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Triple-negative breast cancer (TNBC) has become a thorny problem in the

treatment of breast cancer because of its high invasiveness, metastasis and

recurrence. Although immunotherapy has made important progress in TNBC,

immune escape caused by many factors, especially metabolic reprogramming, is

still the bottleneck of TNBC immunotherapy. Regrettably, the mechanisms

responsible for immune escape remain poorly understood. Exploring the

mechanism of TNBC immune escape at the metabolic level provides a target

and direction for follow-up targeting or immunotherapy. In this review, we focus

on the mechanism that TNBC affects immune cells and interstitial cells through

hypoxia, glucose metabolism, lipid metabolism and amino acid metabolism, and

changes tumor metabolism and tumor microenvironment. This will help to find

new targets and strategies for TNBC immunotherapy.
KEYWORDS
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1 Introduction

In 2020, breast cancer had the highest incidence worldwide and was the fifth leading

cause of cancer-related deaths, accounting for one-quarter of female cancer cases and one-

sixth of cancer deaths (1). Although the 5-year survival rate of patients with breast cancer

has reached 80% (2), triple-negative breast cancer (TNBC) has emerged as a significant

obstacle to improving the prognosis of patients with breast cancer due to its high

invasiveness, propensity for metastasis, and recurrence (3). At present, surgery,

radiotherapy and chemotherapy are still the main treatments for TNBC (4), but
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immunotherapy has shown promising results in the management of

TNBC (5, 6), with a response rate of approximately 20% (7).

Immune escape caused by many factors has become an important

factor in the limited effect of immunotherapy for TNBC. Tumor

heterogeneity and tumor metabolism play a pivotal role in

this process.

Tumor heterogeneity is a key determinant of treatment efficacy

and is associated with poor survival outcomes and prognosis (8,

9).There are various types of tumor heterogeneity. Foremost,

heterogeneity may occur between individual tumor cells, known

as intratumor heterogeneity. Intratumor heterogeneity can be

further categorized into spatial and temporal heterogeneity, as it

may be present in distinct regions of the primary tumor and the

primary tumor may evolve over time. Secondly, the differences

between different metastatic lesions in the same patient are called

inter-metastatic heterogeneity. Thirdly, heterogeneity may also exist

within a single metastatic cell. Finally, there is also heterogeneity

between tumors of different patients, so personalized treatment is

needed for each patient (10, 11).Tumor heterogeneity is ubiquitous

in all cancers. In general, epigenetic modifications of cell

characteristics such as tumor transcriptional changes, gene

mutations, and changes in protein levels all show tumor

heterogeneity. In addition to these intrinsic factors, other extrinsic

factors such as pH, hypoxia, and crosstalk between tumor cells and

other stromal cells in the TME can also affect tumor genotype and

phenotype, further leading to tumor heterogeneity (12).

Metabolic reprogramming is a hallmark feature of tumors (13,

14), enabling tumor cells to meet the energy demands and

biosynthetic requirements necessary for malignant proliferation,

maintain redox homeostasis, proliferate rapidly in a nutrient-

deficient tumor microenvironment (15), and facilitate the survival

and metastasis of cancer cells (16). Alterations in metabolic

reprogramming in tumor cells also impact immune cells and

other cell types, contributing to tumor initiation and progression.

In comparison to other subtypes of breast cancer, TNBC exhibits

reduced mitochondrial oxidative phosphorylation, increased

glycolytic activity, enhanced fatty acid synthesis, and altered

amino acid metabolism (17–20).

Tumor heterogeneity plays an important role in tumor

formation and development. Revealing tumor heterogeneity still

faces many challenges. How to fully and comprehensively

understand the changes in heterogeneity in patients is one of the

future directions of tumor research. Due to the rich content of

tumor heterogeneity and metabolic reprogramming, this review

mainly analyzes the role of metabolic reprogramming in the

immune escape of triple-negative breast cancer. This review starts

from the mechanism of metabolic reprogramming in TNBC

immune escape, and expounds that hypoxia, glucose metabolism,

lipid metabolism and amino acid metabolism alter tumor

metabolism and the tumor microenvironment by affecting

immune cells, interstitial cells and other processes, resulting in

immune escape. Indicating the importance of metabolic

reprogramming in tumor progression, and then providing help

for the discovery of new TNBC immunotherapy targets

and strategies.
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2 Hypoxia and immune escape
in TNBC

Hypoxia is a prominent characteristic of many solid tumors

(21), particularly in TNBC (22, 23). Hypoxia causes an increase in

hypoxia-inducible factor (HIF), which affects the tumor

microenvironment, changes the metabolic state of tumors, and

even promotes tumor angiogenesis by promoting the production

and aggregation of immunosuppressive cells, inhibiting the

function of immune effector cells, activating the signaling axis of

stromal cells, and enhancing the relationship between cytokines and

immune cells. This leads to the invasion and progression of

TNBC (Figure 1).
2.1 Hypoxia induces increased infiltration
of immunosuppressive cells

