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The immunotherapy for gastrointestinal tumors, as a significant research direction

in the field of oncology treatment in recent years, has garnered extensive attention

due to its potential therapeutic efficacy and promising clinical application prospects.

Recent advances in immunotherapy notwithstanding, challenges persist, such as

side effects, the complexity of the tumor immune microenvironment, variable

patient responses, and drug resistance. Consequently, there is a pressing need to

explore novel adjunctive therapeutic modalities. b-glucan, an immunomodulatory

agent, has exhibited promising anti-tumor efficacy in preclinical studies involving

colorectal cancer, pancreatic cancer, and gastric cancer, while also mitigating the

adverse reactions associated with chemotherapy and enhancing patients’ quality of

life. However, further clinical and fundamental research is warranted to

comprehensively evaluate its therapeutic potential and underlying biological

mechanisms. In the future, b-glucan holds promise as an adjunctive treatment for

gastrointestinal tumors, potentially bringing significant benefits to patients.
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1 Introduction

In addition to severe gastrointestinal dysfunction, gastrointestinal tumor patients often

present with clinical symptoms such as fatigue (24.9%), numbness or tingling sensation

(17.2%), abdominal distension (17.2%), dry mouth (15.9%), memory difficulties (11.8%), and

severe pain (32%, 47/145), these high symptom burdens may be correlated with a decreased

quality of life among gastrointestinal tumor survivors, and the significant economic burden

resulting from cancer treatment is also associated with a lower quality of life (1). Currently,

the main clinical treatments for gastrointestinal tumors are surgery and radiotherapy/
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chemotherapy. However, these therapies often result in adverse

reactions such as leukopenia, thrombocytopenia, anorexia, anemia,

diarrhea, liver damage, mucositis, and dysphagia (2, 3). Tumor

immunotherapy is an essential adjuvant therapy following tumor

surgery, chemotherapy, and radiotherapy, with the advantages of

superior specificity, broad anti-tumor spectrum, and mild toxic side

effects (4–6). In recent years, tumor immunotherapy has gradually

been applied in the treatment of gastrointestinal tumors, representing

a therapeutic approach that activates or enhances the patient’s

immune system to attack and eliminate tumor cells (7). Despite

significant progress achieved in recent years, it still faces multiple

challenges, including: 1) the presence of certain side effects such as

diarrhea, fatigue, rash, and elevated lipase levels (8); 2) the complexity

of the tumor immune microenvironment, which can affect the

effectiveness of immunotherapy (7); 3) the heterogeneity in the

response of different patients to specific immunotherapy due to

individual differences (9, 10); 4) the development of resistance and

low response rates to immune checkpoint inhibitors, resulting from

specific genetic mutations or upregulated gene expression in tumor

cells or immune cells (7, 11). Therefore, we need to explore novel

adjunctive therapies for clinical treatment of gastrointestinal tumors.

b-Glucan is widely used as a natural modulator of biological

effects in the study of tumor immunotherapy. In recent years, relevant

studies have confirmed that (12), as an immune modulator, b-glucan
has shown positive effects in inhibiting tumor cell proliferation and

activating anti-tumor immune responses (13–16). Meanwhile, due to

its stable structure, it is also used as a component of oral anti-tumor

drug delivery carriers (17).

The most common b-glucans used in clinical applications include
yeast glucan, shiitake mushroom polysaccharides, fission mushroom

polysaccharides, and oat glucan;The source, structure, water solubility

and molecular weight of these different b-glucans influence the

intensity and type of immune response induced by them (18). b-
glucans can be categorized into particulate and soluble glucans based

on their water solubility. It has been shown that particulate b-glucan
can activate dendritic cells (DCs) and macrophages through the

dectin-1 pathway (19, 20). However, soluble glucans can also enhance

macrophage proliferation and dectin-1 expression by inducing

granulocyte-macrophage colony stimulating factor (GM-CSF)

production in macrophages via dectin-1-independent ERK and p38

MAPK pathways, and ultimately exert antitumor effects by mediating

TNF-a production via the Syk pathway (21). b-Glucan emerges as a

promising biological effector modulator, exhibiting both safety and

efficacy in modulating innate and adaptive immune responses (22). It

triggers a cascade of immune defense reactions by interacting with

surface receptors of diverse immune cells, indicating its potential as a

therapeutic agent in immunomodulatory strategies (23).

