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Over the last decades, extracellular vesicles (EVs) have become increasingly

popular for their roles in various pathologies, including cancer and neurological

and immunological disorders. EVs have been considered for a long time as a

means for normal cells to get rid of molecules it no longer needs. It is now well

established that EVs play their biological roles also following uptake or by the

interaction of EV surface proteins with cellular receptors and membranes. In this

review, we summarize the current status of EV production and secretion in

glioblastoma, the most aggressive type of glioma associated with high mortality.

The main purpose is to shed light on the EVs as a universal mediator of

interkingdom and intrakingdom communication in the context of tumor

microenvironment heterogeneity. We focus on the immunomodulatory EV

functions in glioblastoma-immune cross-talk to enhance immune escape and

reprogram tumor-infiltrating immune cells. We critically examine the evidence

that GBM-, immune cell-, and microbiome-derived EVs impact local tumor

microenvironment and host immune responses, and can enter the circulatory

system to disseminate and drive premetastatic niche formation in distant organs.

Taking into account the current state of the art in intratumoral microbiome

studies, we discuss the emerging role of bacterial EV in glioblastoma and its

response to current and future therapies including immunotherapies.
KEYWORDS

extracellular vesicles, glioblastoma, immune responses, immune tumor microenvironment,
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1 Introduction

Brain tumors are highly aggressive and rank among the deadliest

cancers (1, 2). The most common brain tumor is glioma, which is

globally recognized as the most common primary brain tumor in the

central nervous system (CNS) and has the greatest prevalence of all

brain tumors (approximately 46%) (3). Gliomas are defined as brain

tumors of glial origin (4). Depending on both histology and

molecular features, gliomas have been divided into six different

families in the 2021 5th edition of the WHO Classification of

Tumors of the Central Nervous System (1). The first family, adult-

type diffuse gliomas, constitute the majority of primary brain tumors

[e.g., glioblastoma multiforme (GBM) and isocitrate dehydrogenase

(IDH) wild type]. Insights gained from next-generation sequencing

and DNA methylation-based profiling have prompted the

characterization of the second family, pediatric-type diffuse low-

grade gliomas. Under the banner of “pediatric type diffuse low-

grade gliomas”, three are new tumors: diffuse astrocytoma; MYB or

MYBL1-altered, polymorphous low-grade neuroepithelial tumor of

the young (PLNTY); and diffuse low-grade glioma-MAPK altered.

The third family, pediatric-type diffuse high-grade gliomas, is

expected to behave aggressively. The fourth family, circumscribed

astrocytic gliomas, encompasses a group of well-demarcated typically

solid astrocytic tumors. Based on the hierarchical clustering analysis

of DNA methylation profiles, the fifth family has been newly

recognized, glioneuronal and neuronal tumors, which is a diverse

group of tumors featuring neuronal differentiation. The sixth and last

family is ependymomas, now classified according to a combination of

histopathological and molecular features as well as anatomic site (1).

According to the classification of the World Health Organization

(WHO), glioma can be categorized into grades I–IV. The most

aggressive type of glioma is GBM, classified as a grade IV brain

tumor. This entity is characterized histopathologically by necrosis

and endothelial growth and associated with high mortality (1, 5, 6).

Although there have been improvements in diagnostic,

radiotherapy, and chemotherapy options, the prognosis of

gliomas is still poor, especially for malignant and invasive gliomas

(7, 8). The prognosis of glioma patients varies according to

molecular subtype, with IDH-mutated gliomas generally showing

a better disease course and distinct ontogeny compared with IDH

wild-type gliomas. There is a clear genetic difference between IDH-

mutated and wild-type IDH gliomas, and PTEN mutation is a poor

prognostic factor for wild-type IDH patients (9–11). In parallel,

several potential pathologic characteristics of glioma have been

investigated, which include 1p/19q codeletion, IDH, epidermal

growth factor receptor (EGFR), p53, PTEN/Akt pathway, Rb,

Ras/MAPK pathway, extrachromosomal DNA, MGMT, TERT,

and ATRX (5, 10, 12). Genetic aberrations contribute to the

specific glioma subtype and a unique metabolic footprint.