Myeloid-derived suppressor cells (MDSCs) inhibit immune

responses and promote tumor immune escape (24). Under

hypoxic conditions, hypoxia-inducible factor 1 a (HIF-1a) can

synergize with chemokine signals from mesenchymal stem cells to

trigger colony-stimulating factor 1 (CSF-1) and chemokine receptor

type 5 (CCR5) gene transcription in breast cancer cells. Chemokine

(C-C motif) ligand 5(CCL5) and CCR5 signaling regulates the

expression of CSF1 in breast cancer cells, while CSF1 and CSF1

receptor (CSF1R) signaling regulates the expression of CCL5 in

mesenchymal stem cells. This signaling cascade ultimately facilitates

the recruitment of MDSCs (25).In addition, it was found that HIF-

1a directly interacts with the HRE located in the proximal promoter

region of programmed death-ligand 1 (PD-L1) and selectively

upregulates PD-L1 on MDSCs. Inhibition of PD-L1 can abrogate

MDSC-mediated suppression of T cell suppression in part by

modulating the production of cytokines interleukin-6 (IL-6) and

interleukin-10 (IL-10) in hypoxic MDSCs (26). Concurrently, HIF-

1a upregulates the expression of microRNA 210 in MDSCs and

then regulates the activity of MDSCs by regulating arginase-1

(ARG1), C-X-C motif chemokine ligand 12 (Cxcl12) and

interleukin-16 (IL16), thus enhancing the immunosuppressive

function of MDSCs (27). Furthermore, the V-domain Ig

suppressor of T-cell activation (VISTA) is a mediator of MDSC

function, and HIF-1a binds to the conserved hypoxia response

element in the T-cell-activated VISTA promoter to upregulate

VISTA in myelocytes. Targeting VISTA with antibodies or gene

ablation can mitigate MDSC-mediated T-cell inhibition (28).

The expression of HIF-1a can promote the transcription of

forkhead boxP3 (FoxP3), which in turn promotes the production of

regulatory T cells (Tregs), thus strengthening their inhibitory

function (29–31). Hypoxia can induce Tregs to inhibit the

proliferation and differentiation of CD4+ T cells and CD8+ T cells

(32, 33). Hypoxia induces a variety of cell types, including Tregs. In

addition, hypoxia induces the expression of CD73 in various types

of cells, including Tregs, which has a negative effect on T-cell

function by participating in the production of adenosine, an

immunosuppressive metabolite (34).
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Hypoxia leads to the upregulation of HIF-1, which in turn

promotes tumor angiogenesis and invasiveness, while tumor-

associated macrophages (TAMs) play an important role in

promoting tumor angiogenesis; therefore, HIF-1 is considered to

be the factor by which TAMs promote angiogenesis (35, 36).
2.2 Hypoxia inhibits the activation and
function of immune effector cells

Although natural killer (NK) cells play an important role in

tumor immunity, decreased expression of granzyme B, interferon-

gamma (IFN-g), and the degranulation marker CD107a and

reduced expression of activated receptors on the surface of NK

cells, such as NKP30, NKp46 and NKG2D, can significantly reduce

the activity of NK cells. Some studies have indicated that the

decreased phosphorylation of extracellular signal-regulated kinase

(ERK) and signal transducer and activator of transcription 3

(STAT3) induced by hypoxia is closely associated with the

attenuation of NK cytotoxicity (37). Hypoxia can also promote

the transformation of NK cells into tumor-resistant and

immunosuppressive phenotypes. Because of the enrichment of the

NF-kB pathway in NK cells, the antitumor activity of NK cells can

be enhanced by inhibiting HIF-1a (38).
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CD8+ T cells are critical antitumor immune cells. TNBC

patients with high levels of CD8+ T cells exhibit improved clinical

prognosis and a robust immune response (39). The immune-killing

function of CD8+ T cells is inhibited in the hypoxic

microenvironment, which is determined by the epigenetic

mechanism of immune effector genes mediated by HIF-a (40).

Tumor cells with elevated expression of HIF-a can consume large

amounts of glucose and decrease the glycolytic activity of CD8+ T

cells, resulting in a decrease in adenosine triphosphate (ATP),

which in turn affects the function of CD8+ T cells (40, 41). The

antitumor activity and infiltration level of CD8+ T cells are affected

by vascular endothelial-derived growth factor (VEGF) and

programmed cell death protein 1 (PD-1), which are regulated by

HIF-a. VEGF-A can affect the transport and killing ability and

promote the differentiation of PD-1+ TIM-3+ CXCR5+ terminally

exhausted-like CD8+ T cells (42). An in vitro study of TNBC culture

systems showed that HIF-1a inhibited the expression of immune

effector genes such as interferon gamma (IFNG) and tumor necrosis

factor (TNF) through histone modification mediated by histone

deacetylase 1 (HDAC1) and polycomb repressive complex 2

(PRC2) during hypoxia and caused CD8+ T cells to dysfunction

(43). Moreover, the amount of adenosine produced by tumor cells

regulated by HIF-1a increased in the hypoxic microenvironment.

Adenosine interacts with adenosine A2A receptors to promote T-
FIGURE 1

Hypoxia and immune escape in triple-negative breast cancer. (A) Hypoxia induces increased infiltration of immunosuppressive cells: Under hypoxic
conditions, HIF-1a influences the function of MDSCs through microRNA-210, PD-L1 and VISTA. Additionally, HIF-1a enhances the generation of
Tregs by upregulating FoxP3 transcription. (B) Hypoxia inhibits the activation and function of immune effector cells: The reduced expression of
granzyme B, IFN-g, and the degranulation marker CD107a, as well as the downregulation of activating receptors including NKP30, NKp46, and
NKG2D on the surface of NK cells, resulted in a significant decrease in NK cell activity. The upregulation of HIF- a led to a reduction in glycolytic
activity in CD8+ T cells. VEGF and PD-1, both regulated by HIF- a, influenced the anti-tumor response of CD8+ T cells. (C) Hypoxia can produce
effects that affect mesenchymal cell function: CAF enhance the activity of cancer cell mitochondria by activating the TGF-b1/p38MAPK/MMP2/9
signaling axis to produce lactic acid under hypoxic conditions. (D) Hypoxia changes the relationship between cytokines and immune cells: HIF-1a
has the ability to suppress the expression of interleukin-18 (IL-18), whereas hypoxia triggers the release of the immunosuppressive cytokine IL-10
and the upregulation of CD137 and CD25.
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cell apoptosis and inhibit proliferation, thereby suppressing