Gastrointestinal tumors are becoming one of the deadliest

diseases worldwide. b-Glucan, a powerful immunomodulator, has

exhibited remarkable anti-tumor efficacy in preclinical investigations

targeting colorectal, pancreatic, and gastric cancers (14, 24, 25).

Notably, its high stability underscores its significance as a carrier

for targeted drugs specifically designed to combat gastric cancer (17).

Clinical studies further validate its ability to enhance the 5-year

survival rate in patients with hepatocellular carcinoma, gastric cancer,
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and colorectal cancer, while simultaneously reducing the rate of

recurrence (26–28). Moreover, b-glucan alleviates adverse reactions

associated with chemotherapy, including nausea, abdominal

discomfort, mucositis, diarrhea, and leukopenia/thrombocytopenia

(29), ultimately leading to an enhancement in patients’ overall quality

of life (30). In the future, with the advancement of clinical research

and technological innovations, b-glucan holds the promise of

emerging as a significant adjunctive therapeutic option for patients

with gastrointestinal tumors.
2 Classification and sources of
b-glucans

b-Glucan, a versatile polysaccharide, exhibits a wide range of

biological functions and is found ubiquitously in diverse biological

entities, including Cereals, fungi, algae and bacteria, primarily in the

forms of (1→ 3) (1→ 6)-b-D-glucan, (1→ 3) (1→ 4)-b-D-glucan
and (1 → 3)-b-D-glucan, in addition, studies have shown that the

branching derived from the glycosidic chain core varies among

different species (Table 1). Cereals constitute the primary source of

b-glucans. Specifically, wheat typically contains approximately 1%

b-glucans, oats range from 3% to 7%, and barley exhibits a b-glucan
content spanning from 5% to 11%, indicating their significant

presence in these cereal grains (48). Naturally occurring b-glucans
derived from cereals exhibit a distinctive structural motif that

primarily comprises b-(1→3) and (1→4) glycosidic linkages,

which underlie their unique chemical constitution and diverse

physicochemical properties. These b-glucans in cereals are linear

homopolysaccharides composed of D-glucopyranosyl residues

linked through b-(1→3) and b-(1→4) glycosidic bonds (49).In

contrast to cereal-derived b-glucans, b-glucans isolated from fungi

and bacteria possess a distinct structural composition, primarily

characterized by b-(1→3) and (1→6) glycosidic linkages. In these

microorganisms, b-glucans consist of a linear backbone composed

of glucose residues interconnected via b-(1→3) linkages, often

adorned with glucose side-chains of varying lengths, which are

attached through b-(1→6) linkages (50). On average, b-(1→6)

substitutions occur at intervals of every two to three b-(1→3)

main chain residues.
3 Biosynthetic Pathways of b-glucan

Recently, Pallinti Purushotham et al. (51) have identified the

catalytic activity and protein structural characteristics of barley

(1, 3; 1, 4)-b-glucan synthase (CslF6) through cryo-electron

microscopy and biochemical experiments, revealing the detailed

mechanism of CslF6-catalyzed (1, 3; 1, 4)-b-glucan biosynthesis.

Specifically, the C6 hydroxyl groups of consecutive (1, 3)- and

(1, 4)-b-linked glycosyl units point in approximately the same

direction during translocation, while consecutive (1, 4)-b-linked
glycosyl units rotate approximately 180°. A conserved “ switch

motif “ at the entrance of the transmembrane (TM) channel serves

as a crucial element for CslF6 enzymatic activity. This motif
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recognizes specific features of the translocating glucan, interacts

with the penultimate glucosyl unit, leading to the formation of a

new cellotriosyl unit (DP3) (51). The “switch motif” can also

interact with the antepenultimate glucosyl unit, triggering the

repositioning of the glucan acceptor, ultimately resulting in the

formation of a new cellotetraosyl unit (DP4) (51). This interaction

with the penultimate and antepenultimate glucosyl units ultimately

generates (1, 3; 1, 4)-b-glucan containing DP3 and DP4 (Figure 1).

