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Background: Non-alcoholic fatty liver disease (NAFLD) and heart failure (HF) are

related conditions with an increasing incidence. However, the mechanism

underlying their association remains unclear. This study aimed to explore the

shared pathogenic mechanisms and common biomarkers of NAFLD and HF

through bioinformatics analyses and experimental validation.

Methods: NAFLD and HF-related transcriptome data were extracted from the

Gene Expression Omnibus (GEO) database (GSE126848 and GSE26887).

Differential analysis was performed to identify common differentially expressed

genes (co-DEGs) between NAFLD and HF. Gene ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment

analysis (GSEA) were conducted to explore the functions and regulatory

pathways of co-DEGs. Protein-protein interaction (PPI) network and support

vector machine-recursive feature elimination (SVM-RFE) methods were used to

screen common key DEGs. The diagnostic value of common key DEGs was

assessed by receiver operating characteristic (ROC) curve and validated with

external datasets (GSE89632 and GSE57345). Finally, the expression of

biomarkers was validated in mouse models.

Results: A total of 161 co-DEGs were screened out in NAFLD and HF patients.

GO, KEGG, and GSEA analyses indicated that these co-DEGs were mainly

enriched in immune-related pathways. PPI network revealed 14 key DEGs, and

SVM-RFE model eventually identified two genes (CD163 and CCR1) as common

key DEGs for NAFLD and HF. Expression analysis revealed that the expression

levels of CD163 and CCR1 were significantly down-regulated in HF and NAFLD

patients. ROC curve analysis showed that CD163 and CCR1 had good diagnostic

values for HF and NAFLD. Single-gene GSEA suggested that CD163 and CCR1

were mainly engaged in immune responses and inflammation. Experimental

validation indicated unbalanced macrophage polarization in HF and NAFLD

mouse models, and the expression of CD163 and CCR1 were significantly

down-regulated.
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Conclusion: This study identified M2 polarization impairment characterized by

decreased expression of CD163 and CCR1 as a common pathogenic pathway in

NAFLD and HF. The downregulation of CD163 and CCR1 may reflect key

pathological changes in the development and progression of NAFLD and HF,

suggesting their potential as diagnostic and therapeutic targets.
KEYWORDS

nonalcoholic fatty liver disease, heart failure, bioinformatics, biomarker,
macrophage polarization
1 Introduction

Heart failure (HF) is a significant health issue worldwide, with a

high prevalence and substantial burden on individuals, healthcare

systems, and society as a whole. It is associated with significant

morbidity and mortality rates and is a leading cause of

hospitalization (1). A 2017 Global Burden of Disease Study report

estimated that approximately 64.34 million individuals worldwide

suffer from HF (2). The prevalence of HF rises sharply with age. It

has been estimated that approximately 10% of community-dwelling

individuals aged ≥ 60 years have HF, with HF with preserved

ejection fraction (HFpEF) being more prevalent than HF with

reduced ejection fraction (HFrEF) (5% vs 3.5%) (3). Nonalcoholic

fatty liver disease (NAFLD) has emerged as the most common

chronic liver disease, affecting around 25% of adults worldwide (4).

It encompasses a spectrum of liver conditions ranging from simple

steatosis to nonalcoholic steatohepatitis (NASH), which is

characterized by lobular inflammation and hepatocyte ballooning

(with or without hepatic fibrosis) (5, 6). In some cases, NASH can

progress to advanced liver fibrosis and cirrhosis and may even lead

to hepatocellular carcinoma (7). The global prevalence of NAFLD is

projected to significantly rise in the coming years, mirroring the

escalating epidemics of obesity and type 2 diabetes (T2D) (8). Thus,

how to deal with NAFLD and HF, two burdensome diseases

worldwide, is a remarkable challenge.

Compelling evidence indicates that NAFLD is linked not just to

increased liver-related complications but also to an elevated risk of

extra-hepatic complications such as cardiovascular diseases (CVDs)

(9–11). Of note, 25%-40% of individuals with NAFLD have CVDs,

which stands as the primary cause of mortality in this patient group

(12). NAFLD not only accelerates coronary artery disease, but also

induces myocardial alterations (primarily cardiac remodeling and

hypertrophy) and certain arrhythmias (mostly atrial fibrillation),

conferring an increased risk of HF (13). A meta-analysis of 16 cross-

sectional studies involving 32,000 subjects revealed that imaging-

diagnosed NAFLD was associated with subclinical myocardial

structural changes, such as increased left ventricular mass,

alongside reduced early diastolic relaxation (e’) velocity, elevated

left ventricular filling pressure, and enlarged left atrial volume (14).

In addition, several studies have shown that the presence of NAFLD
02
significantly raised the likelihood of developing new-onset HF,

irrespective of whether T2D or other concurrent cardio-metabolic

risk factors were present or not (12, 15). Notably, NAFLD has a

stronger association with HFpEF than HFrEF. The prevalence of

NAFLD is higher in patients with HFpEF than in those with HFrEF,

reaching up to 50% (15, 16). Several studies also indicated that the

presence of NAFLD is associated with a worse prognosis in patients

with HF (17). The above epidemiological evidence indicates that

NAFLD and HF are two closely associated entities. The strong

association between NAFLD and HF warrants particular attention

given its potential implications for screening and surveillance

strategies in clinical practice.

