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Background: T lymphocytes, integral to the adaptive immune system, wield

pivotal influence in bolstering anti-tumor responses, and are strictly regulated by

ubiquitination modification. The objective of this investigation was to devise a

novel prognostic and immunotherapeutic efficacy predictor for hepatocellular

carcinoma patients utilizing T cell-related ubiquitination genes (TCRUG).

Method: The single-cell RNA sequencing (scRNA-seq) data and bulk RNA data of

HCC patients are derived from the GEO database and TCGA database. Based on

the processing of scRNA-seq, T cell marker genes are obtained and TCRUG is

obtained. Further combined with WGCNA, differential analysis, univariate Cox

regression analysis, LASSO analysis, and multivariate Cox regression analysis to

filter and screen TCRUG. Finally construct a riskscore for predicting the prognosis

of HCC patients, the predictive effect of which is validated in the GEO dataset. In

addition, we also studied the correlation between riskscore and immunotherapy

efficacy. Finally, the oncogenic role of UBE2E1 in HCC was explored through

various in vitro experiments.

Result: Based on patients’ scRNA-seq data, we finally obtained 3050 T cell marker

genes. Combined with bulk RNA data and clinical data from the TCGA database,

we constructed a riskscore that accurately predicts the prognosis of HCC patients.

This riskscore is an independent prognostic factor for HCC and is used to construct

a convenient column chart. In addition, we found that the high-risk group is more

suitable for immunotherapy. Finally, the proliferation, migration, and invasion

abilities of HCC cells significantly decreased after UBE2E1 expression reduction.

Conclusion: This study developed a riskscore based on TCRUG that can

accurately and stably predict the prognosis of HCC patients. This riskscore is

also effective in predicting the immune therapy response of HCC patients.
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1 Introduction

Primary liver cancer claims approximately 830,000 lives annually,

making it one of the deadliest cancers (1). Hepatocellular carcinoma

(HCC) constitutes around 90% of primary liver cancer cases (2, 3). It

is noteworthy that the incidence and mortality rates of liver cancer

are projected to continue increasing (4). As most HCC patients are

diagnosed at advanced stages, curative treatments such as surgery are

no longer feasible. Immunotherapy has emerged as a promising novel

approach for treating advanced-stage HCC patients, although it

remains highly challenging (5, 6). Despite this, the prognosis for

HCC patients remains dismal, underscoring the need to focus on the

immune microenvironment to identify robust biomarkers for

predicting prognosis and response to immunotherapy in

HCC patients.

The tumor microenvironment (TME) of HCC is a complex

ecosystem involving various cell types, including tumor cells,

immune cells, and fibroblasts (7). The interactions between these

cells play a crucial role in tumor progression (8). In particular,

dysfunction of the innate and adaptive immune systems may lead to

the generation of an immunosuppressive TME, resulting in immune

evasion (9, 10). T cells, as key members of the adaptive immune

response, play an important role in HCC. However, continuous

stimulation of tumor antigens often leads to T cell dysfunction,

affecting T cell-mediated antitumor immune response (11). Some

scholars believe that the gene regulatory programs controlling T cell

dysfunction are highly conserved, suggesting that while the specific

mechanisms of T cell dysfunction may vary among different tumor

types, they may share common regulatory mechanisms at the genetic

level (12). Given the critical role of T cells in HCC and their key role in

immune evasion, it is important to study comprehensively the

combined effects of T cell marker genes in HCC.

Activation of the adaptive immune system can affect various

physiological processes, including protein homeostasis, antigen

processing, signal transduction, etc., all of which are regulated by

ubiquitination modification (13). Ubiquitination modification is an

important post-translational modification, which plays an

indispensable role in ensuring the normal function of immune cells

(14). Studies have shown that silencing the MYH9 gene can inhibit

the ubiquitination and degradation process of GSK3b induced by

HBx, thereby achieving the effect of inhibiting the tumor stemness of

hepatocellular carcinoma (15). Additionally, by promoting the

ubiquitination of UVRAG, SMURF1 enhances the function of

autophagosomes, effectively inhibiting the growth of hepatocellular

carcinoma (16). Therefore, in this study, we focus on exploring the

ubiquitination family molecules in T cell marker genes. We believe

that analyzing T cell function from the perspective of ubiquitination

is a highly promising research direction.