In the biosynthetic pathway of b-1,3-glucan, the pivotal

membrane-integral Glucan Synthetase (GS) complex (Figure 2A),

comprised of a fks/gsc-encoded catalytic subunit and a rho1-encoded

regulatory subunit, holds paramount significance (52). Recent studies

have made groundbreaking progress by utilizing cryo-electron

microscopy (Cryo-EM) to elucidate the structure of fungal 1,3-b-
glucan synthase (Fks1) (53, 54) (Figure 2B). This significant

advancement has profoundly contributed to our understanding of

the b-1,3-glucan synthesis mechanism. Specifically, the Fks1 catalytic

subunit necessitates the soluble GTPase Rho1 as its regulatory

partner, enabling uridine diphosphate glucose (UDP-Glc) to serve

as the sugar donor for the catalysis of b(1→3) glycosidic bonds in 1,3-

b-glucan, thereby promoting the translocation of glucan chains from

the intracellular milieu to the extracellular space (52, 53). The cryo-
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EM structure reveals the apo state, characterized by the flexibility of

IF2 and IF3 and an unoccupied active site primed for substrate

binding. In this state, the glucan transport channel remains closed,

held in place by TM8. However, upon substrate binding and the

subsequent chemical reaction, the GT domain undergoes a

downward motion, expelling the formed glucan product out of the

cell. Simultaneously, IF2 and IF3 play a role in stabilizing the glucan

chain during its elongation. Notably, the movement of TM8 shifts

outward, opening the channel for glucan release (53). (Figure 2C).

The research indicates that CSLD3 is a UDP-glucose-dependent

b-1,4-glucan synthase (55). However, due to the lack of structural

elucidation, the specific biosynthetic pathway involving this protein

remains unreported. Although KRE6, SKN1, FfGS6, and GsmA

have been proven to participate in b-1,6-glucan synthesis, the

qualitative characterization of the activities of these b-1,6-glucan
synthases has not been achieved, and their protein structures have

yet to be successfully resolved. Consequently, the regulatory

mechanisms underlying their function remain unclear (56–58).
4 Receptors that mediate the effects
of b-glucan

The immune regulatory function of b-glucan depends on the

complexity of their conformational changes (59). b-glucan can

regulate innate immune cells by binding to pattern recognition

receptors (PRR) on the surface, thereby exerting anti-tumor effects

(60–63). b-glucan activate specific receptors or proteins, such as

Dectin-1, toll-like receptors (TLR), complement receptor 3 (CR3),

scavenger receptors (SR), and lactacyl ceramide (LacCer), triggering

the secretion of cytokines, and subsequently activating other anti-

tumor immune cells (64–66) (Figure 3A).
5 The role and biological mechanism
of b-glucan in the prevention and
treatment of digestive
system neoplasms

It is well known that b-glucan, as an immune modulator, can

effectively activate the immune system (67, 68). It exerts anti-tumor

effects by activating innate and adaptive immune responses (69–71).

Recent studies have shown that b-glucan has anti-tumor effects in

colorectal cancer (54), pancreatic cancer (24) and gastric cancer

(25). Furthermore, in animal models of gastric cancer, b-glucan can

serve as a drug carrier to enhance the retention time of drugs at the

tumor site, further augmenting the anti-tumor effects (17, 72). The

biological mechanism of its role is still being explored (Figure 3B).
5.1 The therapeutic effect and mechanism
of b-glucan on colorectal cancer

In animal models of colorectal cancer, Liu N et al. found that b-
glucan can exert the following biological functions, including: 1) anti-
TABLE 1 A summary of the sources of b-glucans.

Source
Organism/
species

Glycosidic
linkages

Reference

Cereals oats b-(1,3; 1,4) (31)

barley grain b-(1,3; 1,4) (32)

rye b-(1,3; 1,4) (33)

wheat b-(1,3; 1,4) (34)

rice b-(1,3; 1,4) (33)

Hordeum vulgare b-(1,3; 1,4) (35)

Avena sativa b-(1,3; 1,4) (36)

Fungi Grifola frondosa b-(1;3, 1;6) (37)

Lentinula edodes b-(1;3, 1;6) (38)

Saccharomyces
cerevisiae

b-(1;3, 1;6) (39)

Trametes versicolor b-(1;3, 1;4) (40)

Schizophyllum
commune

b-(1;3, 1;6) (41)

Sclerotium rolfsii b-(1;3, 1;6) (42)

Saccharomyces
cerevisiae

b-(1;3, 1;6) (43)

yeast b-(1;3, 1;6) (44)

mushroom b-(1;3, 1;6) (45)

Algae Laminaria digitata b-(1;3, 1;6) (42)

seaweed b-(1;3, 1;6) (46)

microalgae b-(1;3) (47)