However, there are still many unanswered questions regarding

the relationship between NAFLD and HF. Particularly, whether

there are shared pathophysiological pathways and common key

molecules in the pathogenesis of NAFLD and HF are obscure but

are of great importance to discover therapeutic approaches that

benefit both diseases. Bioinformatics methods are extensively

employed for mining transcriptome data to uncover the

pathogenic mechanisms of diseases and to identify crucial

molecular targets (18–20). This study aims to understand the

common pathogenesis between NAFLD and HF and to unearth

potential molecular targets of both diseases through bioinformatics

analysis and experimental validation. In this study, human

transcriptome data of NAFLD and healthy liver samples and HF

and healthy heart samples were downloaded from the Gene

Expression Omnibus (GEO) database. Employing a series of

bioinformatics analysis methods such as protein-protein

interaction (PPI) network analysis and support vector machine-

recursive feature elimination (SVM-RFE), we systematically

analyzed the common pathophysiological pathways between

NAFLD and HF and mined key molecular biomarkers that may

play a critical role in the pathogenesis of both diseases. Additionally,

we validated the expression of these biomarkers in a NAFLD mouse

model induced by a high-fat diet (HFD), a HFpEF mouse model

induced by uninephrectomy surgery and d-aldosterone infusion,

and a mouse model with both NAFLD and HF induced by long-

term HFD. Overall, M2 polarization impairment characterized by

decreased expression of CD163 and CCR1 was identified as a

common pathogenic pathway in NAFLD and HF. The
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downregulation of CD163 and CCR1 may reflect key pathological

changes in the development and progression of NAFLD and HF,

suggesting their potential as diagnostic and therapeutic targets.
2 Materials and methods

2.1 Data source

To determine shared genetic interrelations between NAFLD

and HF, four transcriptome datasets were obtained from the Gene

Expression Omnibus (GEO, GSE126848, GSE89632, GSE26887,

and GSE57345) database (http://www.ncbi.nlm.nih.gov/geo). The

GSE126848 dataset contained the gene expression profiles of liver

samples from 15 NAFLD patients and 14 healthy controls. The

GSE89632 dataset contained the gene expression profiles of liver

samples from 20 patients with NAFLD and 24 healthy controls.

Meanwhile, the transcriptome data of heart samples from 12 HF

patients and 5 non-HF controls were obtained from the GSE26887

dataset, and the transcriptome data of heart samples from 95 HF

patients and 136 healthy controls were downloaded from the

GSE57345 dataset. GSE126848 and GSE26887 datasets were used

as test sets for differentially expressed genes (DEGs) analysis,

whereas GSE89632 and GSE57345 datasets were used as

validation sets.
2.2 Identification of differentially expressed
genes in HF and NAFLD

DEGs between HF heart samples and healthy controls

(GSE26887) and DEGs between NAFLD liver samples and

corresponding controls (GSE126848) were identified utilizing the

“limma” R package (version 3.46.0) (21). The selected criteria were

set as P-value < 0.05 and |log2FC| > 0.5. Venn diagrams were used to

identify co-DEGs in the two diseases.
2.3 Functional enrichment analyses for
co-DEGs

To explore the potential mechanistic associations between

NAFLD and HF, we conducted gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analyses of co-DEGs using the Database for Annotation,

Visualization and Integrated Discovery (DAVID) bioinformatics

resources (Version 6.8), available at https://david-d.ncifcrf.gov/. GO

analysis was classified into three subgroups, including biological

process (BP), molecular function (MF), and cellular component

(CC). Functional groups with an Expression Analysis Systematic

Explorer (EASE) score < 0.05 were included in this analysis. The

EASE score, which is a modified Fisher Exact P-value in the DAVID

system tailored for gene-enrichment analysis, signifies the degree of

enrichment. Specifically, an EASE score P-value = 0 denotes a

perfect enrichment. A P-value < 0.05 is indicative of gene

enrichment in a specific annotation category. Moreover, gene set
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enrichment analysis (GSEA), a knowledge-based approach for

interpreting genome-wide expression profiles, was employed on

the co-DEGs using the “GSEA” R package (version 4.0.3) (22).
2.4 Protein-protein interaction network
analysis and identification of common
key DEGs

The PPI networks of co-DEGs were constructed utilizing the

Search Tool for the Retrieval of Interacting Genes (STRING

database; http://string-db.org/). This database predicted functional

associations among proteins and protein-protein interactions,

filtering for interaction scores exceeding 0.4 (23). The MCODE

method in Cytoscape software was applied to analyze key modules

in a PPI network (24). The degree, edge percolated component

(EPC), maximum neighborhood component (MNC), and maximal

clique centrality (MCC) algorithms in Cytoscape software were

used to rank the co-DEGs in the PPI networks. The top 20 genes

based on each algorithm were obtained, and the key DEGs were

gained by taking the intersection set of the top 20 genes in the four

algorithms. Subsequently, support vector machine-recursive feature

elimination (SVM-RFE) method was applied to further sort these

key DEGs in the GSE126848 and GSE26887 datasets separately, and

the intersection of the two sorted gene sets was taken to obtain the

common key DEGs.
2.5 Verification of the expression and
diagnostic capacity of common key DEGs

The expression of common key DEGs was validated in the

GSE126848, GSE26887, GSE89632 and GSE57345 datasets,

respectively, using the Wilcox test method. In addition, we used

the “pROC” R package (version 1.17.0.1) to plot receiver operating

characteristic (ROC) curves of common key DEGs and assess their

diagnostic capacity (25).
2.6 Single-gene GSEA

To explore the potential regulatory pathways and biological

functions associated with the common key DEGs in the GSE126848

and GSE26887 datasets, the “GSEA” R package (version 4.0.3) was

utilized to perform GSEA of each common key DEG (22). The

adjusted P < 0.05 was considered as the significance threshold

for GSEA.
2.7 Protein-ligand interaction and
chemical-protein interaction analysis