In this study, we performed dimensionality reduction on

scRNA-seq data to reveal unique immune cell subtypes in HCC

and identified 3050 T cell marker genes. In addition, we further

integrated bulk RNA data to construct a riskscore that accurately

predicts the prognosis and immunotherapy outcomes of HCC

patients. Most importantly, we identified the key gene UBE2E1’s

oncogenic role in HCC in vitro.
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2 Methods and materials

2.1 Dataset download

Initially, transcriptome data and clinical information of liver

cancer were screened from the TCGA database (https://

portal.gdc.cancer.gov/), obtaining a total of 374 liver cancer

samples and 50 normal samples. The clinical information included

data on survival time, survival status, age, sex, and TNM staging.

Additionally, liver cancer bulk datasets GSE14520 and GSE36376, as

well as scRNA-seq dataset GSE149614, were downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/). After strict

screening, a total of 221 liver cancer samples were selected from

the GSE14520 dataset for further analysis, while the GSE149614

dataset contained 10 liver cancer samples.
2.2 Single cell sequencing analysis

Single-cell sequencing analysis is an advanced high-throughput

sequencing technology aimed at deeply sequencing the transcriptomes

of individual cells. Through this technology, we can gain insights into

the functional differences and expression characteristics among

different cell types, as well as the heterogeneity within individual

cells. At the beginning of the analysis, we conducted meticulous

screening of the sequencing data to ensure data quality and excluded

poorly performing samples. Subsequently, the Seurat package was used

to further analyze the filtered dataset (17), and cell samples were

reasonably clustered using PCA and t-SNE dimensionality reduction

techniques. To further resolve cell types, the SingleR package was

employed for precise cell type annotation and key gene selection in

single-cell data (18).
2.3 WGCNA analysis

WGCNA is a method that assists researchers in extracting key

information from high-throughput gene expression data to reveal the

structure and function of gene regulatory networks (19). The functions

of WGCNA include identifying gene modules, identifying potential

biomarkers, associating genemodules with clinical features, conducting

functional enrichment analysis, and constructing gene regulatory

networks. In this study, we specifically selected the intersection genes

of T cell-related genes and ubiquitination-related genes to construct a

gene co-expression network. Subsequently, we screened for modules

closely associated with survival time for further analysis.
2.4 Modeling construction and validation

We utilized the lasso algorithm to select prognosis-related key

genes and employed Cox analysis to construct a prognostic model

(20). Through this model, we calculated the riskscore for each

patient, followed by a comprehensive assessment of the roles of

these key molecules in the prognosis of liver cancer patients.
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The riskscore for each liver cancer patient was calculated using

the following formula:

riskscore = ½Expression of UBE2E1 � coefficient� 
+  ½Expression of PSMD1 � coefficient�
+ ½Expression of FBXL5� coefficient�
+ ½Expression of RNF10 � coefficient�
+ ½Expression of IVNS1ABP � coefficient�

