutaryl coenzyme A

(HMG-CoA) reductase, glutathione synthetase, inhibitor of nuclear

factor kappa B (IkB) kinases, Janus kinase (JAK), glucocorticoid

receptor, TLR9, and serine protease, are currently the focus of clinical

trials (Table 1) (71–77). Given the complex interplay of signaling

pathways and mediators involved in inflammation, targeted
Frontiers in Immunology 05
therapeutic interventions are necessary to modulate these processes

effectively. The following section describes how specific drugs in

clinical trials aim to manipulate these mechanisms to mitigate the

inflammatory response.
4.1 Phosphodiesterase

Pentoxifylline - Pentoxifylline activates the adenosine receptor

2 by non-selective inhibition of phosphodiesterase enzymes and

anti-inflammatory effects, leading to an increase in cyclic adenosine

monophosphate (cAMP). The activation of protein kinase A (PKA)
B

A

FIGURE 1

Mechanism of inflammatory and infectious diseases develop. (A) Variations in pattern recognition receptor (PRR) expression are cell-specific. The
receptors named for each cell type reflect their high level of expression, as determined by the Human Protein Atlas data. (B) In the early stages of
inflammatory and infectious diseases, the host recognizes DAMPs or PAMPs. DAMPs and PAMPs directly bind to membrane receptors such as TLRs,
IL-1R, C-type lectin receptors, RAGE, TREM-1, and GPCR. This interaction triggers the activation of key signaling pathways, including IRF, responsible
for IFN production, NF-kB signaling pathway. Signaling pathways are significantly upregulated, resulting in the robust release of cytokines such as
TNF-a, IL-1, and IL-6, as well as DAMPs like HMGB1 and S100 family proteins.
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via cAMP suppresses the nuclear transfer of NF-kB and suppresses

the transcription of inflammatory cytokines (78).
4.2 HMG-CoA reductase

Simvastatin - HMG-CoA reductase inhibitors (statins) may

have a beneficial effect through various mechanisms of sepsis

syndrome. Statin, inhibition of HMG-CoA reductase, not only

reduces cholesterol levels but also decreases cholesterol-synthesis

intermediates that affect intracellular signaling, cytokine expression,

and chemokine regulation. This leads to reduced expression of

adhesion molecules in leukocytes and endothelial cells.

Additionally, statins have immune modulation and anti-coagulant

effects, and evidence suggests they have a direct antimicrobial effect

on bacteria (79).
4.3 Glutathione synthetase and IkB kinases

N-acetyl cysteine - NAC stimulates the synthesis of the main

cell reduced Glutathione (GSH), regulates the redox state of the cell,

and inhibits apoptosis caused by oxidative stress. In addition,

NAC affects the NF-kB signal pathway, which targets IkB kinases

(IKKa and IKKb) that play a key role in this pathway. NAC

regulation of IKKa and IKKb is associated with the suppression

of NF-kB activation induced by external stimuli such as TNF.

Through these mechanisms, NAC improves the regulation of cell

redox and interferes in inflammatory reactions and apoptosis

processes and provides a cell protective effect (80).
4.4 Janus kinase

Tofacitinib - Tofacitinib regulates inflammation by inhibiting

JAKs, which play an essential role in signaling inflammation

mediators. Tofacitinib inhibits JAK1, JAK3, and to a lesser extent,

JAK2. This inhibition blocks STAT protein phosphorylation,

preventing cell gene expression modification. Consequently,

tofacitinib regulates cytokine signaling pathways, reducing

immunogenicity and inflammation in diseases like UC (81).
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4.5 Glucocorticoid receptor