To explore potential drug candidates, the STITCH (http://

stitch.embl.de/) database was used to predict the pairs of

interactions between common key DEGs and chemical drugs as

well as related proteins. In addition, the GeneMANIA database
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(http://genemania.org/), a reliable online tool for discerning

internal correlations in gene sets, was used to construct the

regulatory network for the common key DEGs.
2.8 Animals and treatments

Forty eight male C57BL/6J mice, aged 8 weeks, were housed in

standard conditions (ambient temperature: 23 ± 2°C; 12-hour light/

dark cycle) with ad libitum access to water and standard laboratory

chow. Following a one-week acclimation period, 24 mice were

randomly assigned to either a normal chow (NC) group or a

high-fat diet (HFD) group (n = 12 per group). The NC group

received standard laboratory chow, while the HFD group was fed a

high-fat diet (60% kcal from fat; D12492, Research Diets, New

Brunswick, NJ, USA). After 14 weeks of dietary intervention, mice

were anesthetized with 2% isoflurane and euthanized, and serum

and liver samples were collected (26). Twelve mice were randomly

assigned to either a control (CON) group or a HFpEF group

following one week of acclimation (n = 6 per group). All 12 mice

underwent uninephrectomy and received a continuous infusion of

either saline (CON) or d-aldosterone (0.15mg/h) (HFpEF) for 4

weeks via osmotic mini-pumps (Alzet, Durect Corp., Cupertino,

CA, United States) (27–29). Following the treatment period, mice

were anesthetized with 2% isoflurane and euthanized, and their

heart samples were weighed and collected. Another 12 mice were

randomly assigned to either a normal chow (NC) group or a high-

fat diet (HFD) group (n = 6 per group). The NC group received

standard laboratory chow, while the HFD group was fed a high-fat

diet (60% kcal from fat; D12492, Research Diets, New Brunswick,

NJ, USA). After 28 weeks of dietary intervention, mice were

anesthetized with 2% isoflurane and euthanized, and serum, liver,

and heart samples were collected (30–33).
2.9 Histology, immunofluorescence, and
biochemical detection

Formalin-fixed mouse liver tissues underwent processing, and 5

mm-thick paraffin sections were cut and stained with hematoxylin-

eosin (H&E) and oil red O. The histological characteristics were

assessed using the NAFLD activity score (NAS) (34). For mouse heart

samples, hearts were isolated and preserved in a 10% KCl solution.

Subsequently, they were fixed in 4% paraformaldehyde for 5 days,

embedded in paraffin, and sliced into approximately 5 µm sections.

These sections were then stained with wheat germ agglutinin (WGA)

to determine cardiomyocyte size. Immunofluorescence detection

involved incubating 10 µm-thick sections with primary antibodies

against CD163 (#GB11340-1-100, Servicebio) and CD80

(#GB114055-100, Servicebio), followed by incubation with FITC-

conjugated anti-rabbit whole IgG and Texas Red-conjugated anti-

mouse whole IgG. Microscopic observation and photography were

conducted using 200x magnification, capturing 20 random fields of

view for each sample. Serum alanine transaminase (ALT) levels were

assessed using an ADVIA 2400 Chemistry System analyzer (Siemens,

Tarrytown, NY, USA) following the manufacturer’s instructions.
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Liver triglyceride (TG) contents were measured using a commercial

kit (#290-63701; Wako, Tokyo, Japan) according to the

manufacturer’s protocol. Serum soluble CD163 (sCD163) levels

were detected using a commercial kit (EM1475; Finetest, Wuhan,

China) following the manufacturer’s protocol.
2.10 Total RNA extraction and real-time
quantitative PCR analysis

Total RNA was extracted using Trizol (No. 15596026, Thermo

Fisher Scientific, Waltham, MA, USA), followed by reverse

transcription into cDNA using the HiScript III RT SuperMix (No.

R323-01, Vazyme Biotech, Nanjing, Jiangsu, China) according to

the manufacturer’s protocol. Quantitative PCR (qPCR) was carried

out using Cham Q ™ Universal SYBR® qPCR Master Mix (No.

Q712-02, Vazyme Biotech, Nanjing, Jiangsu, China) and the

QuantStudio® 5 Real-Time PCR System (Thermo Fisher

Scientific, Waltham, MA, USA). The expression levels of target

genes were determined using the 2-DDCt method and normalized to

glyceraldehyde-3-phosphate dehydrogenase (Gapdh).
2.11 Statistical analyses

All analyses were conducted using R statistical software

(Version 4.2.2). Quantitative data in the experimental validation

analyses were presented as mean ± standard error of the mean

(S.E.M.). The D’Agostino & Pearson normality test was employed

to assess whether the data followed a parametric or non-parametric

distribution. For parametric data comparing control and

experimental groups, a two-tailed Student’s t-test was performed.

In cases of datasets exhibiting skewed distribution, the Mann-

Whitney U test was employed for group comparisons. A

significance threshold of P < 0.05 (two-tailed) was considered

statistically significant.
3 Results

3.1 Identification of co-DEGs between
NAFLD and HF

To screen co-DEGs between NAFLD and HF, we first screened

DEGs between NAFLD samples and healthy liver samples in the

GSE126848 dataset. A total of 3623 DEGs, including 2340 down-

regulated and 1283 up-regulated genes in NAFLD samples, were

identified (Figures 1A, B). Meanwhile, DEGs were screened between

HF samples and healthy heart samples in the GSE26887 dataset, and

a total of 1664 DEGs were identified, including 717 down-regulated

and 947 up-regulated genes in HF samples (Figures 1C, D). By

intersecting the NAFLD- and HF-DEGs, we obtained 161 co-DEGs

for subsequent analysis, among which 42 genes were up-regulated

in both NAFLD and HF and 119 genes were down-regulated in both

NAFLD and HF (Figure 1E).
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3.2 Functional enrichment of co-DEGs