The TCGA dataset was partitioned into training and validation

subsets, with additional validation performed using the GSE14520

dataset. Kaplan-Meier survival curve analysis was conducted to assess

the prognosis of patients in different groups. The risk survival curve

was utilized to evaluate the survival and death statuses of patients in the

high and low-risk groups. We also employed heatmaps to illustrate the

differences in key genes between the two groups in the constructed

model. ROC curves were employed to determine the predictive

performance of the model’s riskscore and various clinical features for

disease prediction. Cox regression was utilized to evaluate the

predictive performance of the model’s riskscore and various clinical

features for disease prognosis. The nomogram was constructed using

riskscore and various clinical features to assess the prognosis of

different patients at 1, 3, and 5 years. Calibration curves were used to

predict whether the predictive performance of the clinical model was

close to the actual situation. ROC curves and KM curves further

validated the reliability of the model.
2.5 Immunoassay

This study employed the ssGSEA algorithm to accurately calculate

the infiltration abundance of 28 immune cell types in each liver cancer

patient and analyzed the correlation between riskscore and immune

cells (21, 22). MSI, as an important prognostic factor and treatment

target in tumors, its score differences between high and low-risk groups

can effectively predict the efficacy of immunotherapy. Meanwhile, we

introduced the tumor stemness index as an indicator to evaluate the

similarity between tumor cells and stem cells, and predicted the degree

of tumor dedifferentiation based on the differences in stemness scores

between high and low-risk groups. To further evaluate the relationship

between riskscore and immunotherapy, we conducted Spearman

correlation analysis, calculated the correlation between riskscore and

MMR and immune checkpoints, thus evaluating the potential value of

riskscore in predicting the efficacy of immunotherapy (20). In addition,

we also utilized the IMgivor210 dataset, which records the sequencing

data and clinical information of patients receiving PD-L1 inhibitor

treatment, to predict the efficacy of immunotherapy in different liver

cancer patients.
2.6 Drug sensitivity analysis and
mutation analysis

Chemotherapy is a treatment method that uses chemical drugs

to treat cancer and other diseases. Chemotherapeutic drugs can
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intervene in the growth and division of cancer cells in different

ways, thereby inhibiting the proliferation or killing of cancer cells.

We used the “oncopredict” package to evaluate the sensitivity of 8

chemotherapy drugs related to liver cancer, including 5-

Fluorouracil, Camptothecin, Cisplatin, Sorafenib, Vinblastine,

Oxaliplatin, Gemcitabine, Irinotecan (23, 24). The effectiveness of

drugs was predicted by analyzing the IC50 scores between high and

low-risk groups. Mutation analysis is the process of detecting,

describing, classifying, and interpreting mutations that occur in

biological samples. In mutation analysis, SNP (Single Nucleotide

Polymorphism), ONP (Single Nucleotide Variation), Ins

(Insertion), and Del (Deletion) are common types of mutations,

representing different types of DNA changes. Analyzing the types of

mutated genes in high and low-risk group patients can help

understand the molecular mechanisms of liver cancer.
2.7 Real-time quantitative PCR

Detailed steps can be found in previous research (25). In short,

total RNA from cells was obtained using TRIZOL, then cDNA

synthesis was conducted using PrimeScript™ RT Master Mix

(Takara Bio, Japan) followed by RT-PCR utilizing TB Green

(Takara, Japan), with GAPDH serving as the internal reference

gene. Detailed primer sequences employed in this investigation are

listed in Supplementary Table 1.
2.8 Cell culture and cell transfection

The hepatocellular carcinoma cell lines HCCLM3 and BEL7402

were obtained from the Cell Bank of the Chinese Academy of

Sciences (Shanghai, China). Cell transfection was performed

according to the manufacturer’s instructions of jetPRIME

transfection reagent (Polyplus, China). The siRNA sequences used

in this study are as follows: siUBE2E1–1: sense-GCCUCCA

AAGGUUACAUUU; antisense-AAAUGUAACCUUUGGAGGC.

s iUBE2E1–2 : s en s e -CAAAGGCGAUAACAUCUAU ;

antisense-AUAGAUGUUAUCGCCUUUG.
2.9 CCK8 assay

1500 HCC cells were seeded in a 96-well plate with 5 replicate

wells (Corning, USA). At 0, 24, 48, 72, and 96 hours of cell culture,

10 mL of CCK8 working solution was added (Targetmol, USA), and

after 2 hours of incubation in the cell culture incubator, absorbance

was measured at 450 nm wavelength using a microplate reader.
2.10 Transwell assay

A total of 50,000 HCC cells were inoculated into the upper

chamber of a Transwell insert (Corning, USA), with serum-free

medium in the chamber and 750 ml of complete medium in the

lower chamber. Matrigel was added or not added to the bottom of
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the upper chamber for migration and invasion experiments. After

24 hours of incubation, the experiment was terminated. Following

fixation with 4% paraformaldehyde for 15 minutes, the cells were

subsequently subjected to staining with crystal violet. Carefully wipe

the cells on the upper chamber with a cotton swab, and photograph

and record under a microscope, the magnification used was 100X.