On the other hand, metabolic reprogramming can, in fact, act as a

driver of cancer genome modification and oncogenic pathways,

through epigenetic, transcriptional, and posttranslational

modifications (13). Exactly how cells acquire these hallmarks, and

how they can be counteracted is the main question at stake for

developing efficacious cancer treatments. Currently, the mainstay of
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glioma treatment is surgical resection, followed by radiotherapy and

chemotherapy (5, 14). However, despite advances in diagnosis and

treatment, the prognosis for gliomas remains poor, particularly for

malignant and invasive gliomas. This limited efficiency may be due to

the intratumoral heterogeneity of tumors. Unfortunately, glioma

shows a high biological and genetic heterogeneity associated with

exceptional aggressiveness. The discovery of molecular heterogeneity

between tumors from different patients as well as within tumors from

the same patient suggests the complexity of this cancer. Glioma

cancer cells exhibit distinct biological hallmarks including extensive

pseudopalisading necrosis (a configuration that is relatively unique to

malignant gliomas), microvascular proliferation and angiogenesis,

cellular heterogeneity, bilateral invasion, altered metabolism,

immunosuppressive microenvironment and heterogeneity, and

cancer stem-like cells (10–12, 15, 16). In addition, several potential

pathologic hallmarks of glioma have been investigated, which include

1p/19q codeletion, IDH, EGFR, p53, PTEN/Akt pathway, Rb, Ras/

MAPK pathway, extrachromosomal DNA, MGMT, TERT, and

ATRX (5, 10, 12, 16). Genetic aberrations contribute to the specific

glioma subtype and a unique metabolic footprint. On the other hand,

metabolic reprogramming can, in fact, act as a driver of cancer

genome modification and oncogenic pathways, through epigenetic,

transcriptional, and posttranslational modifications (13). Exactly how

cells acquire these hallmarks, and how they can be counteracted is the

main question at stake for developing efficacious cancer treatments.

Moreover, the emerging role of the human microbiome in

modulating immune responses and tumor progression highlights

the importance of addressing the complex interactions between

tumor cells and microbiota. Until now, relatively little attention has

been paid to the role of the human microbiome in glioma and

particularly GBM. Previous studies have not been conclusive

regarding the association between the human microbiome and

gliomas and continuous research is required to reshape our

understanding of the pathogenesis of glioma (17, 18). High

secretion of EV is another characteristic of GBM. While most cells

secrete EVs, human GBMs secrete EVs at significantly higher levels in

vivo, approximately 10,000 EVs over a 48-h period per single GBM

cell (19). The RNA-encapsulating EVs were first isolated from

patient-derived glioma cells, and thereafter, glioma served as a

useful model allowing EV release monitoring, cargo profiling, and

intercellular communication investigation (19, 20). In this review, we

summarize the current state of EVs in GBM and discuss the

interkingdom cross-talk, including the communication established

between intratumoral microbiome and immune host cells in the

tumor microenvironment (TME). EVs provides a new insight into

the pathogenesis of GBM. We also highlight the significant role of

EVs in tumor progression, escape, and therapeutic response.
2 EV biogenesis, release, cargo,
and uptake

EVs are phospholipid bilayer enclosed extracellular spherical

structures secreted by cells into the extracellular space (21, 22).

Recent advances in isolation and analytical methods have allowed
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the identification of an ever-increasing number of EV types:

microvesicles (MVs), exosomes, apoptotic bodies, small

ectosomes, migrasomes, marge oncosomes, and exophers (23–26)

(Figure 1). EVs have been classified based on their biogenesis,

release pathways, size, content, and function (21, 22, 27).

Cells typically communicate with each other by secreting

signaling molecules, including proteins, lipids, and nucleic acids.

In an effort to maintain homeostasis, influence metabolism, and

regulate the immune response, cells can package different signaling

molecules in EVs resulting in local and long-distance intercellular

communication (21, 28). EVs contain various bioactive molecules

both in the lumen and in the surface detected in all tissues and

bodily fluids (23–25, 29–32).

• EVs have been considered for a long time as a means for

normal cells to get rid of molecules it no longer wants, to maintain

normal tissue homeostasis, or for cancer cells to promote their

malignant tendencies (33, 34). It is now well established that EVs

play their biological roles following their uptake by the recipient cell

or by the interaction of EV surface proteins with cellular receptors

and membranes (19, 26, 32, 35, 36). Indeed, secretion of specific

types of EVs has been linked to numerous disease states, including

cancer, neurological, and immunological disorders through

aberrant signaling (36–39) (Figure 2).