To further explore the biological functions and signaling

pathways involved in co-DEGs, we implemented GO functional

analysis and KEGG pathway enrichment analysis. GO enrichment

analysis showed that these co-DEGs were mainly involved in BP

terms such as inflammatory response, platelet aggregation, negative

regulation of T cell proliferation, cell adhesion, and positive

regulation of tumor necrosis factor production (Figure 2A); MF

terms such as protein homodimerization activity, protein binding,

actin binding, inhibitory MHC class I receptor activity, and virus

receptor activity (Figure 2B); and CC terms such as integral

component of plasma membrane, plasma membrane, and

secretory granule membrane (Figure 2C). In addition, the KEGG

pathway analysis indicated that the co-DEGs were mainly enriched

in pathways such as neutrophil extracellular trap formation,

osteoclast differentiation, HIF-1 signaling pathway, phagosome,

and complement and coagulation cascades (Figure 2D).

To further investigate the potential functions of these co-DEGs,

we performed GSEA in the GSE126848 and GSE26887 datasets. In

the GSE126848 dataset, GSEA results showed that biological

processes such as aggresome assembly were enriched in the

NAFLD group (Figure 3A), whereas biological processes such as

lipid modifications were enriched in the normal sample group

(Figure 3B). Meanwhile, KEGG pathways such as nucleotion

excision repair and oxidative phosphorylation were enriched in
Frontiers in Immunology 05
the NAFLD group (Figure 3C), whereas KEGG pathways such as

calcium signaling pathway and insulin signaling were enriched in

the normal group (Figure 3D). In the GSE26887 dataset, GSEA

results showed that biological processes such as cellular

glucuronidation were enriched in the HF group (Figure 3E),

whereas biological processes such as cellular response to

peptidoglycan were enriched in the normal sample group

(Figure 3F). Meanwhile, KEGG pathways such as drug

metabolism cytochrome p450 and regulation of autophagy were

enriched in the HF group (Figure 3G), whereas KEGG pathways

such as pathogenic Escherichia coli infection and type II diabetes

mellitus were enriched in the normal group (Figure 3H).
3.3 Identification of common key DEGs by
PPI network analysis and a machine
learning model

To explore the interactions among the 161 co-DEGs, the

STRING website was applied to map the PPI network. We

identified 435 interactions and 118 nodes from the PPI network

of co-DEGs (Figure 4A) and obtained three significant modules

using the MCODE plugin (Figure 4B). The MCC, MNC, Degree

and EPC algorithms in Cytoscape software were used to rank the

co-DEGs. The top 20 genes based on each algorithm were obtained

(Figure 4C) and then 14 key DEGs (TYROBP, LILRB2, HCK, PLEK,
FIGURE 1

Identification of co-differentially expressed genes (DEGs) between non-alcoholic fatty liver disease (NAFLD) and heart failure (HF). (A) Volcano plot
showing DEGs between the NAFLD group and the healthy control group in GSE126848, with upregulated genes indicated in red and downregulated
genes in blue. (B) Heatmap showing the result of clustering analysis based on the expression of NAFLD-DEGs in GSE126848. (C) Volcano plot
showing DEGs between the HF group and the healthy control group in GSE26887, with upregulated genes indicated in red and downregulated
genes in blue. (D) Heatmap showing the result of clustering analysis based on the expression of HF-DEGs in GSE26887. (E) Proportional Venn
diagram depicting the co-DEGs by overlapping NAFLD-DEGs and HF-DEGs.
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ITGAM, SPI1, CYBB, FCER1G, CCR1, LAPTM5, FCGR3A, NCF4,

FERMT3, and CD163) were gained by further taking the

intersection set of the top 20 genes in each algorithm (Figure 4D).

These key DEGs were further sorted by using the SVM-RFE method

in the GSE126848 (Figure 4E) and GSE26887 (Figure 4F) datasets

separately (Table 1), and two common key DEGs (CCR1 and

CD163) were finally obtained by taking the intersection of the

two sorted gene sets (Figure 4G).
3.4 Validation of the expression and
diagnostic capacity of CCR1 and CD163

To further validate the expression of CCR1 and CD163 in

NALFD and HF and explore their diagnostic capacity, we

performed validation and ROC curve analyses in HF (GSE26887

and GSE57345) and NAFLD (GSE126848 and GSE89632) datasets.

Validation analyses showed that the expression of CCR1 and CD163

were consistently and significantly decreased in both HF datasets

(GSE26887 and GSE57345) and in both NAFLD datasets

(GSE126848 and GSE89632) (Figures 5A–D). ROC curve analyses

indicated that the AUC values of CCR1 and CD163 were above 0.7

in all of the four datasets, indicating that CCR1 and CD163 had a

good diagnostic capacity for HF and NAFLD (Figures 5E–H).
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3.5 Singe-gene GSEA of CCR1 and CD163
in NAFLD and HF

To explore the potential regulatory pathways and biological

functions associated with CCR1 and CD163 in NAFLD (GSE126848)

and HF (GSE26887), we performed singe-gene GSEA in the two

datasets. In the GSE126848 dataset, CCR1 was mainly involved in

biological processes such as superoxide anion generation and response

to lectin (Figure 6A) and KEGG pathways such as chemokine signaling

pathway and natural killer cell mediated cytotoxicity (Figure 6B),

whereas CD163 was mainly involved in biological processes such as

tolerance induction and positive regulation of cytokine production

involved in inflammatory response (Figure 6C) and KEGG pathways

such as adherens junction and insulin signaling pathway (Figure 6D).