Subsequently, cell counting analysis was performed using

ImageJ software.
2.11 Data statistics

Differential analysis between groups was conducted using the

Wilcoxon test, while correlation analysis was performed using the

Spearman correlation test. Survival analysis between groups was

carried out using Kaplan-Meier analysis and the log-rank test. Cox

regression analysis was conducted using the “survival” package in R

software to calculate hazard ratios (HRs) and their 95% confidence

intervals (CIs). All statistical tests were two-sided, with statistical

significance set at P < 0.05. The analyses were performed using R

software (version 4.2.2).
3 Results

3.1 Single-cell sequencing analysis

We obtained single-cell sequencing data (GSE149614) of liver

cancer patients from the GEO database. After rigorous screening

and organizing, a total of 10 liver cancer samples were selected for

subsequent in-depth analysis. Initially, we extensively discussed the

nFeature and nCount of each sample and calculated the percentage

of mitochondrial gene expression in each cell relative to the total

gene expression (Figures 1A–C). Based on these indicators, we

established screening criteria (nFeature_RNA > 50 & percent_MT <

5%) to filter out cells of good quality, ensuring the accuracy of

subsequent analysis. Furthermore, we extracted genes with a large

coefficient of variation between cells, totaling 1500 major highly

variable genes (Figure 1D). These genes exhibit significant

expression differences among single cells, thus being considered

critical factors influencing cell type discrimination. Using these

genes, we conducted principal component analysis and tSNE

dimensionality reduction. Through clustering analysis, the

samples were successfully divided into 28 different cell clusters

(Figures 1E, F). Subsequently, we conducted comprehensive

annotation work on these cells. The results showed that the cells

were accurately classified into eight major categories, including

hepatocytes, T cells, monocytes, endothelial cells, macrophages,

tissue stem cells, natural killer cells, and B cells (Figure 1G). To

visually demonstrate the major differential genes between different

cell types, we generated a bubble plot for visualization (Figure 1H).

The major differential genes in Hepatocytes are ALB, in T cells are

TRAC, in Monocytes are HLA-DPA1, in Endothelial cells are

FABP4, in Macrophages are C1QB, in Tissue stem cells are

ACTA2, in NK cells are HBB, and in B cells are IGHG3

(Figures 1I–P).
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3.2 Construction and efficacy validation of
model using WGCNA combined with
LASSO-COX algorithm

Given the pivotal role of T cells in the occurrence and

development of liver cancer, we screened 3050 genes closely

associated with T cells (26). Ubiquitination, as a vital biochemical

process post protein synthesis, profoundly influences biological

processes such as cell growth, differentiation, cell cycle regulation,

apoptosis, and cancer occurrence by chemically modifying amino

acid residues. We extracted a total of 797 key genes closely related to

ubiquitination modification. By comparing the two sets of key

genes, we identified 128 common genes, which we defined as

TCRUG. These genes play important roles in both T cell function

and ubiquitination modification processes (Figure 2A). To delve

deeper into the functional network of TCRUG in liver cancer, we

performed WGCNA analysis. The results revealed a clear division

of samples into two modules (Figures 2B–D). Subsequently, we

specifically examined a module highly correlated with survival time-

the MEturquoise module, where gene expression may be tightly

linked to the prognosis of liver cancer patients (Figure 2E).

Afterwards, we performed differential expression analysis

(P<0.05), Kaplan-Meier survival analysis (P<0.05), and Cox

regression analysis (P<0.05) on the genes within this module to

unveil their potential mechanisms in the occurrence and

development of liver cancer (Figures 2F–H). Finally, through the

integration of the aforementioned analysis results, we identified 28

common genes, which will serve as the focal points for subsequent

research (Figure 2I).

To further explore the interaction relationships among the

intersection genes, we conducted detailed analysis using the

STRING database (Figure 3A). Subsequently, by applying the

lasso-cox algorithm, we accurately screened out five key genes-

UBE2E1, PSMD1, FBXL5, RNF10, and IVNS1ABP, which were

used to construct the prognostic model (Figures 3B, C). Due to the

tight association between riskscore and patient prognosis, we

employed three different datasets to thoroughly validate the

prognostic predictive efficacy of the model. Utilizing the R

package “caret,” we partitioned the TCGA dataset into training

and validation sets, while introducing the GSE14520 dataset as an

additional validation set. Analysis results demonstrated that

patients with high riskscore exhibited poorer prognosis trends

across these three datasets (Figures 3D–F). To further explore

survival outcomes across different risk groups, comprehensive

comparative analyses were conducted. The findings indicated a

significantly higher mortality rate among patients in the high-risk

group compared to those in the low-risk group. Additionally,

heatmap analysis revealed distinct expression patterns among the

genes utilized for modeling, including UBE2E1, PSMD1, RNF10,

and IVNS1ABP, which exhibited markedly elevated expression

levels in the high-risk group compared to the low-risk group.