Hydrocortisone - Hydrocortisone binds to glucocorticoid

receptors and has downstream effects such as inhibiting

phospholipase A2, NF-kB, other inflammatory transcription

factors, and promotion of anti-inflammatory genes. Glucocorticoids

inhibit neutrophil apoptosis and decomposition, suppress

phospholipase A2, reduce the formation of acoustic acid

derivatives, suppress NF-kB and other inflammatory transcription

factors, and promote anti-inflammatory genes such as interleukin-10

(IL-10) (82).
4.6 TLR9

Cobitolimod - Cobitolimod is a locally administered

deoxyribonucleic acid (DNA)-based oligonucleotide that interacts

with TLR9. Its clinical efficacy in patients with moderate-to-severe

UC was demonstrated (76). Moreover, cobitolimod induces

regulatory T cells in lymphocytes and antigen-presenting cells,

leading to IL-10 production and the inhibition of TH-17 cells (83).
4.7 Serine protease

Ulinastatin - UTI, also known as a urinary trypsin inhibitor,

inhibits serine proteases and plays a key role in reducing systemic

inflammation and preventing cell apoptosis. The protease inhibitor

inhibits the activation of NF-kB by reducing p38-Mitogen-activated

protein kinase (MAPK) phosphorylation and promoting anti-

inflammatory effects (84).

However, drugs targeting endogenous factors have the

drawback of relatively slower response times (85–88). This

limitation is particularly significant in the context of intracellular

drug delivery, where the efficiency of drug transport across cell

membranes is crucial. Furthermore, if exogenous molecules cannot

pass through cell membranes, it becomes difficult to reach the

cytosol (89). Unlike membrane receptors, which are located on the

cell surface and interact directly with external drugs, intracellular

proteins require drugs to undergo specific steps to cross the cell

membrane and reach their target sites within the cell. In addition, in
TABLE 1 Inflammation modulators targeting endogenous factors and clinical trials.

Compound Target Condition Status Clinical trial ID

Pentoxifylline Phosphodiesterase Pancreatitis Phase 3 NCT02487225

Simvastatin HMG-CoA reductase Sepsis Phase 2 NCT00528580

N-acetylcysteine
Glutathione synthetase,

IkB kinases
Systemic inflammatory
response syndrome

Phase 4 NCT03589495

Tofacitinib Janus kinase Ulcerative colitis Phase 3 NCT01465763

Hydrocortisone Glucocorticoid receptor Septic shock Phase 4 NCT02768740

Cobitolimod
Toll-like receptor 9

(TLR9)
Ulcerative colitis Phase 3 NCT04985968

Ulinastatin Serine protease Septic shock Phase 4 NCT05895240
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the c-induced sepsis animal model, the expression time of MyD88

and its downstream factors appears to be different. Experimental

animal studies have shown a sequence expression of MyD88

between the cecal ligation and puncture (CLP) surgery group and

the sham control group. In addition, CLP surgery significantly

increased the concentration of MyD88 messenger ribonucleic acid

(mRNA) in tissue in 2 hours after Sepsis induction. When MyD88-

dependent TLR signaling pathways are activated, NF-kB is activated

and serum cytokines, including TNF-a, are significantly increased

(90). Therefore, when considering the time required to express

downstream factors, drugs that block the initial signal may have a

faster response time than those that affect downstream factors.
5 Targeting membrane receptors for
rapid regulation in acute inflammatory
and infectious diseases

To improve the limitations of drug response time, it is necessary

to focus on the regulation of membrane receptors that initiate the

inflammatory cascade. Acute inflammatory and infectious diseases

are initiated by receptors located on the cellular membrane. The

intracellular signaling cascades induced by membrane receptors such

as PRRs drive the transcription of the inflammatory mediators that

regulate the elimination of infected cells and pathogens (91).

However, abnormal activation of this inflammatory system triggers

septic shock or immunodeficiency (92). For example, cells rich in

specific PRRs, such as TLRs, IL1R, EPCR, and others, can recognize

PAMPs and DAMPs, leading to excessive inflammation that could

potentially result in septic shocks. On the contrary, if endotoxin

tolerance is established, even though activation is required, PRRs can

remain inactive, leading to an immunosuppressive state (93, 94).