Bacteria Alcaligenes faecali b-(1;3) (35)
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inflammatory effect; 2) inhibition of cell proliferation; 3) promotion

of cell apoptosis; 4) regulation of intestinal flora disorder; 5)

improvement of intestinal barrier function; 6) increase of short-

chain fatty acids (SCFA), which can exert anti-tumor effects through

synergistic effects of the above biological functions (14). Qi J et al.

found that alternating intake of b-glucan in the diet of mice with

colon cancer can reduce colon damage and mortality by reducing

TNF-a levels, increasing the relative abundance of Parabacteroides,

and downregulating three genes associated with inflammation and

cancer (Hmgcs2, Fabp2, and Gpt) (73). IL-22 binding protein (IL-

22BP) play an important role in inhibiting the development of

intestinal tumors (74). In a mouse colorectal tumor model, low

molecular weight b-glucan laminarin can exert its anti-colon tumor

effect by regulating the Dectin-1-PGE2-IL-22BP signaling axis (75).

Kim JH et al. found that low-molecular-weight Aureobasidium

pullulans-fermented b-D-glucan (LMW-AP-FBG) can exert anti-

tumor effects in mice with CT-26 colon cancer cells by reducing

tumor proliferation, inducing apoptosis, and inhibiting inflammation

(by inhibiting the NF-kB signaling pathway) (76). Kopiasz et al.

found that low-molecular- weight b-glucan (derived from oats) can

stimulate autophagy and increase apoptosis levels to positively affect

early colorectal cancer rats (77). Sulaiman Binmama et al. found that
Frontiers in Immunology 04
in the mouse colon cancer model induced by azomethane (AOM)

and injected subcutaneously with cancer cells, and found that

S.cerevisiae isolated whole glucan particles (WGP) enhance the

energy status of macrophages by activating Dectin-1, thereby

inhibiting tumor growth (78). It is believed that S.cerevisiae or b-
glucan can be used to prevent the occurrence of colon cancer. A

recent study has elucidated the impact of a sustained 8-week dietary

intake of low-molecular-weight oat b-glucan on the antioxidant

capability, inflammatory markers, and colonic metabolomic

profiles in a rat model of early colon cancer induced by

azoxymethane (AOM). The findings reveal that b-glucan
intervention significantly enhances total antioxidant status,

diminishes superoxide dismutase (SOD) activity, and lowers

thiobarbituric acid reactive substances (TBARS) levels. Notably, b-
glucan supplementation was found to reduce proinflammatory

cytokines including interleukin (IL-1a, IL-1b, IL-12 and C-reactive

protein (CRP), while augmenting IL-10 concentrations. Moreover,

metabolomic analyses have validated that oat b-glucan elevates the

abundance of metabolites such as amino acids, purines, biotin, and

folic acid. The researchers postulate that during the incipient stages

of carcinogenesis, colonic metabolism undergoes profound

alterations, and low-molecular-weight oat b-glucan emerges as a
FIGURE 1

Model of (1, 3; 1, 4)-b-glucan biosynthesis. To generate figure using the raw data from the PDB database (PDB: 8DQK), cartoon representations of the protein
structures were created using PyMOL. The graphical approach for illustrating the synthetic mechanism is referenced from DOI: 10.1126/sciadv.add1596.
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promising dietary supplement for modulating these mechanisms

(79). Liu N and colleagues achieved precise fractionation of b-glucan
isolated from lentils into three fractions with varying weight-average

molecular weights (Mw) through ultrasonic degradation, and

thoroughly evaluated their therapeutic potential in colorectal
Frontiers in Immunology 05
cancer. In cellular experiments, these b-glucan fractions exhibited

remarkable inhibitory effects on colon cancer cell proliferation,

induced apoptosis, and alleviated inflammatory responses.

Moreover, in vivo investigations utilizing mouse models

highlighted the superior anti-inflammatory and anti-colorectal
A

B

C

FIGURE 2

Biosynthetic Pathways of 1, 3-b-Glucan. (A). A model of the fungal cell wall depicts FKS1 utilizing UDP-Glc as a substrate to synthesize the crucial b-
1,3-glucan component. (A) was created using Figdraw (https://www.figdraw.com. ID : TROPO6a95 d). (B). Cryo-EM map of FKS1 and the FKS1 structure
in cartoon display. To generate figures using the raw data from the PDB database (PDB: 8JZN and PDB: 7YUY), cartoon representations of the protein
structures were created using PyMOL. (C). Proposed catalytic mechanism of Fks1. The graphical approach for illustrating the synthetic mechanism is
referenced from DOI: 10.1126/sciadv.adh7820 and DOI: 10.1038/s41586-023-05856-5.
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cancer properties of low-molecular-weight b-glucan, which was