antitumor immune function (44).
2.3 Hypoxia can affect mesenchymal
cell function

Stromal cells include fibroblasts, astrocytes, adipocytes and

other types, among which cancer-associated fibroblasts play an

important role in hypoxia. Cancer-associated fibroblasts (CAFs) are

highly sensitive to hypoxia, and fibroblast-specific HIF activates and

promotes the arrangement and stiffness of the extracellular matrix

(ECM), leading to morphological and migratory changes in breast

cancer cells. During hypoxia, CAFs produce lactic acid, which is

released by monocarboxylate transporter4 (MCT4) by activating

the TGF-b1/p38MAPK/MMP2/9 signaling axis, and enters the cell

with the help of the cancer cell monocarboxylate transporter 1

(MCT1). This process enhances the activity of cancer cell

mitochondria and promotes cancer cell invasion (45). Hypoxia

can also induce the transformation of normal fibroblasts into CAFs

(46). In breast cancer, HIF-1a and the G protein-coupled estrogen

receptor (GPER) signaling pathway stimulate the expression of

VEGF in CAFs, while GPER in breast cancer CAFs induces

interleukin-1b (IL-1b) to express interleukin-1 receptor 1 (IL1R1)

in breast cancer cells (47). Therefore, by investigating the effect of

GPER silencing on breast cancer caused by hypoxia, it was found

that the expression of connective tissue growth factor (CTGF) could

be inhibited by knocking down GPER in CAFs to inhibit the

invasion of breast cancer cells induced by hypoxia (48).
2.4 Hypoxia changes the relationship
between cytokines and immune cells

HIF-1a inhibits the production of interleukin-18 (IL-18), which

is necessary for the activation of NF-kB and enhancement of the

antitumor activity of NK cells (38). The oxygen tension during the

activation of CD8+ T cells is decreased due to hypoxia, which in

turn induces the secretion of the immunosuppressive factor IL-10

and the upregulation of CD137 and CD25. As a result, the

phenotype of CD8+ T cells transitions from that of effector cells

to that of nonproliferating cells (49). Simultaneously, hypoxia-

induced production of VEGF, epithelial growth factor receptor

(EGFR), C-C Motif Chemokine Ligand 5 (CCL5), CSF-1,

oncostatin M (OSM), eotaxin, succinic acid and granulocyte-

macrophage colony-stimulating factor (GM-CSF) can facilitate

the recruitment of TAMs and promote their polarization toward

the M2 phenotype (50–53).
3 Altered glycolysis and TNBC

In TNBC, tumor proliferation is closely related to glycolysis.

When glycolysis is altered, the altered rate of glycolysis and the

metabolites of glycolysis lead to changes in the nutrient supply to
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immune cells as well as to other cells, which can lead to problems

such as the immune escape of tumor cells (54, 55) (Figure 2).
3.1 Changes in the glycolysis rate are
involved in immune escape in TNBC

The modulation of the glycolysis rate can facilitate tumor

immune escape. High rates of tumor cell glycolysis can activate the

autophagy signaling pathway and AMP-activated protein kinase

ULK1 (AMPK-ULK1), resulting in inhibition of enhancer-binding

protein beta (CEBPB) subtypes and activation of liver-enriched

activator protein (LAP), thus controlling the expression of GM-

CSF and granulocyte colony-stimulating factor (G-CSF), supporting

the formation of MDSCs, reducing the number of effector CD8+ T

cells, weakening antitumor immunity, and hastening the progression

of TNBC. Conversely, when glycolysis is limited, the expression of G-

CSF and GM-CSF is inhibited, which affects the formation of MDSCs

and increases the number of CD8+ T cells (56). In addition, during

high rates of tumor cell glycolysis, high glucose and high oxygen

consumption cause a glucose-deficient tumor microenvironment,

which decreases the glycolytic ability of T cells, reduces the

production of the metabolite phosphoenolpyruvate (PEP), and

weakens the ability to inhibit the activity of sarco/ERCa2 +-ATPase

(SERCA), resulting in a decrease in the ability of SERCA to maintain

T-cell receptor-mediated Ca-NFAT signal transduction and effector

function, thereby attenuating the antitumor response of T cells.

Conversely, if tumor cells do not consume glucose excessively, the

glycolytic capacity of T cells remains intact, and PEP, a glycolytic

metabolite, ensures the antitumor function of T cells by inhibiting

SERCA activity (57). Some studies have demonstrated that by

inducing the Warburg effect in the tumor microenvironment

(TME), activated C-X-C motif chemokine ligand 1/2 (CXCL1/2)

binds to C-X-C motif chemokine receptor 2 (CXCR2), recruiting

MDSCs and other cells, thereby fostering tumor growth and immune

escape (58). Notably, during tumor glycolysis, lactate dehydrogenase

indirectly modulates the activity of CD4+ T cells via the PD-1

pathway, depriving these cells of sufficient energy and consequently

inhibiting their function (59).
3.2 Carbohydrate metabolite lactic acid
participates in the immune escape of
TNBC cells

The increase in glycolysis in TNBC cells results in the

production of a large amount of lactic acid, which accumulates in

the TME and forms an acidic environment (60). The function of

immune cells, especially immunosuppressive TAMs, is inhibited by

high levels of lactic acid and an acid-stimulated TME in tumors,

which blocks the immune surveillance of tumors, resulting in

immune escape. TAMs can differentiate and proliferate into a

pretumor phenotype in this acidic environment, facilitating tumor

immune escape (61). First, lactic acid from cancer cells can

stimulate the expression of VEGF and ARG1 and promote the
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polarization of TAMs to the M2 phenotype through histone

lactoacylation, leading to tumor cell proliferation (62–64). In

addition, a large amount of lactic acid in TAMs is induced by

downregulating lactate dehydrogenase B (LDHB), resulting in a

decrease in fatty acid synthesis, which activates sterol regulatory

element binding transcription factor 2 (SREBP2), increases

cholesterol synthesis in TAMs, and increases cholesterol levels

that promote cancer cell proliferation (44). Lactic acid can also

activate the lactate receptor GPR81, which is related to tumor

growth in dendritic cells, thereby eliminating antigen

presentation, reducing the secretion of the proinflammatory

cytokines IL-6 and IL-12, and inhibiting T-cell function (65).

