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Exosomes are found in various tissues of the body and carry abundant contents

including nucleic acids, proteins, and metabolites, which continuously flow

between cells of various tissues and mediate important intercellular

communication. In addition, exosomes from different cellular sources possess

different physiopathological immunomodulatory effects, which are closely

related to the immune regeneration of normal or abnormal organs and tissues.

Here, we focus on the mechanistic interactions between exosomes and the

human immune system, introduce the immuno-regenerative therapeutic

potential of exosomes in common clinical immune-related diseases, such as

infectious diseases, autoimmune diseases, and tumors, and reveal the safety and

efficacy of exosomes as a novel cell-free immune regenerative therapy.
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1 Introduction

Extracellular vesicle (EV) is a general term for various types of vesicles secreted by all cells

through membrane movement and contain various bioactive substances, including metabolic

molecules such as proteins and lipids, and nucleic acids such as DNA and RNA (miRNA,

circRNA, lncRNA) that contain genomic information. Specifically, the term exosome refers

specifically to an endomembrane-derived intraluminal vesicle (ILV) that forms during the

maturation of the multivesicular endosomal system (MEV) by inward fusion (1). These
Abbreviations: ACE2, Angiotensin-converting enzyme 2; EV, Extracellular vesicle; miRNA, MicroRNA;

lncRNA, Long non-coding RNA; SARS-CoV-2, severe respiratory syndrome coronavirus type 2; TMPRSS2,

Transmembrane protease, serine 2; RBD, receptor-binding domains; OMV, outer membrane vesicles; MSCs,

Mesenchymal stem cells ; EAE, experimental autoimmune encephalomyelitis; SLE, Systemic Lupus

Erythematosus; LA, lung adenocarcinoma; NSCLC, non-small cell lung cancer; GMP, Good

Manufacturing Practices.
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small-diameter vesicles have phospholipid bilayers with the same

topological structure with appearance of elliptical or spherical, and

will express molecules including CD63, CD81, CD9, Tspan8,

compatibility complex (MHCIorII) and heat shock protein family

(HSC70,HSP90), which are used as characteristic markers for

identifying exosomes (2). According to the data of ExoCarta, as of

Jan. 1, 2024, many exosome researches have been discovered and

uploaded, including 9769 kinds of proteins, 3408 kinds of mRNAs,

2838 kinds of miRNAs and 1116 kinds of lipid molecules (3).

Exosomes are not just a means for cells to renew themselves, but as

an additional communication mechanism within and between cells,

which participates in a large number of physiological and

pathological changes closely related to clinical processes (4).

Exosomes can persist in various body fluids besides peripheral

blood, including but not limited to saliva, ascites, urine,

cerebrospinal fluid, breast milk, etc. (Figure 1A) Therefore, as a cell

replacement therapy, vesicles and its engineering derivatives have

achieved breakthrough development in recent years, depending on its

unique natural advantages, and have been applied to the diagnosis

and treatment of clinical diseases, including cancer (5–7),

neurological diseases (8–10), cardiovascular diseases (11) and

Inflammatory disease (12). (Figure 1B) It is worth noting that

engineered vesicle therapy regimens also seem to be making

promising progress in the immune field.
2 Infectious disease

Immunotherapy for infectious diseases has become the focus again

in recent years: the prevention and treatment of infectious disease like

COVID-19. Over the past four years, the novel severe respiratory
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syndrome coronavirus type 2(SARS-CoV-2), which was born in 2019,

has attracted widespread global public attention as a public health issue.