Based on their origin, biogenesis, and, thus, their cargo

composition, different types of EVs have been classified (21, 22, 27).
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At least two major modes of biogenesis are known: exosomes or small

vesicles (30–150 nm), which starts with the formation of early

endosomes that later fuse with the plasma membrane, and MVs or

medium/large vesicles (100–1,000 nm) through direct budding of the

plasma membrane straight to the extracellular space (Figure 1). The

process of exosome generation starts with the formation of early

endosomes that accumulate intraluminal vesicles (ILVs), by the

inward budding of endosomal membranes, during their maturation

towards late endosomes or multivesicular bodies (MVBs) (40). Late

endosomes and MVBs are a subset of specialized endosomal

compartments rich in ILVs, which encapsulate specific sorted

proteins and nucleic acids, lipids, and cytosolic components. The fate

of MVBs varies according to the proteins that are expressed on their

surface. Some function as “delivery trucks” and get transported to

plasma membrane via cytoskeletal and microtubule network and

undergo exocytosis whereby the ILVs get released as exosomes into

the extracellular space (41). Other MVBs function as “garbage trucks”

and follow a degradation pathway either by direct fusion with

lysosomes or by fusion with autophagosomes followed by lysosomes

and thus promote ILV destruction and removal (42).

MVs are a heterogeneous group of membrane‐enclosed vesicles

that shed by outward blebbing of the plasma membrane of various

cells. These vesicles are loaded with multiple selectively sorted proteins

including cytokines, chemokines, proteins involved in cellular signaling

and/or migration, lipids, carbohydrates, and genetic material including
FIGURE 1

Extracellular vesicle biogenesis and release. Exosomes or small vesicles (30–150 nm) arise from multivesicular endosomes (MVEs) and amphisome.
The maturation of the early endosome into the late endosome via inward budding of the endosomal membrane and encapsulation of intraluminal
vesicles (ILVs) result in the formation of MVEs. Autophagosomes and MVEs can fuse with amphisomes or lysosomes, thus containing more proteins,
nucleic acids, lipids and cytosolic components involved in degradation pathways. Microvesicles or medium/large vesicles (100–1,000 nm) emerge
through direct budding of the plasma membrane straight to the extracellular space. Large oncosomes (1–5 mm) arise from tumor cells and contain
oncogenic proteins and nucleic acids. ARMMs and small ectosomes (around 150 nm) originate from normal or cancer cells. Exomeres and
supermeres (<50 nm) are mostly characterized by specific gene markers, especially TGFBI, ENO1, and GPC1. However, the underlying biogenesis
mechanism remains unknown. Migrasomes originate from cell migration and involve structural and adhesion molecules such as Integrins.
Exospheres (around 4 mm) result from the release of autophagosomes fused to lysosomes into the extracellular space. Apoptotic bodies originate
from cells undergoing apoptosis and contain the remaining components of dead cells, proteins from the nucleus, mitochondria, lipids, and
nucleic acids.
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messenger RNA (mRNA) andmicroRNAs (miRNAs) (43). Generation

of MVs requires membrane lipid and actin cytoskeleton rearrangement

to promote plasma membrane budding and subsequent vesicle

shedding. The mechanism for classical MV biogenesis, cargo sorting,

and shedding is tightly regulated by the small GTP-binding protein

ADP ribosylation factor 6 (ARF6). A number of pathways including

the small GTPase ARF6/phospholipase D/ERK/myosin light chain

kinase pathway mediate phosphorylation of the myosin light chain

resulting in actin cytoskeleton contraction at the MV necks in order to

enhancemyosin contractility and favor the fission and the release of the

MVs (44).

Classical MVs are distinguished from the other EVs by size

(150–1,000 nm) and lower flotation densities compared with small

EVs, and are characterized by the expression of Annexin A1 as a

specific protein marker of classical shedding MVs, distinct from

both exosomes and arrestin-domain-containing protein 1

(ARRDC1)-mediated MVs (ARMMs) (23, 24, 29). ARMMs are

small (inf 150 nm) arrestin domain-containing protein 1

(ARRDC1)-mediated MVs that bud directly from the plasma

membrane. The budding of ARMMs requires ARRDC1, which is
Frontiers in Immunology 04
localized to the cytosolic side of the plasma membrane, and recruits

the ESCRT-I complex protein TSG101 to the cell surface to initiate

the outward membrane budding (45, 46).