Some studies have shown that in TNBC, pyruvate kinase isozyme

type M2 (PKM2) is suppressed through the EGFR signal

transduction axis, and glucose phosphorylation is catalyzed by

upregulating hexokinase 2 (HK2) to form a “glycolytic jam”, thus

reducing the expression of INF-g and IL-2, affecting T-cell function

and contributing to tumor growth and immune escape (66).

Notably, as an intermediate of glycolysis, glucose-6-phosphate

affects the antitumor immune response of immune cells through the

pentose phosphate pathway (PPP) (67). This process interferes with

oxidative phosphorylation (OXPHOS) and the PPP of immune

cells, ultimately suppressing immune function (68, 69).
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4 Lipid metabolism and TNBC

During the occurrence and development of breast cancer, fatty

acids can be absorbed by tumor cells, which in turn affects the

absorption of fatty acids by immune cells. The activation,

infiltration and effector function of immune cells are also

disrupted by disordered lipid metabolism (70, 71), which in turn

leads to immune escape (72–74) (Figure 3).
4.1 Lipid metabolism can influence
immune cell function

Themetabolism of lipids impacts immunosuppressive cells, such as

M2macrophages, through various pathways (75). TAM are commonly

classified into two main phenotypes: the anti-tumor M1 and the pro-

tumor M2. M2macrophages rely on fatty acids as a source of energy to

produce ATP, thereby promoting fatty acid oxidation (FAO) (76).The

TME contains many signaling molecules that can alter lipid

metabolism in TAMs by increasing FAO and lipid uptake,

promoting TAM polarization to a tumor-promoting M2 phenotype,

thereby exerting an immunosuppressive effect and promoting tumor

growth, metastasis, and angiogenesis (77). In cancer cells, fatty acid
FIGURE 2

Altered glycolysis and triple-negative breast cancer. (A) The change of glycolysis rate is involved in immune escape of triple negative breast cancer:
High rates of tumor cell glycolysis activate LAP leading to the formation of MDSCs and a decrease in the population of effector CD8+ T cells.
Furthermore, T cells exhibited decreased glycolytic activity in the glucose-deficient tumor microenvironment, leading to impaired anti-tumor
response. (B) Carbohydrate metabolite lactic acid participates in immune escape of triple negative breast cancer cells: Lactic acid produced by
cancer cells induces the upregulation of VEGF and ARG1, thereby facilitating the differentiation of TAMs toward the M2 phenotype. Furthermore, the
elevated lactic acid levels within TAMs result in reduced fatty acid levels, heightened cholesterol synthesis, and enhanced cancer cell proliferation.
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synthase (FASN) increases polyunsaturated fatty acids and promotes

the polarization of TAMs to the M2 phenotype under the regulation of

CD36 (76, 78). Prostaglandin E2 (PGE2), which is derived from

arachidonic acid in cancer cells, can also promote the polarization of

TAMs to the M2 phenotype (79–81). 27-HC, a metabolite of

cholesterol (CHOL) secreted by TAMs, can not only promote the

proliferation of cancer cells but also stimulate TAMs to secrete

chemokines, causing CCR2+ and CCR5+ monocytes to migrate to

the tumor site and polarize into M2 macrophages (82). Moreover, the

endoplasmic reticulum of macrophages can be induced by lipids in

cancer cells to induce stress and activate STAT3 and X-box binding

protein 1 (XBP1) through inositol-requiring enzyme 1 (IRE1) splicing,

thus promoting the pretumor phenotype of TAMs (83). Moreover,

apoptosis-derived sphingosine-1-phosphate (S1P) promotes TAM-like

polarization of macrophages (84). The tumor-promoting factor adipose

fatty acid-binding protein (A-FABP) is highly expressed in TAMs. A-

FABP enhances IL6/STAT3 signal transduction, promoting cancer

growth andmetastasis by regulating the NF-kB/miR-29b pathway. The

PGE2-COX2 (cyclooxygenase-2) axis plays an important role in the

lipid metabolism of TAMs (85, 86). COX-2 in TAMs promotes

epithelial–mesenchymal transition of BCCs by triggering the

expression of matrix metalloproteinase 9 (MMP-9) (87). TAMs

increase the expression of COX-2 through the PI3K/Akt/mTOR

pathway, thus enhancing endocrine drug resistance in breast cancer

(88), and the expression of PDL1 in TAMs can be regulated through

the COX2/mPGES1/PGE2 pathway (89). Moreover, fatty acid

transport protein 2 (FATP2) promoted the accumulation of

arachidonic acid, resulting in increased prostaglandin E2 synthesis in

MDSCs, thus enhancing the immunosuppressive activity of MDSCs

(90). Due to the metabolism of tumor cells, the tumor

microenv i ronment lacks nutr i ents and accumula tes
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immunosuppressive metabolites, which leads to obvious inhibition of

the tumor microenvironment, resulting in obvious inhibition of

immune effector cells such as NK cells, even in a resting state (91,

92). In this state, lipid metabolism is enhanced (93, 94), and

peroxisome proliferator-activated receptors drive lipid proliferation in

NK cells, leading to complete “paralysis of cellular metabolism and

transport (95, 96). Therefore, preventing lipids from entering the

mitochondria can reverse the metabolic paralysis of NK cells and

restore cell activity (75). Additionally, senescent CD8+ T cells

accumulate continuously by the binding of cytosolic phospholipase

A2 alpha (cPLA2a) toMAPK/STAT signals, which induces TNBC cells

to undergo immune escape (97). Moreover, the ability of CAFs to take

up exogenous lipids can be enhanced by the upregulation of FATP1,

thus promoting the metastasis of cancer cells (98, 99).
4.2 Leptin, a fat factor involved in lipid
metabolism, is involved in immune escape