Thus, the efficient regulation of membrane receptor proteins that act

as PRRs might be effective as an early treatment for acute

inflammatory and infectious diseases.

TLRs are the most well-known PRRs due to their crucial role in the

host defense system and their involvement in various pathological

processes such as sepsis (95). The activation of TLRs enables pathogen

elimination through the promotion of the antibacterial activity of

immune cells and the maturation of antigen-presenting cells, which

involves the development of adaptive immunity (96). However,

dysregulation of TLRs can lead to severe disease such as sepsis, AP,

acute UC, and acute lung inflammation (27, 97, 98). TLR4 is a signal-

transducing component of the lipopolysaccharide (LPS) receptor

complex, which includes Myeloid differentiation factor 2 (MD-2) and

cluster of differentiation 14 (CD14). Furthermore, the progression of

LPS-triggered proinflammatory reactions relies solely on the

endocytosis rate of TLR4 and its trafficking via the endolysosomal

compartment (99). Therefore, TLR4 is considered a key therapeutic

target for treating inflammatory and infectious diseases (100, 101),

potentially extending to the treatment of sepsis (102). TLR2 is

expressed on diverse cell surfaces, including immune cells such as

macrophages, dendritic cells, and lymphocytes. The factors recognized

by TLR2 include PAMPs and DAMPs (103). TLR2 is associated with

the development of infectious and inflammatory diseases. TLR2
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promotes the inflammatory response via activation of the MyD88/

NF-kB signaling pathway (104). Furthermore, TLR2 is a therapeutic

target for AP treatment (105). TLR9 was originally discovered as a

sensor of bacterial DNA, which is rich in unmethylated CpG

dinucleotides. However, it can also recognize the DNA released from

damaged cells as a DAMPs, triggering sterile inflammation (106).

IL-1R orchestrates the signaling initiated by important IL-1

pathways involved in various pathogenic processes. Typically, IL-1R

promotes the transcription of inflammatory cytokines via the canonical

NF-kB pathway. However, in certain specialized cell types such as

neurons, it induces inflammation independent of the NF-kB pathway

(107). In addition to these membrane PRRs, EPCR negatively regulates

inflammatory responses and coagulopathy in sepsis (108). Moreover,

the m-opioid receptor (MOR), which is responsible for opioid

recognition, is implicated in exacerbating the immunopathology of

bacterial infections (109). The triggering receptor expressed onmyeloid

cells-1 (TREM-1), stimulated by specific ligands such as DAMPs and

PAMPs during infections or tissue damage, activates the DAP12-

associated Syk signaling pathway. This activation leads to NF-kB
translocation into the nucleus, which in turn upregulates the

production of pro-inflammatory cytokines and chemokines. This

cascade is pivotal in amplifying inflammatory responses, particularly

in sepsis, where such dysregulation can exacerbate the condition (110).

G-protein coupled receptors (GPCRs), a large and diverse family of

transmembrane receptors, play a critical role in a wide range of

physiological processes, including immune responses. These

receptors are activated by various ligands, leading to conformational

changes that facilitate the interaction with and activation of G-proteins.

This interaction results in the dissociation of Ga and Gbg subunits,

which then modulate downstream signaling pathways, influencing

cellular responses. Dysregulation of GPCR signaling has been

implicated in the pathogenesis of numerous diseases, including

sepsis, highlighting their potential as therapeutic targets. For

example, The kinin B1 receptor is involved in sepsis-induced

vascular hyperpermeability, demonstrating the nuanced roles GPCRs

play in immune responses and their potential as therapeutic targets

(111, 112). Also, the C5a–C5a receptor (C5aR) axis plays a critical role

in inflammatory responses, especially in the context of sepsis. Upon

activation by pathogens, the complement system generates C5a, a

potent inflammatory peptide, which interacts with its receptor to

attract immune cells like neutrophils and macrophages, leading to

oxidative bursts and release of pro-inflammatory cytokines. This

cascade contributes to vasodilation, tissue damage, and multiple

organ failure (MOF) in acute inflammation (1, 113).