Ectosome cargoes are enriched in cytoskeletal proteins,

glycolytic enzymes, and integrins. Initially, they are assembled at

the cytosolic face, then differentiated membrane microdomains

appear at the cell surface followed by vesicle fission and rapid

release to the extracellular space (47, 48). It has been shown that T

cells release synaptic ectosomes (~70 nm) at the immunological

synapse when they make contact with antigen-presenting cells.

Thus, accumulated TCRs on the surface of extracellular MVs bud

at the immunological synapse center. This process requires tumor

susceptibility gene 101 (TSG101) for sorting of TCRs and inclusion

in MVs, and vacuolar protein sorting 4 (VPS4) mediates scission of

MVs from the T-cell plasma membrane (49, 50). Furthermore,

ectosomes released by platelets induce differentiation of CD4+ T

cells into Treg cells and may represent a mechanism of peripheral

tolerance (51). Exposure of activated CD4+ T cells to platelet-

derived ectosomes decreased their release of IFN-g, TNFa, and
interleukin-6 (IL-6), and increased the production of transforming
FIGURE 2

Composition of extracellular vesicles. The structure of extracellular vesicles includes intracellular, transmembrane, and surface components. Most
intracellular molecules such as nucleic acids, growth factors, cytokines, and heat shock proteins will be released into the extracellular space and
regulate numerous biological mechanisms. The ESCRT machinery, fusion proteins, and membrane transport proteins are involved in membrane
remodeling to facilitate exchange between the two sides of the phospholipid bilayer. Surface proteins such as adhesion molecules, immune
checkpoint ligands, MHC molecules, and death signaling receptors trigger various mechanisms including cell anchoring, immune cell regulation,
and apoptosis.
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growth factor-b1 (TGF-b1) (51). Finally, depending again on VPS4,

perivascular dendritic cells (DCs) release antigen-bearing

ectosomes to share antigen with mast cells and elicit anaphylaxis

(52). Thereby, once the IgE-bound mast cells contacted an allergen

on the surface of DC-derived ectosomes, they degranulated,

releasing their inflammatory mediators (52). This ability of DCs

to distribute antigen-bearing ectosomes to immune cells in the

perivascular space potentiates inflammatory and rapid immune

responses to blood-borne antigens.

Large oncosomes are a class of atypically large 1- to 5-mm MVs

carrying abnormal and transforming macromolecules such as

oncogenic proteins and nucleic acids (53). They have first been

identified in highly migratory and invasive prostate cancer cells and

have not been detected in benign tissues (53–56). Their release from

tumor cells can be induced by overexpression or constitutive

activity of oncoproteins (53, 56–58). Large oncosomes can

participate in tumor progression through extracellular matrix

degradation and exporting oncogenic content to other tumor or

stroma cells, thus reprogramming their phenotype (transcriptomic,

metabolism, etc.) and creating a tumor growth-supporting

microenvironment (55, 56, 59).

Indeed, other vesicles like apoptotic bodies are formed in a

similar way to MVs and considered as an important mediator of

extracellular interactions. Apoptotic cell-derived EVs are released

from cells entering apoptosis and formed through a process termed

apoptotic cell disassembly. They contain the remaining components

of dead cells, which include proteins from the nucleus,

mitochondria, and plasma membrane; lipids; and nucleic acids

like mRNA, long non-coding RNA (lncRNA), ribosomal RNA

(rRNA), and miRNA (60–62). Apoptotic EVs have been divided

into larger apoptotic bodies (1,000–5,000 nm) and smaller

apoptotic vesicles (50–1,000 nm) (63–65). It has been suggested

that the molecular cargo of apoptotic EVs differs based on size (66–

69). By transporting bioactive molecules, proteins, lipids, and

nucleic acids, apoptotic EVs are thought to promote regeneration

in skin, bone, and muscle. They also function in inflammation and

immune regulation within the TME (61, 70–77).

• Upon secretion into the cellular space, EVs can affect the target

cells nearby and further away. Currently, the mechanisms and

determinants of EV targeting are not fully elucidated yet (78, 79).