Since the epidemic of the BA.5 variant in 2022, the coronavirus

outbreak appears to have enjoyed a calmer period. However, data

from a variety of sources suggest that we have entered a new wave of

covid (13). Excitingly, the alternative strategy of another soluble

receptor decoy, which possesses the advantage of ultra-breadth in

maintaining neutralization ability against multiple variants of viruses, is

expected to be a key strategy for solving the zoonotic coronavirus

pandemic challenges in the future (14). There have been some well-

established studies on the antiviral applications of engineered ACE2

decoy receptors, and their application in combination with EVs opens

up new ideas for achieving superior multifunctional antiviral

therapeutic effects. EVs carrying expressed ACE2 protein were

extracted and characterized from a human lung epithelial cell line by

Cocozza et al. Through in vitro antiviral assays, it was demonstrated

that overexpression of full-length ACE2-EV and ACE2-TMPRSS2

(Transmembrane protease, serine 2)-EV possessed significant viral

inhibitory effects, equivalent to 500-1500-fold soluble recombinant

ACE2 levels (15). ACE2 and palmitoyl secretion interact with each

other through a strict mechanism; in other words, the presence of

palmitoylation directly affects the strength of membrane-anchored

ACE2 expression. Meanwhile, EVs containing ACE2 isolated from

human plasma or cells have been shown to have a prophylactic

capacity against severe acute SARS-CoV-2 that has been assessed to

be 60- to 80-fold greater than that of vesiculation-free recombinant

ACE2 (16). Moreover, the easily modifiable properties of EVs in terms

of structure and function provide great potential for therapeutic

performance enhancement, such as affinity and neutralization, of

nano-neutralization devices carrying ACE2. Xie and his team used

engineering to palmitoylate EVs carrying ACE2 to achieve a
FIGURE 1

(A) Exosomes are widely present in the human body and can be extracted from a variety of body fluids, such as: tears, saliva, milk, blood, urine, etc.
(B) Exosomes are closely associated with the physiological and pathological activities of the human body, and are involved in the process of
immunoregulation in a variety of diseases, like cancers and autoimmune disorders. (C) Nucleic acids, proteins, metabolites and other components
contained in exosomes extracted from human blood circulation have great potential to assist in the clinical diagnosis, process analysis and prognosis
prediction of tumors and other diseases.
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breakthrough in affinity for the S protein, as well as a broader

neutralization of the virus in the host (17). This novel nano-delivery

platform with palmitoylation as the core technology endows natural

soluble ACE2 with superior half-life and in vivo stability (18). Kim et al.

successfully constructed an engineered extracellular vesicular variant of

sACE2 (sACE2.v1) using the CD9DTM4 scaffold and demonstrated its

ability to cope with the infectious challenge of the WT, D614G, beta-

and delta-variant strains in mice, exerting a significant protective effect.

CD9DTM4 is a truncated form of CD9, serving as a scaffold whose C-

terminus forms a splice with SACE2, and overexpression of the scaffold

enables overpacking and functionalization of the fusion protein (19).

Interestingly, in addition to the good progress in antiviral studies of

soluble ACE2 with EVs, this research paradigm seems to be equally

valid when applied to the structural domains of the viruses themselves

that bind to ACE2, considering the binding of the S proteins to the

host’s natural ACE2 receptor as a key prerequisite for viral invasion

(20). In cellular experiments, EVs carrying viral spiny proteins were

found to be significantly negatively correlated in a dose-dependent

manner with antibody-mediated virus neutralization (21). Fu and

colleagues successfully doped the receptor-binding domains (RBD) in

the spike glycoprotein of SARS-CoV-2 onto extracellular vesicle

membranes, and these RBD-labeled EVs were highly specifically

targeted to ACE2-enriched tissues of the heart, lungs, and kidneys

which were major organs infested by viruses and resulted in significant

reductions of viral loads (22). In the field of vaccine development, a

novel new crown candidate vaccine based on bacterial outer membrane

vesicles (OMV), which is also coupled to the RBD of the viral spike, was

shown to be protective in an intranasal inoculation model in mice, and

retained better cross-neutralizing activity against WT and Delta for at

least 35 days (23). In addition, lung-derived EV mounted messenger

ribonucleic acid encoding viral spiking proteins has also been

developed as a good room-temperature-stable vaccine product, also

delivered by inhalation, which triggers an even better antibody

secretion response (24). These findings demonstrate the versatility of

the EVs delivery system in therapeutic form, somewhat circumventing

the limitations of lung barrier utilization.

The therapeutic potential of EVs is not limited to their use as drug

nanocarriers, and their physiological and pathological properties

dictate that they play an important role in the process of tissue

injury and inflammation, which is evidence for the source of their

therapeutic potential in the treatment of SARS-CoV-2: to fight against

COVID-19 by mitigating the pathological process of damage to lungs

as the main infectious organ. Therefore, given the existence of natural

protection of EVs for soluble ACE2 and the favorable properties of its

derived therapeutic strategies, such as cell-free, immunologically safe,

easily engineered, as well as multi-targeted therapeutic potential

conferred by its lipophilicity and high clinical translational value (25,

26), the strategic model of doping ACE2 decoy receptors to antagonize

COVID-19 will be of great value to explore.
3 Autoimmune disease

Mesenchymal stem cells (MSCs) are found in a variety of tissues in

the human body and serve as multifunctional stem cells with renewal

capacity and differentiation potential (27). A number of studies have
Frontiers in Immunology 03
shown that the immunomodulatory abilities of MSCs, including