These membrane receptors are sufficient targets for drugs

administered at the exogenous level and offer the potential for

rapid regulatory effects owing to their high accessibility.
6 Membrane receptor blockade as
treatment for acute inflammatory and
infectious diseases

In the past, exposure to acute inflammation-related diseases

primarily led to the administration of antibiotics to prevent initial
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infections (114). Recognizing the limitations, such as antibiotic

resistance and the emergence of ‘super bugs,’ ongoing research is

exploring the potential of adjunct therapies. Despite some partial

effects of using biological factors in adjunct therapies, a substantial

increase in survival rates was not achieved (115).. Therefore, since

significant effects were not observed with biological factors alone,

various experimental studies are investigating counteractive drugs

targeting PAMPs and DAMPs, which are being explored for their

potential to enhance the efficacy of antibiotics in treating

inflammatory conditions and possibly sepsis (116–118). However,

these approaches are still under investigation and have not yet been

established in medical practice. Although these findings are

preliminary and require further validation, the observed beneficial

effects of co-administering immunomodulators with antibiotics in

treating sepsis and other inflammatory infectious diseases suggest

that continuing research in this direction could be promising. For

example, C10-LRR shows promise as a potential new treatment

option for managing overactive pro-inflammatory cytokine release

by macrophages and could be effectively used to treat severe

inflammatory conditions such as sepsis when combined with

other therapies, including antibiotics or anti-TNFa antibodies

(119). siTACE (TNF-a converting enzyme) reduces pro-

inflammatory cytokines and the presence of inflammatory

macrophages. TKPR-9R peptides, targeted at macrophages,

enhance the cell-permeability of siRNA both in vitro and in vivo.

When used together in combination therapy, siTACE/TKPR-9R

complexes and antibiotics deliver simultaneous anti-inflammatory

and antibacterial benefits (120). The use of a b-lactam and a

macrolide together was linked to lower mortality rates in patients

suffering from pneumococcal Community-acquired pneumonia

(CAP) and those experiencing intense systemic inflammation. In

cases where both conditions were present, the combination of b-
lactam and macrolide demonstrated a protective effect against

mortality in the multivariate analysis (121). Such approaches have

shown potential in enhancing treatment efficacy, which supports

the need for well-designed, large-scale clinical trials to confirm these

benefits and establish safe and effective treatment protocols

(122–125).

Acute inflammatory and infectious diseases produce a notable

shift in the patterns of inflammatory mediators with disease

progression, characterized by a downregulation of the expression

of proinflammatory cytokines. Concurrently, DAMPs, including

HMGB1, S100 family, and heat shock proteins, are upregulated

(126–128). Notably, the peak TNF-a concentration occurs in the

blood approximately 2 hours after endotoxin injection, whereas the

concentrations of HMGB1 and S100 family protein peak around

12–18 hours after endotoxin injection (129). Moreover, in

experimental studies, after TNF-a reached its peak concentration

in the bloodstream, the administration of specific antibodies to

inhibit HMGB1 resulted in decreased mortality rates (130).

The inhibition of the products of the inflammatory signaling

pathway is effective for disease treatment. The released products,

such as HMGB1, interact extracellularly with cell surface receptors

such as TLRs, triggering signal transduction, which activates

dendritic cells. This activation prompts the secretion of TNF-a
and other proinflammatory cytokines, thereby amplifying the
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inflammatory response (131). Furthermore, these released

products bind to the RAGE on the endothelial cell surface and

induce the expression of ICAM-1 and VCAM-1, facilitating

leukocyte extravasation and promoting tissue damage (132, 133).

Consequently, the release of inflammatory products due to

damaged endothelial or epithelial cells, along with sustained

inflammation mediated by monocytes and dendritic cells, plays a

critical role in the progression of sepsis toward MOF.