In the GSE26887 dataset, CCR1 was mainly involved in biological

processes such as negative regulation of release of cytochrome C from

mitochondria and regulation of CD8 positive alpha beta T cell

activation (Figure 6E) and KEGG pathways such as chemokine

signaling pathway and pathogenic Escherichia coli infection

(Figure 6F), whereas CD163 was mainly involved in biological

processes such as maintenance of cell polarity and neutrophil

mediated immunity (Figure 6G) and KEGG pathways such as

chemokine signaling pathway and leukocyte transendothelial

migration (Figure 6H).
FIGURE 2

Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) functional enrichment analysis of co-differentially expressed genes
(DEGs). (A) The enriched GO-biological process (BP) terms. (B) The enriched GO-molecular function (MF) terms. (C) The enriched GO-cellular
component (CC) terms. (D) The enriched KEGG pathways.
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3.6 Interaction of CCR1 and CD163 with
inflammatory genes and chemical drugs

To further investigate the regulatory role of CCR1 and CD163,

we constructed a regulatory network for CCR1 and CD163 using

the GeneMANIA database (Figure 7A). Among the 20 targets of

the network, 9 belonged to the CC ligand chemokine family

(CCL5, CCL23, CCL14, CCL15, CCL7, CCL4, CCL8, CCL3,

CCL2). Functional analyses of the network indicated these

targets were involved in cellular response to chemokine,

response to chemokine, cytokine activity, mononuclear cell

migration, chemokine receptor binding, leukocyte chemotaxis,

and cell chemotaxis. Next, to explore the correlation between

CCR1 and CD163 with inflammation-related genes, we calculated
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the correlation between CCR1 and CD163 with inflammation-

related genes in the GSE126848 and GSE26887 datasets,

respectively. A total of 33 significant relationship pairs were

obtained in the GSE126848 dataset, and CCR1 and CD163 had

the strongest correlations with CMKLR1 andMARCO (Figure 7B).

In the GSE26887 dataset, a total of 14 significant pairs of

relationships were obtained, and the strongest correlations were

obtained between CCR1 and TNFAIP6 and between CD163 and

FPR1 (Figure 7C). In addition, the STITCH database was applied

to explore the interactions between CCR1 and CD163 with

chemicals and proteins. As shown in Figure 7D, CCR1

interacted with the CCL family (CCL2, CCL3, CCL4, CCL7,

CCL5, CCL16, CCL23) and Bx47, whereas CD163 showed a

strong interaction with HP (Supplementary Table 1).
FIGURE 3

Gene Set Enrichment Analysis (GSEA) of co-differentially expressed genes (DEGs) in GSE126848 and GSE26887 datasets. (A, B) Biological processes
found by GSEA in NAFLD (A) and normal (B) groups in GSE126848 dataset. (C, D) KEGG pathways enriched by GSEA in NAFLD (C) and normal (D)
groups in GSE126848 dataset. (E, F) Biological processes found by GSEA in heart failure (E) and normal (F) groups in GSE26887 dataset. (G, H) KEGG
pathways enriched by GSEA in heart failure (G) and normal (H) groups in GSE26887 dataset.
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3.7 Validation of CCR1 and CD163 in a
NAFLD mouse model

To further verify the reliability of the in silico findings, we

conducted validation in a NAFLD mouse model induced by 14

weeks of HFD feeding. Hepatic steatosis and sporadic inflammation

were prominently observed in the HFD group, as demonstrated by

H&E staining (Figure 8A). Compared to the NC group, the HFD

group exhibited significantly elevated NAS, hepatic TG

concentrations, and serum ALT levels (P < 0.01, Figures 8B–D).

Additionally, mRNA expression levels of inflammatory markers

(Tnf-a, Mcp-1, Ifn-g, and Il-6) in liver tissues were significantly

higher in the HFD group compared to the NC group (P < 0.05, P <

0.01, Figure 8E). Furthermore, mRNA expression validation

indicated a significant decrease in the expression of hepatic Ccr1

and Cd163 in the HFD group compared to the NC group (P < 0.05,
Frontiers in Immunology 08
P < 0.01), consistent with human transcriptome data (Figures 8F,

G). As CD163 and CCR1 are important players in macrophage

polarization, we further detected the mRNA expression of M1

macrophage marker Cd80 and M2 macrophage marker Cd206 in

liver tissues. Compared with the NC group, the mRNA expression

of hepatic Cd80 was significantly increased in the HFD group,

whereas the mRNA expression of hepatic Cd206 was significantly

decreased in the HFD group (P < 0.05, Figures 8H, I). Moreover,

immunofluorescence staining displayed decreased CD163-stained

immunofluorescence (Figure 8J) and increased CD80-stained

immunofluorescence (Figure 8K) in HFD livers than NC livers.

The detection of serum sCD163 showed that HFD induced a

reduction in the serum sCD163 level (P = 0.08, Supplementary

Figure S1A). These results indicated that HFD feeding promotes

macrophage polarization toward the M1 phenotype in the

mouse liver.
FIGURE 4

Identification of common key differentially expressed genes (DEGs). (A) Protein-protein interaction (PPI) network of co-DEGs. (B) The three
significant modules in the PPI network found by MCODE plugin. (C) Top 20 genes based on the maximal clique centrality (MCC), maximum
neighborhood component (MNC), Degree, and edge percolated component (EPC) algorithms, respectively. (D) Venn diagram showing the key DEGs
obtained by taking the intersection set of the top 20 genes in the four algorithms. (E) Accuracy and error plots of SVM-RFE model in GSE126848
dataset. (F) Accuracy and error plots of SVM-RFE model in GSE26887 dataset. (G) Common key DEGs obtained by taking the intersection of the key
DEGs in GSE126848 and GSE26887.
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3.8 Validation of CCR1 and CD163 in a
HFpEF mouse model