inhibition of inflammation progression, promotion of tissue repair,

and resistance to pathogenic infections, etc., on immune effector cells as

NK cells, B lymphocytes and T lymphocytes, are by means of the

paracrine pathway, in which the secretion and communication of

exosomes are the key parts (28–30). The treatment of autoimmune

diseases has been controversial, and there are no recognized effective

technological protocols. However, based on the positive modulatory

effects of MSCs-derived exosomes on immunoreactive substances,

several studies suggest that this novel cell-free therapy may be a

powerful strategy against autoimmune diseases. Multiple sclerosis is

the most common dysfunctional autoimmune disease with

inflammatory involvement of the central nervous system (31).

Microglia play a major immune role in the CNS, on the one hand

their neuro-destructive role, represented by the M1 phenotype, and

their anti-infective function against invading pathogens. At the same

time, the M2 phenotype is responsible for inhibiting excessive pro-

inflammatory responses to protect neurons from damage (32). In a

study by Zhang et al, increasing the ratio of microglia M2 and M1

phenotypes by MSCs-derived exosomes adjustment was able to

suppress neuroinflammatory progression in an animal model of

experimental autoimmune encephalomyelitis (EAE). This combined

direct and indirect immunomodulatory model significantly

ameliorated neurodegenerative progression and optimized cognitive

function compared to controls (33). For the powerful therapeutic role

of MSCs-derived exosomes in EAE models, Riazifar’s team found that

IFNg-Exo was able to reduce the levels of multiple pro-inflammatory

mediators in vitro, including Th1, IL-6, IL-22, and others. Meanwhile,

in-depth characterization of exosomes, whose contents contain anti-

inflammatory RNAs and a variety of protective neurological anti-

inflammatory proteins, provides a molecular evidence base for their

therapeutic mechanism (34). In addition, MSC-derived exosomes also

have a new and safe prospect in the clinical treatment of Systemic

Lupus Erythematosus (SLE). SLE, as a typical chronic autoimmune

disease, has a complex and unknown pathogenesis and involved

damaged organs, and nephritis is the main cause of disease and

death of SLE patients at present (35). Therefore, the treatment of

nephritis in patients with SLE is a key aspect of clinical suppression of

disease progression. A growing body of research suggests that MSCs

are a promising intervention strategy in the immunotherapy of lupus-

like diseases. Transplantation of bone marrow-derivedMSCs in animal

models of lupus significantly reduced the abnormal levels of serum

anti-double-stranded DNA antibodies and renal metabolites, which in

turn induced potent positive immunomodulatory effects to alleviate the

progression of lupus nephritis (36). A clinical trial in patients with

drug-resistant systemic lupus erythematosus used a therapeutic

strategy of allogeneic mesenchymal stem cell transplantation and

followed 87 enrolled patients for an average duration of 27 months.

The results showed significant remission of disease activity and clinical

symptoms and improved organ function, reflected in an overall

survival rate of up to 94%, confirming the excellent long-term safety

and efficacy of this promising cell therapy (37). The above evidence

suggests a promising application of MSCs in the clinical management

of SLE patients, but there are still great challenges in terms of cost and

regulation for their further dissemination and application. Interestingly,

MSC-derived exosomes are the mainstay of the immunomodulatory
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effects of this therapy. Therefore, it is not difficult to arrive at the view

that MSCs-derived exosomes, a novel cell-free therapy, is expected to

break all the limitations in the future for the promotion and application

of stem cell therapies in human SLE.