Conversely, FBXL5 displayed lower expression levels in the high-

risk group relative to the low-risk group (Figures 3G–I). To assess

the performance of the classification model, we employed ROC

curves for analysis. The AUC value, representing the area under the
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ROC curve, served as a crucial metric to gauge the performance of

the classifier. In the TCGA training set, the AUC values reached

0.824, 0.745, and 0.721, respectively; whereas in the TCGA

validation set, the AUC values were 0.711, 0.676, and 0.674,

respectively. Moreover, the AUC values of the GSE14520

validation set also exhibited good performance, with values of
Frontiers in Immunology 05
0.653, 0.698, and 0.675, respectively (Figures 4A–C). To delve

deeper into the relationship between riskscore and clinical

characteristics, we conducted univariate and multivariate COX

prognostic analyses. Univariate COX analysis revealed that Stage,

T, M stage, and riskscore all held significant prognostic value.

Moreover, multivariate COX regression analysis provided further
A B

D E F

G

I

H

J K L

M N
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O P

FIGURE 1

Single-cell sequencing analysis for screening T cell-related genes. (A–C) The violin plots show the nFeature_RNA, nCount_RNA, and percent_MT of
10 HCC samples. (D) The volcano plot displays 1500 highly variable genes. (E) PCA and tSNE clustering divided cells into 28 clusters. (F) The
heatmap displays the major differentially expressed genes in different clusters. (G) The singleR package annotated cells and categorized them into 8
major cell groups. (H) The bubble plot illustrates the major differentially expressed genes in different cell types. (I–P) The violin plots show the major
differentially expressed genes in different cell types.
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evidence that riskscore served as a valuable independent prognostic

factor (Figures 4D, E). Taking into account the potential

improvement in prognostic accuracy through the amalgamation

of clinical parameters with riskscore, we developed a nomogram to

predict the prognosis of patients at 1, 3, and 5 years (Figure 4F).

Calibration curve validation illustrated the robust predictive

performance of this index. Further ROC curve analysis revealed

an AUC value as high as 0.858. Additionally, KM analysis suggested

that patients with higher Nomogram scores exhibited poorer

prognosis (Figures 4G–I).
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3.3 Immune landscape of the
riskscore model

In order to further investigate the potential association between

riskscore and immune cells, we conducted comprehensive analysis of

28 immune cells using the ssGSEA algorithm. The results revealed

significant positive correlations between riskscore and Activated CD4T

cell, Activated dendritic T cell, and Type 2 helper cell (P<0.001, R>0.3)

(Figures 5A–D). Furthermore, an evaluation of the MSI score revealed

elevated scores in the high-risk group compared to the low-risk group
A B

D E F

G

I

H

C

FIGURE 2

WGCNA combined with differential and prognosis analysis to identify key genes. (A) The Venn diagram illustrates the intersection of T cell marker genes and
ubiquitin proteasome system genes. (B, C) The WGCNA algorithm demonstrates the optimal soft threshold. (D) The gene dendrogram displays genes are
well clustered into 2 categories. (E) MEturquoise module genes are found to be closely associated with survival time. (F) The heatmap shows the differential
genes of the MEturquoise module between cancer tissues and normal tissues. (G) COX analysis shows 41 genes with prognostic value. (H) KM analysis
shows 32 genes with prognostic value. (I) The UpSet plot shows the intersection of differential analysis, KM analysis, and COX analysis with 28 genes.
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(Figure 5E). Tumor stemness serves as a crucial parameter for gauging

the resemblance of tumor cells to stem cells. Our findings indicated a

markedly elevated tumor stemness score among patients in the high-

risk group compared to those in the low-risk group (Figure 5F). To

further investigate the differences between high and low-risk groups in

terms of immunotherapy, we utilized the analysis of MMR (mismatch

repair) related genes and immune checkpoint markers to predict the

correlation between riskscore and immunotherapy. During the MMR

analysis, a notable positive correlation was identified between the
Frontiers in Immunology 07
riskscore and the expression levels of pivotal genes, including