We further validated the in silico results in a HFpEF mouse

model induced by uninephrectomy and a continuous infusion of d-
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aldosterone for 4 weeks. WGA staining showed that the cross-

sectional area of left ventricular cardiomyocytes in the HFpEF

group was significantly larger than that in the control group (P <

0.01, Figures 9A, B). In addition, the heart weight-to-body weight

(HW/BW) ratio (Figure 9C) and the mRNA expression level of left

ventricular hypertrophy biomarkers (Anp, Bnp, and b-MHC,

Figures 9D–F) and inflammatory markers (Tnf-a, Il-6, and Il-1,

Figure 9G) in heart tissues were significantly higher in the HFpEF

group than the control group (P < 0.05, P < 0.01). Furthermore,

mRNA expression validation indicated a significant decrease in the

expression of cardiac Ccr1 and Cd163 in the HFpEF group

compared to the control group (P < 0.05, P < 0.01), consistent

with human transcriptome data (Figures 9H, I). Compared with the

control group, the mRNA expression of cardiac Cd80 was

significantly increased in the HFpEF group, whereas the mRNA

expression of cardiac Cd206 was significantly decreased in the

HFpEF group (P < 0.05, P < 0.01, Figures 9J, K). Moreover,

immunofluorescence staining displayed decreased CD163-stained

immunofluorescence (Figure 9L) and increased CD80-

stained immunofluorescence (Figure 9M) in HFpEF heart

samples than control heart samples. These results indicated

macrophage polarization toward the M1 phenotype in the HFpEF

mouse heart.
3.9 Validation of CCR1 and CD163 in a
mouse model with both NAFLD and HF

We further validated the in silico results in a mouse model

with both NAFLD and HF induced by long-term HFD feeding,

which is the most commonly used rodent model in the study of

metabolism-related cardiomyopathy (30–33). H&E staining and
FIGURE 5

Validation and receiver operating characteristic (ROC) curve analyses of CCR1 and CD163 in heart failure (HF) and nonalcoholic fatty liver disease
(NAFLD). (A–D) Expression of CCR1 and CD163 in GSE26887 (A), GSE57345 (B), GSE126848 (C), and GSE89632 (D), respectively. (E–H) ROC curve
and area under the curve (AUC) of CCR1 and CD163 in GSE26887 (E), GSE57345 (F), GSE126848 (G), and GSE89632 (H), respectively. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001 vs. healthy controls.
TABLE 1 Genes sorted by support vector machine-recursive feature
elimination (SVM-RFE) method.

Feature Name Feature ID Average Rank

GSE126848

CCR1 10 1.6

CD163 13 1.8

GSE26887

CD163 2 2.0

LILRB2 10 3.2

ITGAM 8 3.6

CCR1 1 5.6

HCK 7 6.8

FERMT3 6 7.2

LAPTM5 9 7.6

FCER1G 4 7.8

TYROBP 14 9.2

CYBB 3 9.4

SPI1 13 10.2

FCGR3A 5 10.4

NCF4 11 10.8
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oil red O staining of the liver tissues showed significant hepatic

steatosis in the HFD group (Supplementary Figures S2A, B).

Compared to the NC group, the HFD group exhibited

significantly elevated NAS and hepatic TG concentrations (P <

0.01, Supplementary Figures S2C, D). Additionally, mRNA

expression validation indicated a significant decrease in the

expression of hepatic Ccr1 and Cd163 in the HFD group

compared to the NC group (P < 0.05, Supplementary Figures

S2E, F). WGA staining of the heart tissues showed that the cross-

sectional area of left ventricular cardiomyocytes in the HFD group

was significantly larger than that in the NC group (P < 0.01,

Supplementary Figures S2G, H). In addition, the mRNA

expression level of left ventricular hypertrophy biomarkers (Anp

and Bnp) in heart tissues was significantly higher in the HFD

group than in the NC group (P < 0.01, Supplementary Figures S2I,

J). Furthermore, mRNA expression validation indicated a

significant decrease in the expression of heart Ccr1 and Cd163
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in the HFD group compared to the NC group (P < 0.05,

Supplementary Figures S2K, L). These results indicated

suppressed macrophage polarization toward the M2 phenotype

in the liver and heart of mice with both NAFLD and HF induced

by long-term over-nutrition.
4 Discussion

Accumulating epidemiological and clinical evidence supports a

strong association between NAFLD and HF. However, the

underlying pathophysiological mechanisms that link these two

diseases remain unclear. In this study, we employed a series of

bioinformatics approaches to analyze transcriptome data and

validated the results in mouse models. We found that M2

polarization impairment characterized by decreased expression of

CD163 and CCR1 was a common pathogenic pathway in NAFLD
FIGURE 6

Gene Set Enrichment Analysis (GSEA) of CCR1 and CD163 in GSE126848 and GSE26887 datasets. (A, B) Biological processes (A) and KEGG pathways
(B) found by singe-gene GSEA of CCR1 in NAFLD dataset GSE126848. (C, D) Biological processes (C) and KEGG pathways (D) found by singe-gene
GSEA of CD163 in NAFLD dataset GSE126848. (E, F) Biological processes (E) and KEGG pathways (F) found by singe-gene GSEA of CCR1 in HF
dataset GSE26887. (G, H) Biological processes (G) and KEGG pathways (H) found by singe-gene GSEA of CD163 in HF dataset GSE26887.
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and HF. The downregulation of CD163 and CCR1 may reflect key

pathological changes in the development and progression of

NAFLD and HF, suggesting their potential as diagnostic and

therapeutic targets.