As mentioned previously, MSCs-derived exosomes exert

immunomodulatory effects through communication interactions

with immune cells, further influencing the expression levels of

immunoreactive molecules, and this multifunctional modulatory

ability to act simultaneously on both the natural and adaptive

immune systems may be able to partially explain their strong

therapeutic potential. Macrophages occupy an important position

in the innate immune system and can be categorized into M1 pro-

inflammatory and M2 anti-inflammatory phenotypes. Recent

studies have shown that the anti-inflammatory effects of MSCs-

derived exosomes are closely related to macrophage polarization, as

evidenced by inhibition of M1 activation and induction of M2

immunosuppressive phenotype (38). Further, reduction of in vivo

levels of immunoreactive substances such as IL22 and Th17, along

with up-regulation of IL10, ultimately led to inflammatory

suppression in macrophages (39, 40). In addition, MSCs-derived

exosomes all possess the ability to inhibit the activation and

proliferation processes of natural immune cells, such as NK and

DC, thus exerting immunosuppressive effects and attenuating toxic

inflammatory responses (41, 42). On the other hand, as the main

immune cells of the adaptive immune system, both B cells and T

cells were regulated by MSCs-derived exosomes, which in turn

affected the functions of humoral and cellular immunity. Antibody

secretion, activation, and proliferation of B cells were inhibited by

MSCs, and interestingly, this regulatory effect could be perfectly

inherited by MSCs-derived exosomes (43). At the same time, the

secretion level of regulatory B cells, an important functional

subpopulation, was significantly upregulated by exosomes,

resulting in the release of large amounts of anti-inflammatory

factors such as IL-10 (44). T cells are important participating

effector immune cells in autoimmune diseases. Exosomes alleviate

the progression of most autoimmune diseases by inhibiting T cell

activation and proliferation. However, its role in regulating the

proportion of helper T cells of different phenotypes is also crucial.

The dynamic balance between Th1 and Th2 is closely related to the

activation or suppression of inflammation. In addition, the increase

in the proportion of Tregs and the induction of apoptosis in

activated T cells also make an important contribution to disease

prevention and delay in progression (45, 46).
4 Tumor

Cancer is a major threat to human life worldwide and has become

a crucial challenge that hinders progress in average life expectancy and

the maintenance of health (47). One of the main factors that make it

difficult to control the number of cancer cases is the lack of potent

screening tools for prevention (48). Precision medicine is advancing

clinical research based on new biomarkers, with an emphasis on

individualized treatment plans for patients (49). It is noted that the

importance of intercellular communication of exosomes is not only

reflected in physiological regulation, but also in strongly affecting the
Frontiers in Immunology 04
pathological progress of cells, tissues, organs, and even the biological

behavior of tumors, including but not limited to cancer’s origin,

metastasis and outcome (50) (Figure 1C). We have previously

presented a detailed review of exosomes in immunotherapy of

tumors, and we will not repeat it here, but mainly focus on the

immunodiagnosis of exosomes in tumors (51).

As mentioned earlier, exosome contents are extremely rich,

containing a variety of nucleic acids, proteins, metabolites, and

other substances that harbor a wealth of genetic information and

homeostatic changes. These complex substances and information

are valuable tools for overcoming the difficulties of heterogeneous

tumor diagnostic barriers. Firstly, exosomes can be potential

biomarkers in cancer diagnosis and surveillance for high-risk

metastasis. It has been well recognized that the detection of

circulating miRNAs transported from cells can more precisely

reflect the real-time dynamics of cancer cells for clinical

diagnosis. Zhou et al. used Exiqon panel to analyze the miRNA

expression profiles of plasma from lung adenocarcinoma(LA)

patients and used reverse transcription-polymerase chain reaction

(qRT-PCR) for further screening and validation, and successfully

identified six miRNA groups that can distinguish LA patients from

healthy control individuals by their dysregulation, providing a

potential biomarker option for LA detection in Asian populations

(52). The diagnostic assistance of extracellular vesicles in lung

cancer is being validated in parallel in clinical trials

(NCT04529915, NCT03830619). In addition to microRNA, long-

stranded RNA in plasma is also a potential biomarker for predicting

early cancer. The panel of serum exosomal 1 lncRNA, and 2 mRNA

(BCAR4 and MAGEA3,KRTAP5-4) was shown to have unique

predictive power in CRC (53). It has been reported that exosomal

lnc PTENP1 in tissues and plasma of bladder cancer patients

exhibits a strong correlation with tumor pathological features

such as tumor morphology, size and weight, and maintains a

significant negative correlation with clinical grade of the disease,

(P < 0.05). Mechanistically, healthy cells secrete the exosome

PTENPI to establish a pathological link with bladder cancer cells

and protect PTEN by crosstalk with miR-17, and eventually the

tumor malignant invasive behavior is oppressed. Therefore, its

ability to frequently silence tumor cell lines allows it to be

considered as a tumor suppressor (54). Secondly, different

exosomal-biomakers can reflect the real-time treatment feedbacks

and drug resistance detection of tumor. The complex dynamics of

the tumor microenvironment is determined by the highly

heterogeneous and mutagenic nature of cancer cells, whereas

exosome biopsies are able to break through spatial and temporal

limitations to systematically track dynamic changes in the

heterogeneity of almost all cancers and influence the epigenetic

characteristics and pathological properties of tumor cells through

different regulatory mechanisms during the different clinical stages

of conventional treatment of cancer patients (55). Circulating

exosomal contents are stripped from primary tissue. Thus, it can

serve as an easily accessible biomarker to assess patients’ clinical

response to surgery, drugs and radiation therapy (56).