There are four major pathways by which EVs can enter a recipient

cell: macropinocytosis, lipid raft-mediated uptake, phagocytosis

(phagocytosis, micropinocytosis, and lipid raft-, clathrin-, or

caveolin-mediated endocytosis), and membrane fusion (26, 78, 80–

82). Once the vesicle is internalized, its cargo can be degraded or

released into the cytoplasm and transported to the nucleus or the cell

membrane. However, it should be noted that the EV functionality

does not require internalization, as surface proteins can interact with

receptors on the plasma membrane of the recipient cell and initiate

intracellular signaling cascades (83). The molecular mechanisms of

exosome surface molecules, like tetraspanins, immunoglobulins,

proteoglycans, and lectin receptors, binding to target cells are

largely unknown (84–86). Exosomal ligands programmed death

ligand-1 (PD-L1), TNF, FasL, and TRAIL are interesting potential

targets for cancer therapies since their receptors are present on the

cancer cell surface (87).
Frontiers in Immunology 05
EV uptake and interactions trigger various intracellular

signaling pathways that can induce epigenetic modifications in

the recipient cells, through transfer of bioactive molecules, and

affect cellular behavior and function. Even if EVs are a common

communication channel of many cell types in many different

contexts and pathologies, the processes involved and the messages

they convey are highly personalized. It has been suggested that

various aspects of tumor–host interactions are mediated through

EVs. From an immunosurveillance point of view, it is becoming

increasingly evident that EVs play key roles in cancer progression

and drug resistance via promoting cancer-intrinsic pathways as well

as immune microenvironment editing toward a pro-tumoral

activities (88).
3 Pro-tumor roles of GBM-derived
EVs in oncogenesis

The RNA-encapsulating EVs were first isolated from patient-

derived glioma cells, and thereafter glioma served as a useful model

allowing EV release monitoring, cargo profiling, and intercellular

communication investigation (19, 20). It has been recognized that

functional extracellular RNAs carried by EVs [such as miRNA,

mRNA, rRNA, transfer RNA (tRNA), small RNA (sRNA), and

lncRNA (89)] play important roles in intercellular communication.

While most cells secrete EVs, human GBMs secrete EVs at

significantly higher levels in vivo, approximately 10,000 EVs over a

48-h period per single GBM cell (19). Furthermore, the presence of

MVBs and exosomes inside GBM tissues has been demonstrated by

electron microscopy (90). GBM-derived EVs are enriched in a wide

variety of signaling molecules, functional RNAs, and lipids that

modulate cell–microenvironment communication, support GBM

progression, recurrence, and drug resistance through the

establishment of a pro-tumoral microenvironment, thereby

stimulating GBM cell growth, survival, and invasiveness (91–93).

In addition, GBM-derived EVs modulate diverse aspects of the

microenvironment like brain endothelial cells reprogramming

toward an enhanced and disturbed angiogenesis, altering

neighboring normal cells by propagating their oncogenic content,

promoting the immunosuppressive properties of microglia, skewing

the differentiation of peripheral blood-derived monocytes to

activated M2-type macrophages with tumor supportive behavior,

and suppressing T cell-mediated immune responses by acting on

monocyte maturation and differentiation (94–101) (Figure 3).

It has been shown that EVs can serve as a means for short- and

long-distance altered receptor transfer in GBM. Chief among

specific genetic alterations in GBM is EGFR (102). The estimated

rate of EGFR amplification in GBM ranges from 25% to 40%, and

many contain the EGFRvIII variant, which is not expressed in

normal brain (103–105). GBM-derived EVs containing EGFRvIII

can merge with the plasma membranes of cancer cells lacking the

receptor and share it with the recipient cells. This event leads to the

transfer of oncogenic activity, including activation of transforming

signaling pathways (MAPK and Akt), changes in expression of

EGFRvIII-regulated genes [VEGF, Bcl-x(L), and p27],

morphological transformation, and increase in anchorage-
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independent growth capacity, resulting in a subsequent

transformation of the recipient cells that originally lacked the

receptor (91).