The enrichment analysis indicated that co-DEGs of NAFLD

and HF were mainly engaged in pathways related to immune

responses. Indeed, the immune system plays a critical role in the

pathogenesis of both NAFLD and HF (35, 36). NAFLD is now

recognized as a systemic inflammatory disorder, with immune

responses being central to its development and progression. The

accumulation of excess lipids in the liver triggers metabolic stress

and induces lipotoxicity, leading to the activation of inflammatory

pathways and recruitment of immune cells (7). Resident liver cells,

such as hepatocytes and Kupffer cells, release pro-inflammatory

cytokines and chemokines in response to lipid overload. This

triggers the recruitment of circulating immune cells, including

monocytes and lymphocytes, to the liver, further amplifying the

inflammatory responses (36). The role of immune responses in the

pathogenesis of HF is also being increasingly recognized (35). In

response to various insults such as myocardial infarction,

hypertension, or chronic ischemia, the immune system becomes

activated within the myocardium. This activation involves the

recruitment of immune cells, including macrophages, neutrophils,

and lymphocytes, to the heart tissue. These immune cells release

pro-inflammatory cytokines contributing to myocardial

inflammation, tissue injury, and adverse cardiac remodeling,

which finally leads to HF (37, 38). Therefore, understanding the
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complex interplay between immune cells and signaling pathways in

the pathogenesis of NAFLD and HF is essential for developing

effective therapeutic strategies targeting inflammation and immune

dysregulation in both organs.

A wealth of data has confirmed the significant contribution of

macrophages to the development of NAFLD and HF (35, 36). The

two major macrophage polarization states are classically activated

(M1) and alternatively activated (M2) macrophages, each with

distinct functions and cytokine profiles (39). In NAFLD, M1

macrophages contribute to the progression from simple steatosis to

NASH by perpetuating liver inflammation and hepatocyte injury,

whereas M2 macrophages have been shown to have protective effects

by attenuating inflammation, promoting resolution of fibrosis, and

enhancing lipid metabolism. The balance between M1 and M2

macrophages is crucial for the progression and resolution of

NAFLD (40). Similarly, in both HFpEF and HFrEF, the imbalance

in macrophage polarization, shifting between the pro-inflammatory

M1 and anti-inflammatory M2 phenotypes, exacerbates

inflammation and contributes to cardiac injury (27, 41, 42). In the

present study, human transcriptome data analysis and animal

experiments demonstrate that unbalanced macrophage polarization

towards M1 polarization is a common pathophysiological process in

NAFLD and HF. These results suggest that targeting macrophage

polarization pathways represents a potential therapeutic strategy for

both diseases, aiming to restore the balance between pro-

inflammatory and anti-inflammatory macrophages and halt

disease progression.
FIGURE 7

Interaction of CCR1 and CD163 with inflammatory genes and chemical drugs. (A) Regulatory network of CCR1 and CD163 and their co-expression
genes constructed by the GeneMANIA database. (B, C) The correlation between CCR1 and CD163 with inflammation-related genes in the
GSE126848 (B) and GSE26887 (C) datasets. (D) The interactions between CCR1 and CD163 with chemicals and proteins constructed by the
STITCH database.
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Two genes (CD163 and CCR1) were screened out as common key

DEGs of NAFLD and HF. Intriguingly, both genes have been reported

as markers of macrophages and play an important role in macrophage

polarization and function (43, 44). CD163 is a cell surface receptor

predominantly expressed on macrophages and monocytes,

particularly on the M2 subset. It is commonly used as a marker to

identify M2-polarized macrophages (43). M2 macrophages produce

anti-inflammatory cytokines which may attenuate hepatic

inflammation and fibrogenesis in NAFLD (45, 46). Moreover,

CD163 has garnered interest in HF research due to its potential

roles in inflammation regulation, immune response modulation, and

cardiovascular homeostasis (47, 48). Animal studies have shown that
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the expression of CD163 was downregulated in HF, and anti-HF

treatment could reverse the expression of CD163 in the heart (27).

Thus, given its multi-faceted roles, CD163 may serve as a promising

diagnostic and therapeutic target for NAFLD and HF. Our ROC curve

analyses indicated that CD163 had a good diagnostic capacity for both

diseases. Of note, recent clinical studies have shown that sCD163,

released from activated macrophages, may serve as a biomarker in

NAFLD and HF (48–51). Further research is needed to elucidate the

precise mechanisms underlying CD163-mediated effects in NAFLD

and HF and to validate its translational potential as a biomarker.

CCR1 is a chemokine receptor that has been implicated in

various inflammatory and immune-mediated disorders. CCR1,
FIGURE 8

Validation of CCR1 and CD163 in a non-alcoholic fatty liver disease mouse model. (A) Hematoxylin&eosin (H&E) staining of liver tissues in mice with
normal chow (10% of calorie from fat, NC) or high-fat diet (60% of calorie from fat, HFD) for 14 weeks. The black arrow indicates infiltrated immune
cells. Scale bar = 100 mm. (B) NAFLD activity score (NAS) based on the H&E staining of liver tissues. (C) Hepatic triglyceride (TG) concentrations.
(D) Serum alanine aminotransferase (ALT) levels. (E) Relative mRNA expression level of inflammatory marker genes in liver tissues. (F–I) Relative
mRNA expression level of Ccr1 (F), Cd163 (G), Cd80 (H), and Cd206 (I) in liver tissues. (J) Representative images under fluorescence microscopy
showing CD163 staining (red) and nuclear staining (DIPA, blue) of liver tissues. Scale bar = 100 mm. (K) Representative images under fluorescence
microscopy showing CD80 staining (red) and nuclear staining (DIPA, blue) of liver tissues. Scale bar = 100 mm. Mean ± S.E.M., n = 12. *P<0.05,
**P<0.01 vs. the NC group.
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along with its ligands, such as CCL3 and CCL5, plays a critical role

in the recruitment and activation of immune cells, particularly

macrophages and monocytes, at sites of inflammation (52).