attributed to its ability to restore the intestinal mucosal barrier,

enhance the content of SCFAs, modulate the metabolic landscape of

intestinal microbiota, and reshape the intestinal microbiota

composition. These findings offer compelling scientific evidence for

the utilization of b-glucan as a modulator of intestinal microbiota,

representing a promising alternative therapeutic strategy for the

clinical treatment of colon cancer (14). The impact of b-glucan on

intestinal immune responses during colitis-associated colorectal

cancer (CAC) remains unclear. Researchers have delved into the

underlying mechanisms of b-glucan’s role in the pathogenesis of

CAC. Following oral administration of b-glucan in a CAC mouse

model, a significant increase in antitumor DCs within the tumor

microenvironment was observed, leading to a subsequent

augmentation of CD8+ T cells and associated cytokine production.

Additionally, b-glucan enhanced resilience against chronic colitis by

remodeling the inflammatory microenvironment. These data suggest

that b-glucan can ameliorate experimental intestinal inflammation

and delay the progression of CAC (80). Ji Hyeon Kim and colleagues

evaluated the therapeutic potential of LMW-AP-FBGin BALB/c mice

implanted with subcutaneous CT-26 colon cancer cells. Their study

demonstrated that daily intraperitoneal injection of LMW-AP-FBG

(5 mg/kg) over a two-week period significantly suppressed tumor

growth by reducing tumor proliferation and inducing apoptosis.
Frontiers in Immunology 06
Moreover, the treatment reduced the viability of CT-26 cells in a

dose-dependent manner, via mechanisms that involve the loss of

mitochondrial transmembrane potential and the promotion of

apoptosis. This investigation indicates that LMW-AP-FBG

possesses anticancer properties both in vitro and in vivo (76). The

above studies suggest that b-glucan plays a certain preventive and

therapeutic role in preclinical models of colorectal cancer, and

further in-depth study of its biological mechanism of action in the

future will lay the foundation for its clinical translation.
5.2 Therapeutic effect and mechanism of
b-glucan on pancreatic cancer

Research indicates that b-glucan, as an immune agonist, has the

ability to train the body’s immune system and promote anti-tumor

immune effects by training and enhancing the body’s immune

function (81, 82). In the mouse pancreatic cancer (PC) model, b-
glucan can induce training immunity in mouse pancreas and

prolong the survival rate of PC; the combination therapy with

irreversible electroporation (IRE) showed better anti-tumor effects

in a PC mouse model. The biological effects of this combination

therapy mainly include: 1) Enhancing immune cell infiltration into

the PC tumor microenvironment; 2) Enhancing the training
FIGURE 3

Sources, Classification and Interacting Receptors of Beta-Glucans and Biological Mechanisms for the Prevention and Treatment of
Gastrointestinal Tumors.
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response of tumor infiltrating bone marrow cells. 3) Reducing local

and distant tumor burden and prolong the survival rate of mouse in

situ PC model (24). Due to the highly desmoplastic tumor

microenvironment (TME) of pancreatic ductal adenocarcinoma

(PDAC), its treatment prognosis is poor. Researchers have

developed an oral b-glucan-functionalized zinc doxorubicin

nanoparticle system (b-Glus-ZnD-NPs) for targeted PDAC

therapy. This b-Glus-ZnD NPs system actively targets and

traverses the folds of the small intestine, overcoming the

intestinal epithelial barrier. Subsequently, the nanoparticles are

phagocytosed by endogenous macrophages (b-Glus-ZnD@Mf),
which are activated to produce matrix metalloproteinases that

destroy the desmoplastic stromal barrier. These macrophages also

differentiate into an M1-like phenotype, modulating the tumor

microenvironment and recruiting effector T cells, ultimately

inducing tumor cell apoptosis (83). The liver is the most common

site of metastasis in PDAC. A study indicates that b-glucan can

activate liver-resident macrophages (Kupffer cells) and prevent

PDAC from metastasizing to the liver. b-glucan exerts its anti-

tumor metastasis effect through the following mechanisms: 1)

upregulating the antigen presentation pathway in Kupffer cells; 2)

driving the interaction between Kupffer cells and T cells; 3)