There are more adipocytes around the tumor in patients with

breast cancer, particularly in obese patients. Adipocytes can

produce numerous adipokines, such as leptin, thus promoting

tumor progression (100). First, leptin mediates the bidirectional

interaction between cancer cells and TAMs (101). Leptin increases

the expression of IL-8 in M2 macrophages and leads to the

migration and invasion of cancer cells. Leptin can also promote

the expression and secretion of IL-18 in TAMs through NF-kB/NF-
kB1, thereby fostering the expression and proliferation of cancer

cells through the PI3K-AKT/ATF-2 pathway (102). In addition,

leptin and adipocyte-derived IL-6 enhance the expression of lysyl

hydroxylase (PLOD2) by activating the JAK/STAT3 and PI3K/AKT
FIGURE 3

Lipid metabolism and triple-negative breast cancer. (A) Lipid metabolism can influence immune cell function: FASN and PGE2 in cancer cells have
been shown to induce the polarization of TAMs toward the M2 phenotype. TAMs secrete 27-HC, which can enhance cancer cell proliferation and
drive the differentiation of monocytes into M2 macrophages. Activation of IRE1 splicing pathway leads to the activation of signal transducer and
activator of STAT3 and XBP1, thereby promoting the acquisition of a precancerous phenotype by TAMs. Additionally, S1P released from apoptotic
tumor cells has been found to induce TAM-like polarization in macrophages. (B) Leptin, a fat factor in lipid metabolism, is involved in immune
escape: Leptin has been shown to upregulate the expression of IL-8 in M2 macrophages and IL-18 in TAMs. Additionally, leptin has been found to
increase the expression of PLOD2, thereby promoting cancer cell metastasis. Furthermore, leptin has the ability to suppress the function of CD8+ T
cells, leading to immune escape.
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signaling pathways, ultimately facilitating cancer cell metastasis

(103–106). Some studies have indicated that leptin can be

secreted by tumor-stromal adipocytes (TSAs) stimulated by

external conditions and bind to receptors on tumor cells,

resulting in proliferation, invasion and other effects (107, 108).

Moreover, leptin can also accumulate in breast adipocytes and

adipose tissue, activate the STAT3-FAO axis, reduce glycolysis,

inhibit the function of CD8+ T cells, and cause immune

escape (100).

Targeting fatty acid receptor CD36 may be effective against

multiple cancers (109, 110).Inhibition of fatty acid binding proteins

(FABPs) has demonstrated potential anti-tumor effects. In the

prostate cancer, FABP5 has emerged as a novel therapeutic target

(111).Of course, inhibition of FATP2 can also be considered

(112).FASN inhibitors show significant anti-tumor effects in

multiple cancers (113).Upstream regulators SREBPs are key to

lipid synthesis and can be considered as potential therapeutic

targets (114).Due to the plasticity of lipid metabolism, cancer cells

can switch to another metabolic pathway when one pathway is

blocked, which to some extent hinders the anti-tumor efficacy of

monotherapy (115).Therefore, we can consider combining

treatments to enhance the therapeutic effect.
5 Amino acid metabolism is involved
in immune escape in TNBC

Amino acids are essential nutrients for cells, and the demand for

amino acids in normal cells is lower than that in tumor cells (116).

Like glucose, amino acids are important fuels for the development
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of tumor cells. For example, glutamine metabolism in breast cancer

can maintain the balance between Tregs and effector T cells (Teffs),

change the function and state of immune cells in the TME, control

the level of reactive oxygen species (ROS), provide the energy

needed for immune cell progression, and lead to immune escape

(117). Arginine is the basis of protein synthesis and the premise of

metabolism and is mainly involved in the activation and functional

activation of immune cells, especially T cells. In addition,

tryptophan is an essential amino acid for cell proliferation, and its

catabolism can inhibit T-cell proliferation (118). Thus, they are

particularly important in the metabolism of TNBC (Figure 4).
5.1 Glutamine metabolism participates in
immune escape

Although glutamine is a nonessential amino acid (NEAA),

many tumor cells show a “glutamine dependence” in the TME

(119, 120). The enhancement of glutamine metabolism in breast

cancer alters the function and state of immune cells within the

TME, which plays a crucial role in maintaining the balance between

Teffs and Tregs and in immune escape (121–125). Research has

shown that when glutamine deficiency occurs, G-CSF and GM-CSF

are expressed in breast cancer cells through the IRE1 a-JNK

pathway to induce the production of MDSCs, resulting in

immune escape (126). Moreover, the overexpression of glutamine

transporter proteins (such as recombinant solute carrier family 1,

member 5 (SLC1A5), SLC7A5, and SLC3A2) in cancer cells directly

influences glutamine metabolism, produces specific subtypes of

inflammatory infiltration, and impacts the differentiation of
FIGURE 4

Amino acid metabolism is involved in immune escape of triple-negative breast cancer. (A) Glutamine metabolism participates in immune escape: A
deficiency in glutamine leads to the production of MDSC, which in turn facilitates immune escape. Simultaneously, the breakdown of glutamine to
produce a-KG is advantageous for sustaining the M2 phenotype of TAM. (B) Arginine metabolism participates in immune escape: L-arginine can
hydrolyze and lead to the lack of available arginine in the microenvironment, which inhibits the function of immune cells. ARG 1 and NOS activated
in tumor microenvironment inhibit NO production and promote tumor development. L-Arg is consumed by MDSCs, which inhibits T cell activation.
Increased expression of ARG1 in breast cancer causes TAM to differentiate into M2 phenotype. (C) Tryptophan metabolism is involved in immune
escape: GCH1 is highly expressed in TNBC, resulting in a low tryptophan microenvironment and immune escape. In addition, the activity of TDO2 in
TNBC cells increased, which produced kynurenine and inhibited the viability of CD8+T cells.
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TAMs toward a pro-carcinogenic phenotype (121). The a-
ketoglutarate (a-KG) generated during glutamine catabolism

supports the maintenance of a TAM M2-like phenotype (127, 128).
5.2 Arginine metabolism participates in
immune escape