EPCAM, MLH1, MSH2, MSH6, and PMS2 (Figure 5G). We further

analyzed the immune checkpoint-related markers. The results revealed

a close association between immune checkpoint molecules such as

CTLA4, PD1, and PDL1 and riskscore (Figure 5H). To provide a more

intuitive demonstration of the differences in immunotherapy between

high and low-risk groups, we conducted an analysis of immunotherapy

scores. The results showed that patients in the high-risk group

exhibited a more significant effect in immunotherapy (Figure 5I).
A B

D E F

G IH

C

FIGURE 3

LASSO-COX algorithm constructs a risk prognosis model and validation. (A) The PPI network shows the correlation and importance of key genes.
(B, C) Genes suitable for constructing the optimal model were selected using the LASSO-COX algorithm. (D–F) KM analysis revealed that patients in
the high-risk group had a worse prognosis than those in the low-risk group in different datasets. (G–I) Survival analysis revealed a higher mortality
rate in the high-risk group, and the heatmap demonstrated higher expression levels of UBE2E1, PSMD1, RNF10, and IVNS1ABP in the high-risk group,
while FBXL5 exhibited higher expression levels in the low-risk group.
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3.4 Mutation analysis and drug sensitivity
analysis of the riskscore model

Subsequently, we delved into the differences in sensitivity to

eight different hepatocellular carcinoma (HCC) chemotherapeutic

drugs between the high and low-risk groups. It is noteworthy that

we found samples in the high-risk group exhibited significantly
Frontiers in Immunology 08
lower IC50 values for 5_Fluorouracil and Vinblastine compared

to the low-risk group, indicating higher sensitivity. In contrast,

Sorafenib, Camptothecin, Gemcitabine, and Irinotecan showed

significantly higher IC50 values in the high-risk group

compared to the low-risk group. However, there were no

significant differences in sensitivity between the high and low-

risk groups for Oxaliplatin and Cisplatin (Figures 6A–H).
A B

D E

F

G IH

C

FIGURE 4

The efficacy validation of the riskscore model and the construction and validation of clinical predictive models. (A–C) ROC curves show the AUC
values for patients in different datasets at 1, 3, and 5 years. (D, E) Univariate and multivariate COX analyses revealed that the riskscore is a valuable
independent prognostic factor. (F) The nomogram was constructed by integrating the riskscore and clinical factors to predict patient survival at 1, 3,
and 5 years. (G) The calibration curve illustrates that the model can reasonably predict patient survival. (H) ROC curves demonstrate that the AUC
value of the nomogram score can reach 0.858. (I) KM analysis revealed that patients with high nomogram scores had a worse prognosis.
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To comprehensively investigate the variations in gene mutations

between high and low-risk groups, we conducted detailed analyses

utilizing mutation data retrieved from the TCGA database.

Additionally, to visually illustrate these differences, we generated

waterfall plots and applied a threshold mutation rate greater than

10% for filtering purposes. The analysis outcomes indicated

notably elevated gene mutation rates for TP53, MUC16,

CSMD3, and RYR2 in the high-risk group compared to the low-
Frontiers in Immunology 09
risk group. Conversely, CTNNB1, TTN, ALB, and PCLO exhibited

higher gene mutation rates in the low-risk group (Figures 6I, J). To

obtain a more refined insight into the mutation status of pivotal

genes within the established model, we performed separate

analyses of somatic mutation rates for each gene. The results

indicated that the mutation rates of FBXL5, RNF10, and

IVNS1ABP were all 0.3%, whereas PSMD1 had a mutation rate

of 1.49% (Figures 6K–N).
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FIGURE 5