stimulating T cells -mediated anti-tumor immunity; 4) Kupffer

cells and T cells coordinate the activation of macrophages

(BMDM). At the same time, researchers also found that the

combination of b-glucan treatment and anti-PD1 treatment can

inhibit liver metastasis. Geller AE and other studies have found that

b-glucan enters the pancreas in a dectin-1-dependent manner, and

then b-glucan stimulates trained myeloid cells to flow into the

pancreas to exert anti-tumor effects (84). Researchers used CCR2−/−

mice to confirm that the peripheral immune cells that fight tumors

are mainly trained CCR2+ myeloid cells, which recruit and infiltrate

into pancreatic tumor cell areas through the CCL2-CCR2 signaling

axis, and then exert their anti-tumor effects through phagocytosis

and ROS-mediated cytotoxicity (84). To sum up, in the treatment of

pancreatic cancer, a “cold tumor”, b-glucan primarily trains

immune cells by acting as an immunostimulator, thereby

mediating anti-tumor immune responses.
5.3 The therapeutic effect and mechanism
of b-glucan on gastric cancer

Lentinan, a b-glucan extracted from mushrooms, has been

proven to possess antitumor activity (25, 85). Researchers have

confirmed its preventive and therapeutic effects on gastric cancer,

and the mechanisms of its action include: 1) inhibiting the G2/M

phase of the gastric cancer cell division cycle to exert anti-

proliferative effects; 2) Lentinan can attenuate the wound healing,

colony formation, and migration abilities of AGS cells; 3) Lentinan

can increase the expression of phospho-p38, while reducing the

expression of phospho-ERK1/2 and Mu-2-related death-inducing

gene (MuD) proteins; 4) Lentinan induces the generation of reactive

oxygen species (ROS), directly participating in cell death (25). In the

treatment of gastric cancer, b-glucan can be used as a main

component of drug carriers to jointly exert anti-tumor effects. To
Frontiers in Immunology 07
develop an oral drug that improves treatment efficacy by prolonging

gastric treatment time, researchers have developed an oral delivery

tool based on b-glucan, which can control the release of Bcl2 siRNA

and 5-fluorouracil (5FU) payloads for more than 6 hours. By

increasing their adsorption time in gastric mucus, Bcl2 siRNA can

selectively knock out the Bcl2 gene to promote cell apoptosis and

alleviate cancer (17). The team developed the therapeutic effect of

oral administration of Navi/siRNA mediated by Glucan and

Docosahexaenoic Acid (GADA) was studied in a mouse model of

b-gastric cancer (72). The results showed that the mice treated with

GADA/NAVI/siRNA had a higher inhibitory effect on Bcl2. In

summary, in the treatment of gastric cancer, b-glucan not only

plays a direct anti-tumor role, but also can be used as a major

component of drug carriers to increase the adhesion properties of

the carrier, thereby improving the duration and efficacy of drug

treatment. These studies have opened up a new horizon for long-

term oral drug therapy for gastric cancer.
6 Application of b-glucans in the
treatment of patients with
gastrointestinal tumors

For patients with advanced gastrointestinal cancer, it is highly

desirable to continue chemotherapy with minimal adverse reactions

for an extended period. Previous clinical studies have indicated that

the adjunctive use of b-glucan during chemotherapy or

radiotherapy for hepatocellular carcinoma, gastric cancer, and

colorectal cancer can increase the 5-year survival rate by 15% and

reduce the recurrence rate by 43% (26–28). In Japan, two types of b-
glucans, krestin and lentinan, are licensed as drugs for gastric cancer

treatment (85). Among them, Krestin is extracted from Coriolus

versicolor, and this preparation has been clinically used for surgical

treatment of resectable gastric cancer (86–88). Okuno K et al.

investigated the effects of an oral b-glucan immunomodulator,

Lentinula edodes mycelia extract (LEM), on immune function

and chemotherapy-induced adverse reactions in 1 patient with

gastric cancer and 7 patients with colorectal cancer. After

treatment with LEM (1800 mg/day for 28 days), 8 patients

experienced reduced adverse reactions such as nausea and

abdominal pain caused by chemotherapy. Additionally, LEM

increased the production of interferon (IFN)-g by CD4+, CD8+

T, and CD56+ NK/NKT cells. These results suggest that the

concurrent use of LEM with chemotherapy can reduce the

probability of adverse reactions caused by cancer chemotherapy

in patients with advanced cancer (89).