One of the key enzymes involved in arginine metabolism is

ARG1, which is highly expressed in TNBC (129). Arginase plays a

crucial role in promoting immune escape through several

mechanisms: The content of L-arginine is closely related to the

survival and proliferation of T cells (130–132). L-arginine is

hydrolyzed to L-ornithine and urea under the catalysis of ARG1,

which leads to a lack of available arginine in the microenvironment

(104), which suppresses the function of immune cells and results in

immune escape. Activated ARG1 and nitric oxide synthase (NOS) in

the tumor microenvironment affect TAMs and inhibit the production

of nitric oxide (NO), which can promote the differentiation of M1

macrophages, thus facilitating tumor development. The coexpression

of ARG1 and inducible nitric oxide synthase (iNOS) enhances the

production of ROS and reactive nitrogen species, which further

inhibits the function of T cells within tumor cells (133, 134). The

kinase GCN affects MDSCs during l-arginine depletion, and the L-

arginine (L-Arg) is consumed by NOS and ARG-1 produced by

MDSCs through the kinase GCN2, leading to amino acid starvation,

thus inhibiting T-cell activation. MDSCs disrupt innate immunity

and affect antitumor immunity by interacting with macrophages, NK

cells, and NK T cells (135). In breast cancer, the expression of ARG1

increases when GM-CSF stimulates the STAT3 or p38MAPK

signaling pathway, and immune cells in the microenvironment

obtain less L-arginine, which increases the phenotypic

differentiation of TAMs to M2 macrophages, reduces the

infiltration of CD8+ T cells and ultimately promotes immune

escape (134).
5.3 Tryptophan metabolism is involved in
immune escape

Tryptophan catabolism plays an important role in immune

escape in TNBC (118, 136). Its metabolism is closely associated

with enzymes such as indoleamine 2,3-dioxygenase (IDO) and

tryptophan 2,3-dioxygenase (TDO) (137–141). Guanosine

triphosphate cyclohydrolase 1 (GCH1), which is highly expressed

in TNBC, regulates the metabolism of tryptophan (Trp), increases the

level of 5-hydroxytryptophan (5-HTP), activates the aryl

hydrocarbon receptor (AHR), and enhances IDO1 activity. This

leads to a reduction in tryptophan levels and an increase in

kynurenine levels. It is worth noting that kynurenine plays a role in

promoting immunosuppression in the immune system. In addition,

IDO1 can upregulate FoxO3a by activating Tregs, subsequently

upregulating PD-1 and inducing sustained immune suppression via

the PD-1/PTEN pathway, ultimately resulting in immune escape
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(142–145). Moreover, some studies have suggested that GCH1

mainly induces immunosuppression in an IDO1-dependent

manner; however, the expression of chemokines such as CXCL9,

CXCL10 and CXCL11 decreases because of the expression of GCH1,

an increase in the tryptophan metabolite kynurenine and a decrease

in tryptophan, which leads to a decrease in effector T-cell aggregation

and promotes immune escape (146). Other studies have shown that

IDO in breast cancer mediates MDSC-induced T cell proliferation

and Th1 polarization inhibition, promotes T cell apoptosis and the

secretion of immunosuppressive cytokines (IL-10 and TGF-b),
causing breast cancer immune escape (147). Notably, when IDO is

overexpressed, TAMs tend to polarize to the M2 phenotype, and T-

cell activity is inhibited (148). In addition, the increased activity of

TDO2 in TNBC cells mediates the initial production of the

tryptophan catabolite kynurenine by AhR, which hinders the

viability of CD8+ T cells and facilitates tumor immune escape (149,

150). Ultimately, by depleting tryptophan, the tryptophan metabolite

kynurenine accumulates, inhibiting the function of effector T cells

and NK cells and stimulating Tregs, MDSCs and macrophages to

polarize into tolerant phenotypes, resulting in an immunosuppressive

TME (151).Overall, IDO1 promotes immunosuppression through

tryptophan depletion and direct effects of tryptophan catabolites.

However, the interaction between TDO and other immune cells

remains unclear, and the specific role of TDO in regulating immune

responses is not well understood (152, 153).
6 Microbiome and TNBC

The microbiome can influence tumor development and

progression (154). Current research has primarily concentrated on

bacterial communities within tumors. Study finds potential link

between tumor microbiome and cancer development (155, 156).

The intratumoral microbiota is currently shown to play an important

role in the pathogenesis of cancer (157). Studies have found that the

toxic protein BFT-1 secreted by enterotoxigenic Bacteroides fragilis

can promote the lysosomal degradation of NUMB by binding to

NOD1, which is highly expressed on breast cancer stem cells, thereby

activating the NOTCH1-HEY1 pathway, promoting breast cancer

cell stemness and chemotherapy resistance to docetaxel (158). In

contrast, trimethylamine N-oxide (TMAO), a metabolite related to

the genera under Clostridiales, was more abundant in tumors with an

activated immune microenvironment. Trimethylamine N-oxide

induces tumor cell pyroptosis by activating endoplasmic reticulum

stress kinase PERK, thereby enhancing CD8+ T cell-mediated anti-

tumor immunity in TNBC. The results of this study suggest that

microbial metabolites may serve as a new therapeutic approach to

improve the efficacy of immunotherapy for TNBC (159). Tumor-

associated microbiota plays an important role in the occurrence and

development of tumors. Researchers have currently conducted

relevant research on the carcinogenic mechanism of the

microbiome, but more research is still needed to further explain it.