Taken together, these findings highlight the potential value of

targeting DAMPs regulation to attenuate the detrimental effects of

inflammatory responses during the later stages of acute

inflammatory and infectious diseases. This suggests that in the

treatment of diseases where the regulation of early inflammation is

crucial, targeting the upstream inflammatory signaling pathway,

rather than solely eliminating the products of the inflammatory

response, may provide high-value drug candidates that overcome

the challenges associated with antibiotics.

Until recently, the majority of acute inflammatory and infection

diseases and DGF research had primarily centered around blocking

the initial hyperinflammatory phase of conditions, which is

mediated by cytokines (134–136). The following sections

introduce exogenous blockers that are the most advanced

membrane receptor blockers, working as early stage inflammation

modulators developed for the treatment of various acute

inflammatory and infectious diseases.
7 Membrane receptor blockade as an
inflammatory regulator

7.1 TLR4

Resatorvid - A widely recognized inhibitor of TLR4 is TAK-

242, which is also known as resatorvid or ethyl-(6R)-[N-(2-chloro-

4-fluorophenyl) sulfamoyl], developed by Takeda Pharmaceutical

Company in Osaka, Japan (137). TAK-242 interacts with cysteine

747 within the intracellular domain of TLR4. This interaction leads

to the inhibition of both MyD88-dependent and MyD88-

independent pathways, which are activated by LPS (138).

Eritoran - Eritoran acts as an antagonist of MD2-TLR4 and

effectively blocks LPS-induced hyperinflammation in in vitro and in

vivo experimental animal models (139). Furthermore, it reduces

phosphorylated p38-MAPK and NF-kB expression levels (140).

NI-0101 - NI-0101 forms an immune complex with the

citrullinated proteins that bind to TLR4, effectively preventing

cytokine release, both in vitro and in vivo. Furthermore, it

successfully suppresses the anticipated increase in C-reactive

protein (CRP) levels following LPS administration in vivo (141, 142).
7.2 TLR2

OPN-305 - OPN-305 blocks TLR2/1- and TLR2/6-mediated

signaling, thereby reducing the production of proinflammatory

cytokines through TLR2, inducing high TLR2 occupancy, and

reducing IL-6 secretion (143). In addition, its role involves the
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inhibition of TLR2-mediated ischemia–reperfusion injury, a

pivotal factor in the pathogenesis of DGF and its subsequent

complications (144).
7.3 IL-1R

Anakinra - Anakinra, an interleukin receptor antagonist,

effectively inhibits the biological function of IL-1 by competitively

inhibiting its binding to IL-1R (145). It is effective in diseases with

severe activation of the NLRP3 inflammasome complex, as

evidenced by rapid improvements in clinical symptoms and

inflammatory markers, and substantial reductions in major

organ-related symptoms (146).
7.4 EPCR

rhAPC - In addition to its role as an anticoagulant that

downregulates thrombin generation, rhAPC binds to EPCR,

activating protease-activated receptor 1 in endothelial cells, thereby

inducing a multifactorial cytoprotective signaling pathway (147).

Furthermore, rhAPC administration decreases the concentration of

proinflammatory cytokines in the bloodstream (148).
7.5 MOR

Naldemedine - Naldemedine interacts with MOR and dose-

dependently inhibits cAMP level reductions and b-arrestin
recruitment increases. Moreover, naldemedine administration

substantially attenuates the upregulation of genes related to

immune checkpoints (149).