Lentinan (LNT) is an immune adjuvant medicine for advanced

gastric cancer in Japan, in a multicenter clinical study conducted in

Japan, 71 patients with advanced colorectal cancer who met the

inclusion criteria were enrolled. In this study, researchers employed

superfine dispersed lentinan (SDL), an oral formulation of 1,3-b-
glucan, as an adjunctive therapy to assess post-chemotherapy adverse

reactions, quality of life (QOL), and the binding capacity of peripheral

blood monocytes (PBMs) to lentinan (LNT). After receiving SDL

treatment (15 mg/day for 84 days), QOL was significantly improved
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in the majority of patients. Notably, the PBM binding rate to LNT was

significantly higher in the QOL-improved group compared to the non-

improved group. These results demonstrate that SDL is both safe and

effective in suppressing chemotherapy-induced adverse reactions and

enhancing QOL in patients with advanced colorectal cancer.

Furthermore, the binding capacity of PBMs to LNT may serve as a

potential predictor of QOL improvement following SDL

administration (30). In a retrospective study examining the effects of

oral b-glucan administration on chemotherapy-induced adverse

reactions in 62 patients with advanced colorectal tumors, significant

reductions in chemotherapy-related adverse reactions such as oral

mucositis and diarrhea were observed following treatment with b-
glucan (50 mg/day for 7 days). Notably, there were no significant

decreases in white blood cell count, neutrophil count, or platelet count

following chemotherapy. These findings suggest that b-glucan may be

utilized to alleviate adverse reactions following chemotherapy in

patients with advanced colorectal cancer (29) In patients with KRAS-

mutant colorectal cancer (CRC), monotherapy with cetuximab has

been ineffective. Researchers have explored the combination of b-
glucan (Imprime PGG) with cetuximab, owing to Imprime PGG’s

ability to enhance the recognition of natural immune cells. The study

revealed that the combination of Imprime PGG and cetuximab

demonstrated convincing yet moderate clinical activity, providing

evidence for the clinical efficacy of Imprime PGG when combined

with complement-activating antibodies (90). In a clinical study, b-
glucan was incubated with the blood of colorectal cancer patients, and

it was found that after incubation with b-glucan, the DNA damage

parameters in the blood significantly decreased, suggesting that b-
glucan can significantly reduce DNA damage in colorectal cancer

patients through antioxidant effects (91). In a phase I clinical trial

evaluating b-glucan-based combination therapy for PDAC, researchers

aimed to assess the therapeutic efficacy of BTH1704 (a monoclonal

antibody targeting aberrantly glycosylatedMucin 1) and Imprime PGG

(a glucan derived from yeast that is crucial in triggering leukocyte-

mediated cytotoxic responses against tumor cells), combined with

gemcitabine, in patients with advanced PDAC (NCT02132403).
7 Summary and prospect

b-Glucan, as an immunomodulator, has demonstrated

promising anti-tumor effects in preclinical studies of colorectal

cancer, pancreatic cancer, and gastric cancer (14, 24, 25). Notably,

the high stability of b-glucan renders it a crucial component for

serving as a carrier for targeted drugs against gastric cancer (17). In

clinical studies, b-glucan has been shown to improve the 5-year

survival rate of hepatocellular carcinoma, gastric cancer, and

colorectal cancer, while reducing the recurrence rate (26–28).

Additionally, it can mitigate adverse reactions caused by

chemotherapy, such as nausea, abdominal pain, mucositis,

diarrhea, and leukopenia/thrombocytopenia (29), leading to an

improvement in patient quality of life (30). Furthermore, b-
glucan has the potential to enhance the anti-tumor effects of anti-

tumor immune agents (90). Given that b-glucan is mostly derived

from edible mushrooms, its natural origin promotes the

development of b-glucan-related drugs or clinical health products.
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In the future, b-glucan may serve as a combined treatment method

with monoclonal antibodies to improve anti-tumor immune

responses. Although b-glucan has been proven to exert certain

therapeutic effects in the treatment of gastrointestinal tumors, most

of the studies demonstrating its anti-tumor effects are preclinical.

More clinical research is needed to evaluate its therapeutic efficacy

in gastrointestinal tumors. Simultaneously, further basic research is

required to explore the specific biological mechanisms of b-glucan
in the prevention and treatment of gastrointestinal tumors. In the

future, b-glucan may serve as an adjuvant therapy for

gastrointestinal tumors, benefiting patients with such malignancies.
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