Analysis of Riskscore and Immune Landscape. (A) The correlation between riskscore and 28 immune cells was calculated using the ssGSEA
algorithm. (B–D) Correlation analysis found that Activated CD4 T cell, Activated dendritic T cell, and Type 2 helper cell had the highest correlation
with riskscore (P<0.001, R>0.3). (E) Differential analysis found that the MSI score was higher in the high-risk group. (F) Differential analysis found that
the high-risk group had a higher tumor stemness score. (G) MMR genes were found to be closely associated with riskscore. (H) Radar plots showed
the correlation between riskscore and multiple immune checkpoints. (I) Patients with higher riskscore were more likely to experience remission
according to the IMvigor210 dataset. * represents p < 0.05, ** represents p < 0.01, and *** represents p < 0.001.
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3.5 The oncogenic role of UBE2E1 in HCC

Considering the research gap of UBE2E1 and IVNS1ABP in

HCC, we conducted further studies on these two genes. We

investigated the expression differences of UBE2E1 and IVNS1ABP

in HCC in two external datasets (GSE14520 and GSE36376). We

found that UBE2E1 was significantly differentially expressed in both

datasets (Log2Foldchange >0.585 and P < 0.05) (Figures 7A–D).

Hence, UBE2E1 was ultimately chosen as the object of our in-depth

investigation. First, we constructed cell lines with UBE2E1

knockdown in BEL7402 and HCCLM3 cell lines (Figure 7E).
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CCK8 and colony formation experiments indicated that the

proliferation ability of HCC cells was significantly impaired after

UBE2E1 knockdown (Figures 7F, G). Transwell assays demonstrated

that the migration and invasion abilities of HCC cells were

significantly impaired after UBE2E1 knockdown (Figures 7H, I).
4 Discussion

HCC is often diagnosed at an advanced stage due to its insidious

onset, and treatment options for advanced HCC patients are limited
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FIGURE 6

Analysis of Drug Sensitivity and Mutation in Riskscore. (A–H) The IC50 of 5_Fluorouracil and Vinblastine was lower in the low-risk group, while it was lower
for Sorafenib, Camptothecin, Gemcitabine, and Irinotecan in the high-risk group. There was no significant difference in the IC50 between the two groups for
Oxaliplatin and Cisplatin. (I, J) The waterfall plot revealed different mutated genes and mutation rates between the high and low-risk groups. (K–N) Mutation
rates and mutation analysis of the four key genes in the model. ns represents p > 0.05, ** represents p < 0.01, and *** represents p < 0.001.
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and ineffective (27)。Moreover, HCC is a highly heterogeneous

disease, and due to the significant differences in the TME, the

treatment outcomes may vary greatly even with the same

therapeutic approach (28)。Therefore, it is necessary to deeply

analyze the TME of HCC, especially the immune cells within the

TME (29). In this study, we analyzed cell subtypes at the single-cell

level using scRNA-seq data from HCC patients. scRNA-seq data

from 10 HCC patients were downloaded from the GEO database

(GSE149614), and after analyzing cell subtypes, the focus of the

study was placed on T cells closely associated with tumor

progression. Developing biomarkers based on T cells to accurately

predict the prognosis and immunotherapy response of HCC

patients is highly promising and important.
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In this study, we obtained 3050 T cell marker genes. In addition,

we incorporated 797 ubiquitination family molecules from Bulk

RNA data of HCC patients, finally identifying 128 TCRUG In order

to explore the function and prognostic value of these TCRUG in

depth, we conducted a series of comprehensive analyses, including

differential analysis, weighted gene co-expression network analysis

(WGCNA), and prognostic analysis. Ultimately, we identified 5

core T cell marker genes, including UBE2E1, PSMD1, FBXL5,

IVNS1ABP, and RNF10. Among them, PSMD1 can affect HCC

cell proliferation and apoptosis by influencing lipid droplet

formation (30). FBXL5 can prevent iron overload and inhibit

HCC occurrence on the one hand (31), and inhibit HCC

metastasis by suppressing snail expression levels on the other
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FIGURE 7

CCK8 and Transwell experiments revealed that UBE2E1 promotes proliferation and migration of HCC. (A–D) UBE2E1 was found to be expressed
higher in tumor tissues than in normal tissues in both datasets. (E) RT-qPCR validation confirmed that UBE2E1 was stably knocked down in BEL7402
and HCCLM3 cell lines. (F, G) CCK8 experiments revealed that knocking down UBE2E1 could inhibit the proliferation of liver cancer cells. (H, I)
Transwell experiments revealed that knocking down UBE2E1 could inhibit the migration ability of liver cancer cells. *** represents p < 0.001.
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hand (32). In another study, RNF10 has been confirmed to be a core

gene predicting the prognosis of HCC patients, while UBE2E1 and

IVNS1ABP have no studies in HCC. Considering the research gap

of UBE2E1 and IVNS1ABP in HCC and the stability of UBE2E1

expression difference in HCC, we focus on UBE2E1 and

demonstrate its carcinogenic effect in HCC through a series of in

vitro cell experiments.