As mentioned in this session, compounds capable of interacting

with membrane proteins under various exogenous conditions are

being investigated as therapeutic agents for the treatment of acute

inflammatory and infectious diseases. Furthermore, their efficacy

has been substantiated in clinical trials, as described in Table 2.
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Examining the outcomes of completed clinical trials, phase 3

trials revealed that eritoran was not effective in reducing mortality

rates in severe sepsis patients, a finding that contradicts earlier

phase 1 results and preclinical studies. TAK-242, another

investigational drug, did not decrease cytokine levels or enhance

organ function in patients with severe sepsis-induced shock or

respiratory failure, although some mortality benefits were noted in a

specific subgroup. Post hoc analysis of anakinra suggested a possible

30% reduction in 28-day mortality among patients with liver issues

and disseminated intravascular coagulation (DIC), despite the main

trial showing no overall survival benefits. Additionally, the trial

involving recombinant human activated protein C indicated no

advantages in treating severe septic shock. Finally, the PAMORA-

RAP trial is evaluating the efficacy of naldemedine in preventing

recurrent AP in a randomized controlled setup (150–154).

Although initial clinical phases have shown success, there have

been numerous subsequent failures. However, this does not mean

that immunomodulators lack potential in treating sepsis. One

possible reason for clinical failures could be that blocking the

TLR4 receptor does not completely halt inflammation, as other

PRRs can still recognize various PAMPs or DAMPs and activate

inflammatory gene transcription independently of TLR4 signaling.

Therefore, it could be beneficial to explore research modifying

membrane receptor blockades to interact with a variety of PRRs,

which might enable more rapid and effective control of

inflammation at the start of the signaling pathway.

Although clinical trials have not yet been conducted, efforts to

develop drugs targeting TREM-1 for the treatment of sepsis are

underway. Peptide-based therapies such as LP17, M3, and N1 bind to

TREM-1, reducing inflammatory responses and demonstrating

therapeutic effects in various sepsis models induced through

different methods (155–157). Various types of GPCRs are also

under extensive research as targets for sepsis treatment. BI113823

is an orally active nonpeptide kinin B1 receptor antagonist of small

molecule and is a potent anti-inflammatory agent with a good

cardiovascular profile. BI113823 reduces systemic and tissue

inflammation, prevents hemodynamic derangement, reduces multi-

organ injury, and improves overall survival in the rat model of
TABLE 2 Membrane receptor blockades act as inflammation modulators and clinical trials.

Compound Target Condition Status Clinical trial ID

Eritoran

Toll-like receptor 4
(TLR4)

Sepsis Phase 3 NCT00334828

Resatorvid Sepsis Phase 3 NCT00633477

NI-0101
Acute respiratory
distress syndrome

Phase 2/3 NCT04401475

OPN-305
Toll-like receptor 2

(TLR2)
Delayed graft function Phase 2 NCT01794663

Anakinra
IL-1 receptor

(IL-1R)
Sepsis Phase 2 NCT04990232

rhAPC
Endothelial protein C receptor

(EPCR)
Sepsis Phase 3 NCT00625209

Naldemedine
m-Opioid receptor

(MOR)
Pancreatitis Phase 3 NCT04966559
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polymicrobial sepsis caused by CLP (158). The function of C5aR in

sepsis was also explored using a C5aR antagonist, C5aRa. C5aRa, a

cyclic peptide, competes with C5a to bind to C5aR. In cases of sepsis,

C5aRa treatment hindered the chemotactic responses of neutrophils

to C5a, thereby preventing C5a/C5aR-induced impairment of innate

immunity, resulting in enhanced survival during a 9-day

investigation. These findings additionally underscore C5aR as a

prospective therapeutic target in sepsis (159, 160).

Many sepsis patients may experience a phase of excessive

inflammation for a relatively brief duration. Hyperinflammation

and the onset of MOF manifest over time, with early MOFs posing

a risk of fatality (161). Therefore, it is crucial to promptly diagnose

and initiate appropriate treatment during the early stages of sepsis.