It is worth noting that the intestinal microbiota is a research hotspot,

which leads to insufficient understanding of related contents such as
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the microbiota of other ecological niches, so there is still a long way to

go for future research (160).
7 Concluding remarks

In summary, metabolic reprogramming plays a pivotal role in

the development and progression of TNBC and is one of the

hallmarks of tumor progression. Under hypoxia, the expression of

granzyme B, IFN-g and degranulation marker CD107a on the

surface of NK cells decreased, and the expression of activated

receptors NKP30, NKP46 and NKG2D on NK cells decreased,

resulting in a significant decrease in the activity of NK cells. In

addition, HIF-1 a is one of the important factors. HIF-1 a can affect

the function of MDSCs through microRNA210, PD-L1 and VISTA,

up-regulate the transcription of FoxP3 to enhance the production of

Treg, and inhibit the expression of IL-18. High rates of tumor cell

glycolysis activate LAP leading to the formation of MDSCs and a

decrease in the population of effector CD8+ T cells. At the same

time, lactic acid produced by cancer cells up-regulated VEGF and

ARG1, promoting TAM differentiation into the M2 phenotype.

With the change of lipid metabolism, FASN and PGE2 in cancer

cells can induce TAM to M2 phenotypic polarization, while 27-HC

secreted by TAMs can promote cancer cell proliferation and

promote monocytes to differentiate into M2 macrophages. In

addition, Leptin has been shown to upregulate the expression of

IL-8 in M2 macrophages and IL-18 in TAMs, increase the

expression of PLOD2, and promote the metastasis of cancer cells.

Arginine plays an indispensable role in amino acid metabolism and

the lack of available arginine in the microenvironment inhibits

immune cell function. L-arginine, absorbed by bone marrow

mesenchymal stem cells, inhibits T cell activation. The high

expression of ARG1 in breast cancer leads to TAM differentiation

into the M2 phenotype. Tryptophan is also involved in immune

escape, with GCH1 highly expressed in TNBC resulting in a low

tryptophan microenvironment and immune escape.

It is evident that metabolic reprogramming plays a crucial role

in immune escape of TNBC. Due to the characteristics of high

invasiveness, easy metastasis, and recurrence of TNBC, studying

metabolic reprogramming is of great significance and can provide

new insights for TNBC immunotherapy. With the widespread use

of immunotherapy, drug resistance will be inevitable. Therefore,

conducting thorough research on the tumor microenvironment and

immune escape mechanisms, as well as elucidating the impact of

metabolic reorganization on immune escape in TNBC, will serve as

a crucial foundation for addressing drug resistance. We can identify

metabolic-related targets that contribute to immune escape more

precisely. By utilizing gene editing techniques, it may be possible to

modify or decrease the metabolic factors responsible for immune

escape, ultimately enhancing the effectiveness of immunotherapy in

treating TNBC. During the patient’s treatment, finding metabolic
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level-related changes or targets can increase the synergistic effect

through combined immunotherapy. More research is needed in the

future to explore the potential of combined therapy and how to

translate these mechanisms into effective clinical treatments.

Through continued efforts and collaboration, more effective

treatment options are expected to be provided to improve the

prognosis of patients with triple-negative breast cancer.
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78. Gómez V, Eykyn TR, Mustapha R, Flores-Borja F, Male V, Barber PR, et al.
Breast cancer-associated macrophages promote tumorigenesis by suppressing succinate
dehydrogenase in tumor cells. Sci Signal. (2020) 13(365):eaax4585. doi: 10.1126/
scisignal.aax4585

79. Yin J, Kim SS, Choi E, Oh YT, Lin W, Kim T, et al. Ars2/magl signaling in
glioblastoma stem cells promotes self-renewal and m2-like polarization of tumor-
associated macrophages. Nat Commun. (2020) 11(1):2978. doi: 10.1038/s41467-020-
16789-2

80. Liu L, Ge D, Ma L, Mei J, Liu S, Zhang Q, et al. Interleukin-17 and prostaglandin
e2 are involved in formation of an m2 macrophage-dominant microenvironment in
lung cancer. J Thorac Oncol. (2012) 7:1091–100. doi: 10.1097/JTO.0b013e3182542752

81. Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R, Ramwadhdoebe TH,
Gorter A, Welters MJP, et al. macrophages induced by prostaglandin E2 and IL-6 from
cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J
Immunol. (2011) 187(3):1157–65. doi: 10.4049/jimmunol.1100889

82. Shi S, Lee E, Lin Y, Chen L, Zheng H, He X, et al. Recruitment of monocytes and
epigenetic silencing of intratumoral cyp7b1 primarily contribute to the accumulation of
27-hydroxycholesterol in breast cancer. Am J Cancer Res. (2019) 9(10):2194–208.
doi: 2156-6976/ajcr0099894

83. Di Conza G, Tsai C, Gallart-Ayala H, Yu Y, Franco F, Zaffalon L, et al. Tumor-
induced reshuffling of lipid composition on the endoplasmic reticulum membrane
sustains macrophage survival and pro-tumorigenic activity. Nat Immunol. (2021)
22:1403–15. doi: 10.1038/s41590-021-01047-4