Although the role and mechanisms of CCR1 in macrophage

polarization are still being elucidated, emerging studies suggest

that CCR1 could influence macrophage polarization in the

context of inflammation and immune responses, mostly by

promoting M2 macrophage activation and function (44, 53, 54).

For instance, CCR1 was found preferentially expressed on M2
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macrophages compared with M1 macrophages, and M2

macrophages expressing high levels of CCR1 have the advantage

of migration to inflammatory lesions, thus decreasing the local

inflammation in healthy individuals (44). CCR1 is also reported as a

M2 macrophage-related gene in chronic rhinosinusitis with nasal

polyps (53). Moreover, the blockade of CCR1 inhibited protumor

M2-like macrophage phenotype by decreasing CD206 and IL-10

expression and triggered a favorable anti-lymphoma activity (54).

Our ROC curve analyses indicated that CCR1 had a good diagnostic
FIGURE 9

Validation of CCR1 and CD163 in a heart failure with reduced ejection fraction (HFpEF) mouse model. (A) Wheat germ agglutinin (WGA, green)
staining of heart tissues in mice with saline (CON group) or uninephrectomy surgery followed by 0.15mg/h d-aldosterone (HFpEF group) treatment
for 4 weeks. Scale bar = 100 mm. (B) Quantitative results of the left ventricular cross-sectional area based on the WGA staining of heart tissues.
(C) Heart weight/body weight (HW/BW) ratio. (D–F) Relative mRNA expression level of left ventricular hypertrophy markers Anp (D), Bnp (E), and b-
MHC (F) in heart tissues. (G) Relative mRNA expression level of inflammatory marker genes in heart tissues. (H–K) Relative mRNA expression level of
Ccr1 (H), Cd163 (I), Cd80 (J), and Cd206 (K) in heart tissues. (L) Representative images under fluorescence microscopy showing CD163 staining (red)
and nuclear staining (DIPA, blue) of heart tissues. Scale bar = 100 mm. (M) Representative images under fluorescence microscopy showing CD80
staining (red) and nuclear staining (DIPA, blue) of heart tissues. Scale bar = 100 mm. Mean ± S.E.M., n = 6. *P<0.05, **P<0.01 vs. the control group.
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capacity for HF and NAFLD. However, the role of CCR1 in

macrophage polarization in the context of NAFLD and HF and

the translational potential of CCR1 as a diagnostic and therapeutic

biomarker need to be further investigated.

It is important to note that several studies reported an increased

CCR1 expression in human NASH liver tissues and elevated levels

of serum sCD163 in NASH patients (55–57). The inconsistent

results may result from the differences in the stages and severity

of NAFLD between our study and others. In the present study, the

gene expression profiles of human livers and HFD mouse models

were at an early stage of NAFLD (i.e., the simple steatosis stage). To

further investigate the expression of CCR1 and CD163 in the NASH

stage, we applied a NASHmodel induced by 4 weeks of methionine/

choline-deficient (MCD) diet feeding. In contrast to the HFD-

induced NAFL model, the mRNA expression level of hepatic Ccr1

and Cd163 and serum level of sCD163 were significantly increased

in MCD-induced NASH mice (Supplementary Figures S1, S3).

Since NAFLD is an extremely complex clinical condition with a

broad disease spectrum ranging from simple steatosis to

steatohepatitis and eventually to advanced fibrosis and

hepatocellular carcinoma, the expression and role of specific

genes may vary among different stages of NAFLD (58–61).

Furthermore, multiple macrophage populations co-exist at

different stages in NAFLD livers, either facilitating or hindering

disease progression, yet the intricate interplay among these

populations and their communication with other cells in the liver

environment remains inadequately elucidated (62, 63). The

functions of CCR1 and CD163 as well as macrophage

polarization in different stages of NAFLD and during the

progression from one stage to the next require further investigation.
5 Limitations and future perspectives

There are several limitations in this study. First, this study aims

to identify biomarkers and therapeutic targets for individuals with

both diseases, however, the comorbidity information of NAFLD

and HF is lacking in the gene expression profiling datasets. Thus,

although this study validated the findings in a mouse model with

both NAFLD and HF, further studies are needed to verify the

expression of CD163 and CCR1 in clinical samples from patients

with both diseases. Second, the molecular functions of CD163 and

CCR1 were not validated in this study, thus the potential

therapeutic benefits of manipulating the expression of CD163 and

CCR1 in NAFLD and HF remain hypothetical. Further in vivo and

in vitro studies with loss/gain of function experiments are

imperative to elucidate the functions, underlying mechanisms,

and translational potential of CD163 and CCR1 in NAFLD and

HF. Moreover, the expression of CD163 and CCR1 in the peripheral

blood of patients with NAFLD and HF needs to be verified in future

studies to reveal their capacity for diagnosis and risk stratification.
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In conclusion, this study identified that M2 polarization

impairment characterized by decreased expression of CD163 and

CCR1 is a common pathogenic pathway in NAFLD and HF. The

downregulation of CD163 and CCR1 may reflect key pathological

changes in the development and progression of NAFLD and HF,

suggesting their potential as diagnostic and therapeutic targets. This

study emphasizes the tight pathogenic interactions between NAFLD

and HF and highlights the importance of targeting both organs of

the same patient in further studies.
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