Membrane receptor blockades serve as early inflammation

modulators designed for various acute inflammatory and infectious

diseases. Consequently, they can swiftly counter the initial

inflammatory responses in sepsis, potentially diminishing

inflammation and enhancing treatment outcomes and survival rates.
8 Membrane receptor blockade: novel
approach to address the challenge of
antibiotic resistance in
sepsis treatment

Conditions such as organ transplantation, UC, and AP exhibit

high mortality rates due to sepsis. A swift initial intervention plays a

crucial role in mitigating these mortality rates. In the context of

sepsis, diagnosis and suitable management within the initial hours

after onset result in notably improvements in patient outcomes

(10). In the event of the onset of sepsis, antibiotic treatment must be

quickly initiated, ideally within the first hour (162). Although

conducting relevant culture tests before antibiotic administration

is important, such diagnostic procedures should not delay antibiotic

administration. The administration of an antibiotic combination

effective against the presumed causative bacteria should be

completed within a 3-hour timeframe (163). However, the use of

antibiotic-based combination therapy is advised for a duration not

exceeding 3–5 days, and transitioning to monotherapy based on the

susceptibility results should be promptly considered. Generally, the

antibiotic treatment period spans approximately 7–10 days (164).

The constraint on antibiotic dosing regimens is that as the number

of antimicrobial-resistant bacteria acquired in both community and

healthcare settings increases worldwide, effective antibacterial

therapy becomes increasingly difficult, especially regarding

empirical antimicrobial selection (165).

In the management of acute infections and immune-related

diseases, initial treatment often relies on the essential and

unavoidable administration of excessive doses of antibiotics,

which, over time, can create a formidable barrier known as

antibiotic resistance (24, 166). Inflammatory regulators used for

the treatment of acute inflammation and infectious diseases, which

are applied to solve the problem of antibiotic resistance, can be

categorized into drugs that regulate the entire signaling pathway

and those that regulate factors at the intracellular level (167).
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However, in diseases such as those mentioned above where

timing is crucial, medications focused on rapidly blocking signal

transduction pathways may be more efficient.

Numerous obstacles exist in relying solely on antibiotic-based

treatment for sepsis, which is common practice (168).

Consequently, several researchers have explored the use of

neutralizing-antibody-based inflammation control as adjunct

therapy. However, obtaining meaningful results has been

challenging owing to their diminishing efficacy over time.

Furthermore, the compounds targeting endogenous factors

introduced in Table 1 have a slower response time at the in vitro

level, making it difficult to alleviate the initial symptoms within the

recommended 3-hour timeframe as stipulated by the 3-Hour

Surviving Sepsis Campaign Guideline (59).

Exogenous inflammatory regulators, as described in Table 2,

have relatively prompt inflammation control capabilities in vitro. In

particular, regulatory substances related to TLRs, such as resatorvid

and eritoran, can control inflammation within 1–2 hours of

treatment (169–171). Sepsis is a frequent complication arising

from combat injuries and trauma and is characterized by life-

threatening organ dysfunction resulting from a dysregulated host

response. Although the pathophysiology remains unclear,

immunosuppression is currently acknowledged as a major cause

of the high mortality rate associated with sepsis (172). From this

perspective, inflammatory regulators must not permanently inhibit

the inflammatory mechanism but revert to a normal state once the

initial disease is alleviated. The restoration of cellular mechanisms

to a normal state is evident 24 h after treatment with exogenous

inflammation regulators. Additionally, the expression of TLR4, a

crucial component in the recognition of secondary infectious agents

following sepsis, returns to its preinhibitory state. Furthermore, the

translocation of HMGB1, a significant factor in exacerbating

lesions, can be inhibited at a rate ranging from 60% to 70% (30,

34, 170, 173–175). In other words, since these therapeutic

candidates are not irreversible, they have the ability to modulate

immunity rather than suppress it, thereby facilitating the

restoration of immunity to its natural state.

In summary, patients with various acute inflammatory and

infectious diseases are highly susceptible to sepsis, typically

requiring the initial use of antibiotics. The frequent reliance on

broad-spectrum antibiotics in high doses often leads to antibiotic

resistance, a significant challenge in treatment. To address this,

adjunctive therapies like immunomodulatory agents are explored,

designed to be used alongside antibiotics to enhance treatment

effectiveness. These agents help manage inflammation, providing

valuable time to accurately identify the appropriate antibiotic

treatment, thereby reducing tissue damage and mitigating

antibiotic resistance. Importantly, while antibiotics target the

pathogens, immunomodulatory agents control the excessive

inflammatory responses that could lead to further complications.