84. Weigert A, Tzieply N, von Knethen A, Johann AM, Schmidt H, Geisslinger G,
et al. Tumor cell apoptosis polarizes macrophages role of sphingosine-1-phosphate.
Mol Biol Cell. (2007) 18(10):3810–9. doi: 10.1091/mbc.e06-12-1096

85. Hao J, Yan F, Zhang Y, Triplett A, Zhang Y, Schultz DA, et al. Expression of
adipocyte/macrophage fatty acid–binding protein in tumor-associated macrophages
promotes breast cancer progression. Cancer Res. (2018) 78:2343–55. doi: 10.1158/0008-
5472.CAN-17-2465

86. Zhang Y, Sun Y, Rao E, Yan F, Li Q, Zhang Y, et al. Fatty acid-binding protein e-
fabp restricts tumor growth by promoting ifn-b responses in tumor-associated
macrophages. Cancer Res. (2014) 74:2986–98. doi: 10.1158/0008-5472.CAN-13-2689

87. Gan L, Qiu Z, Huang J, Li Y, Huang H, Xiang T, et al. Cyclooxygenase-2 in
tumor-associated macrophages promotes metastatic potential of breast cancer cells
through akt pathway. Int J Biol Sci. (2016) 12:1533–43. doi: 10.7150/ijbs.15943

88. Qin Q, Ji H, Li D, Zhang H, Zhang Z, Zhang Q. Tumor-associated macrophages
increase cox-2 expression promoting endocrine resistance in breast cancer via the pi3k/
ak t /m to r p a thway . Neop l a sma . ( 2 0 21 ) 68 : 9 38–46 . do i : 1 0 . 4 149 /
neo_2021_201226N1404

89. Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. Cox2/mpges1/
pge2 pathway regulates pd-l1 expression in tumor-associated macrophages and
myeloid-derived suppressor cells. Proc Natl Acad Sci. (2017) 114:1117–22.
doi: 10.1073/pnas.1612920114

90. Veglia F, Tyurin VA, Blasi M, De Leo A, Kossenkov AV, Donthireddy L, et al.
Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature. (2019)
569:73–8. doi: 10.1038/s41586-019-1118-2

91. Vitale M, Cantoni C, Pietra G, Mingari MC, Moretta L. Effect of tumor cells and
tumor microenvironment on nk-cell function. Eur J Immunol. (2014) 44:1582–92.
doi: 10.1002/eji.201344272
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Glossary

TNBC Triple-negative breast cancer

HIF hypoxia-inducible factor

HIF-1a hypoxia-inducible factor 1 a

MDSCs myeloid-derived suppressor cells

CSF-1 colony-stimulating factor 1

PD-L1 programmed cell death1 ligand 1

ARG1 regulating arginase-1

Cxcl12 C-X-C motif chemokine ligand 12

IL16 interleukin-16

VISTA V-domain Ig suppressor of T-cell activation

FoxP3 forkhead boxP3

Tregs regulatory T cells

TAM tumor-associated macrophages

NK natural killer

IFN-g interferon-gamma

ERK extracellular signal-regulated kinase

STAT3 signal transducer and activator of transcription 3

ATP adenosine triphosphate

VEGF vascular endothelial-derived growth factor

PD-1 programmed cell death protein 1

IFNG interferon gamma

TNF tumor necrosis factor

HDAC1 histone deacetylase 1

PRC2 polycomb repressive complex 2

CAF Cancer-associated fibroblasts

ECM extracellular matrix

MCT4 monocarboxylate transporter4

MCT1 monocarboxylate transporter 1

GPER G protein-coupled estrogen receptor

IL-1b interleukin-1b

IL1R1 interleukin-1 receptor 1

CTGF connective tissue growth factor

IL-18 interleukin-18

EGFR epithelial growth factor receptor

CCL5 C-C Motif Chemokine Ligand 5

OSM oncostatin M

GM-CSF granulocyte-macrophage colony-stimulating factor

AMPK-
ULK1

AMP-activated protein kinase ULK1

(Continued)
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CEBPB enhancer-binding protein beta

LAP liver-enriched activator protein

G-CSF granulocyte colony-stimulating factor

PEP phosphoenolpyruvate

SERCA sarco/ERCa2 +-ATPase

TME tumor microenvironment

CXCL1/2 C-X-C motif chemokine ligand 1/2

CXCR2 C-X-C motif chemokine receptor 2

LDHB lactate dehydrogenase B

SREBP2 sterol regulatory element binding transcription factor 2

PKM2 pyruvate kinase isozyme type M2

HK2 hexokinase 2

PPP pentose phosphate pathway

OXPHOS oxidative phosphorylation

VLDL very low-density lipoprotein

LDL low-density lipoprotein

FAO fatty acid oxidation

FASN fatty acid synthase

PGE2 Prostaglandin E2

CHOL cholesterol

XBP1 X-box binding protein 1

IRE1 inositol-requiring enzyme 1

S1P sphingosine-1-phosphate

A-FABP fatty acid-binding protein

MMP-9 matrix metalloproteinase 9

FATP2 fatty acid transport protein 2

cPLA2a cytosolic phospholipase A2 alpha

PLOD2 lysyl hydroxylase

TSA tumor-stromal adipocytes

Teffs effector T cells

ROS reactive oxygen species

NEAA nonessential amino acid

SLC1A5 recombinant solute carrier family 1, member 5

a-KG a-ketoglutarate

NOS nitric oxide synthase

NO nitric oxide

L-Arg L-arginine

IDO indoleamine 2, 3-dioxygenase

TDO tryptophan 2, 3-dioxygenase

GCH1 guanosine triphosphate cyclohydrolase 1

(Continued)
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Trp tryptophan

5-HTTP 5-hydroxytryptophan

AHR aryl hydrocarbon receptor.
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