Radioresistance is an important obstacle preventing NSCLC

patients from achieving full therapeutic benefit. Extracellular

miR-1246 was found to significantly inhibit the proliferation of
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lung cancer lineage tumor cells, while the radiosensitivity of tumor

cells in miR-1246 knockdown models was enhanced, demonstrating

the potential of in vivo miRNAs to regulate the sensitivity of lung

cancer cells to radiation therapy (57). In addition, Alba et al.

revealed a correlation between exosomal miRNA expression levels

and breast cancer progression. The results confirmed significant

differences in miR-21 expression levels between patients with

localized and distant metastases of breast cancer(P=0.027), which

corroborates the speculation that exosomal miRNAs can be used to

predict risk stratification associated with cancer recurrence and

metastasis (58). Since exosomes are highly consistent with cancer

cells in terms of genetic heterogeneity, they can present

comprehensive and macroscopic information as a whole, and also

enable precise classification and screening of cell populations with

different epigenetic characteristics at the microscopic level. The

above results indicate that it is practical to reflect the health status of

the organism by detecting the biological information contained in

exosomes. In recent years, an increasing number of reports have

shown that exosomes hold great promise in the field of

clinical diagnosis.
5 Final discussion and perspective

However, there are a number of fundamental and translational

issues that need to be considered and addressed before EV therapies

can be applied to humans on a large scale. Firstly, in the optimization

and screening of EV-sACE2 engineered samples, the relationship

between ACE2 loading and inhibitory potency remains controversial

in different research reports. In contrast to the generally accepted

result that increasing ACE2 loading significantly improves

neutralization, improving antiviral performance by increasing

ACE2 loading in a certain population of vesicles of a certain size

may not be satisfactorily rewarded. For example, in Gunnels’ study,

there was no significant difference in potency of specific ACE2

between different types of loaded vesicles, which contradicts the

conclusion that ACE2 loading is positively correlated with potency

as reported by Xie et al. (17, 59). Therefore, the means of EV

purification and size type should be included in platform design

considerations to exclude their possible unintended effects on

performance. The design of exosome targeting optimization is

challenging and some rational targeting strategies have potential.

For example, the chemical structure of exosomes can be optimized to

increase their permeability and retention and reduce clearance. In

addition, investigating more bioactive nanocoated materials to

improve exosome targeting and utilization are important design

factors (60). In addition, there is no standardized consensus among

the many different studies and companies on protocols for isolation

and characterization of EVs, which makes it difficult to ultimately

reach a consistent concentration and pattern of EVs even when they

are derived from the same tissue or cell. For instance, even the most

classical differential ultracentrifugation scheme suffers from low

productivity and operator randomness for EV separation

applications (61). Therefore, a universal economic Good

Manufacturing Practices (GMP) guideline is exactly what is

urgently needed by research and industry. Finally, given the
Frontiers in Immunology 05
heterogeneity that exists in different diseases EV therapies need to

determine the optimal dose and route of administration to match the

specific disease. Specific clinical guidance on exosomes, a novel cell-

free therapy, is not yet available in Asia, Europe or the United States,

but it is expected that their origin and function will determine the

type of regulatory framework to which they are subject (62). In the

validation of lung injury models, both the intravenous and inhalation

routes possessed better therapeutic efficacy, but the latter may have

better organ local targeting in order to seek to achieve precise high-

concentration delivery to localized lesions.

Overall, novel EV-based alternative therapies hold good promise in

dealing with treatment and diagnosis of clinical immune diseases like

viral infections (COVID), autoimmune diseases and cancers because of

their excellent maneuverability and safe action properties that penetrate

deep into pathophysiological mechanisms. It is foreseeable that EV

therapeutics will be a powerful immune weapon for human beings to

cope with clinical diseases, after determining the optimal safe pathway

for preparation, characterization and application.
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