This synergistic approach allows for more precise and conservative

use of antibiotics, avoiding high doses or broad-spectrum use, and

protects the body from collateral damage caused by an overactive

immune response. Furthermore, it is important to avoid inducing

immune suppression with inflammatory regulators to prevent

secondary infections and ensure the natural restoration of
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immune function. The novel immunomodulatory agents discussed

in this paper, which target membrane receptors, present a valuable

adjunct approach that enhances the efficacy of antibiotic therapy.

These adjunctive therapies are not intended to replace antibiotics

but to be used concurrently, enhancing their efficacy while

managing inflammation effectively. It is crucial to note that in

clinical trials exploring the co-administration of biological factors

and antibiotics in the treatment of sepsis, antibiotics were never

discontinued (176–178). Instead, these therapies are designed to

complement each other, with the goal of improving outcomes by

mitigating the effects of inflammation and reducing the risk of

resistance development. These immunomodulatory agents, which

target membrane receptors, modulate immune responses, decrease
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inflammation, and mitigate organ harm more rapidly than agents

targeting exogenous factors. Thus, potentially reducing the need for

prolonged antibiotic usage and aiding in patient recovery.
9 Concluding remarks

This review emphasizes the importance of early intervention in

acute inflammatory and infectious diseases, particularly those

associated with the risk of sepsis. AP, UC, and DGF can escalate

to sepsis, resulting in high mortality rates. Timely treatment of

sepsis, which is characterized by a complex interplay of

proinflammatory and anti-inflammatory processes, is crucial to
FIGURE 2

Efficacy of membrane receptor blockade. Membrane receptors blockade holds promise for enhancing patient outcomes, especially in patients prone
to sepsis, all while mitigating the risks associated with antibiotic resistance and immunosuppression.
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effectively control mortality rates. However, antibiotic resistance is a

major problem with antibiotic-based therapy, which the most

common sepsis treatment method. However, the efficiency of

cytokine-based therapy, which was developed to address this

problem, is low.

To improve these treatment methods, new methods of controlling

inflammation must be developed. Current therapeutic strategies

targeting endogenous molecules show promise but suffer from slow

response times. To address this limitation, a novel approach focusing

on membrane receptors, which are initiators of the inflammatory

cascade, was proposed. Membrane receptors such as TLRs, IL-1R,

EPCR, and MOR play crucial roles in the inflammatory response and

provide opportunities for rapid regulation.

Various membrane receptor blockade targeting receptors such

as TLR4, TLR2, IL-1R, EPCR, and MOR have shown efficacy in

preclinical and clinical studies. Despite the lack of evident effects in

clinical trials of TLR inhibitors for the treatment of sepsis, these

failures have provided crucial information for future research.

Specifically, TLR4 inhibitors such as Eritoran and Resatorvid have

been safely permitted in clinical trials, laying the groundwork for

subsequent studies. The failures in clinical trials have been

attributed to various factors, including patient diversity,

inflammation severity, and differences in infecting pathogens.

Therefore, there is a suggestion for the need to explore diverse

treatments and combinations in future clinical studies. And

Membrane receptor blockers act as early stage inflammation

modulators and produce a faster response than traditional

therapies. Furthermore, the reviewed membrane-targeting

substances demonstrate immunomodulatory capabilities without

inducing complete immunosuppression, allowing the restoration of

natural immune functioning.

In summary, the exploration of membrane receptor blockade as

an adjunct treatment for acute inflammatory and infectious

diseases is a promising research avenue. When combined with

antibiotics, these novel approaches have the potential to improve

patient outcomes, especially in patients prone to sepsis, while

minimizing the risks associated with antibiotic resistance and

immunosuppression (Figure 2).
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