Around these 5 core TCRUG, we constructed a novel riskscore.

The riskscore demonstrated stable and accurate prediction of HCC

patient prognosis in the development cohort, internal validation

cohort, and external validation cohort, namely, patients in the high-

risk group had poorer overall survival. In addition, based on the

riskscore and common clinical parameters, we constructed a

column diagram that is easy to use in clinical practice. We also

utilized calibration curves and ROC evaluation to assess the stability

and accuracy of the column diagram in predicting HCC

overall survival.

To understand the correlation between riskscore and tumor

immunotherapy response, we conducted multidimensional

exploration. we investigated the association between the riskscore

and immune cell infiltration levels. Our findings revealed a positive

correlation between the riskscore and the majority of immune cell

types. Particularly noteworthy was the robust correlation observed

with Activated CD4 T cells, Activated dendritic T cells, and Type 2

helper cells. These results suggest that high-risk patients with HCC

exhibit higher immune cell infiltration in tumor tissues, indicating a

propensity for hot tumor classification (33). Additionally, we found

that higher riskscore were associated with higher levels of MSI. This

result sparked our interest. Previous studies have shown that higher

MSI levels may lead to better immunotherapy outcomes (34).

Therefore, we hypothesize that patients in the high-risk group may

have better immunotherapy efficacy due to higher MSI, despite their

poorer prognosis. Furthermore, we found that patients in the high-

risk group had higher tumor stemness. MMR(Mismatch Repair)

MMR (Mismatch Repair), which corrects base-pairing errors during

DNA replication, is closely related to the efficacy of immunotherapy

(35, 36). Correlation analysis revealed a close association between

riskscore and multiple MMR genes, indicating that the riskscore is a

good predictor of immunotherapy response. The core of immune

checkpoint therapy is to use specific inhibitors to suppress the

function of immune checkpoints, thereby enhancing immune

response and eliminating tumor cells (37, 38). Therefore, analyzing

the correlation with immune checkpoints can predict the efficacy of

immunotherapy. We found that the riskscore was positively

correlated with 32 immune checkpoint molecules (out of 48 in

total), suggesting that the riskscore is a promising new indicator of

immune response. In the IMgivor210 cohort, we observed that the

riskscore was elevated in the immune response group (CR/PR)

compared to the non-immune response group (SD/PD), aligning

with our earlier findings from the MSI analysis. Taken together, these

consistent observations suggest that individuals classified into the

high-risk group may exhibit enhanced immune responses

following immunotherapy.

Repurposing old drugs for cancer treatment provides a new

perspective. On one hand, it saves a lot of time and economic costs
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in developing new drugs. Furthermore, adverse drug reactions

have been thoroughly studied. In this study, we demonstrated

differences in sensitivity to 8 drugs among different risk groups.

These include classic drugs such as sorafenib and 5-fluorouracil.

These results provide new insights for personalized treatment of

HCC patients.

Of course, our study has several limitations that need to be

acknowledged. First, bioinformatics relies on high-quality data.

Low-quality experimental data, sequencing errors, etc., can affect

the accuracy and reliability of the analysis. Second, we have not

further explored the downstream mechanisms of the modeling

genes, which may affect the accuracy of our predictions of

immunotherapy efficacy and targeted drugs. Therefore, further in-

depth research is needed.

In conclusion, this study developed a novel riskscore based on

the close interaction between T cells and ubiquitination

modification. This riskscore can accurately and stably predict the

prognosis and immunotherapy response of HCC patients.

Additionally, our findings suggest that inhibiting UBE2E1

expression can suppress the proliferation, migration, and invasion

ability of HCC cells.
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