It has been demonstrated that hypoxic GBM cells release small EVs

(50–200 nm) with pro-angiogenic capacity, due to their enrichment

with hypoxia-induced proteins including matrix metalloproteinase-9

(MMP-9), IL-8, platelet-derived growth factors (PDGFs), insulin-like

growth factor binding protein (IGFBP)-1 and -3, and caveolin-1, which

are associated with poor prognosis in glioma (94). To expand, GBM

EVsmay also have an immunomodulatory effect, modulating the TME

to promote tumor growth via immune escape. In this regard, the cargo

of GBM EVs comprised several immunomodulating molecules (i.e.,

TGF-b, IL-10, and heat shock proteins) as well as PD-L1, which binds

to the PD-1 receptor on the surface of tumor-infiltrating lymphocytes

(TILs) and leads to cancer immune evasion through the inhibition of

T-cell responses and, in turn, decreased survival outcomes in cancer

patients (106–108).

It has been suggested that the communication between GBM

and surrounding cells in the microenvironment enhances the

process of transformation and thereby feed continuously the
Frontiers in Immunology 06
tumor with newly transformed neoplastic cells. Glioma-derived

EVs can be taken up by virtually every cell type in the brain

microenvironment, including astrocytes, microglia, and

microvascular cells, and therefore skewing their phenotypes

toward tumor-promoting cells and thereby supporting the tumor

progression or recurrence (19, 96, 109–114). For example, the

immunosuppressive properties of microglia can be promoted after

taking up EVs from GBM cells, underpinned partially by RNA-

mediated mechanisms (98, 99). GBM-derived EVs also enhance the

neovascularization capacity of human brain endothelial cells, by

reprogramming brain endothelial cells toward highly distinct gene

regulatory responses that converge on malignant vasculature, a

hallmark of the GBM (95). A variety of mutated or amplified

oncoproteins in glioma, such as P53, TERT, and RAS, can

transform astrocytes to neoplastic cells in vitro and in vivo. It has

been demonstrated that glioma-derived EVs are efficiently

transferred to astrocytes, which provide a niche for glioma-

initiating cell production in the brain microenvironment. EVs

supports the self-renewal, proliferation, and anchorage-

independent growth of human astrocytes, by enhancing aberrant
FIGURE 3

The immunomodulation of glioblastoma-derived extracellular vesicles. GBM-derived EVs include nucleic acids and intracellular and surface proteins.
Specific miRNAs and GDEs can either inhibit effector immune cells or promote tumor progression by downregulating co-stimulatory receptors,
upregulating co-inhibitory ligands, and activating M2 macrophages that release pro-tumor molecules. GBM-derived EVs expressing co-inhibitory
ligands and death signaling ligands can act directly on effector adaptive immune cells and promote apoptosis and T cells’ inhibition. The regulation
and differentiation of T cells can be impaired by direct interaction of tenascin-C with integrins involved in T cells’ effector function. miRNAs:
MicroRNAs. GDEs: glioma stem-like cell-derived exosomes. Thbs1: thrombospondin 1. Btg2: BTG anti-proliferation factor 2.
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signaling pathways commonly observed in GBM: activated Ras,

telomerase, or simultaneously inactivated p53 and pRb pathways

(102, 115). Furthermore, GBM EV-treated normal human

astrocytes exhibit increased migratory capacity and enhanced

cytokine production, which lead to increased tumor cell growth.

GBM EV-treated normal human astrocytes also acquire tumor-like

signaling pathways and exhibited colony-forming behaviors,

suggesting that GBM EVs drive astrocytes to a tumorigenic

phenotype that could impact the local environment to benefit the

tumor itself (110). The transcriptomic analysis of the recipient

astrocytes suggested dynamic changes of metabolic genes upon EV

uptake, particularly factors of glycolysis, associated with activation

of mitochondrial respiration and glycolysis in these cells (116–118).

Recently, it has been proposed that mRNAs encoding glycolytic

enzymes and mitochondrial oxidative phosphorylation (OXPHOS)

system factors secreted by glioma cells in EVs reprogram the

metabolism of the GBM microenvironment (97). The direct

transfer of mRNAs encoding metabolic factors may explain part

of the observed metabolic alterations induced in astrocytes (97).

Several classes of mRNAs, with the complete open reading frames

and protein-coding potential, have been identified to be highly

enriched in GBM EVs and have been suggested to exert functional

effects in the recipient cells. Notably, transcripts for ribosomal

proteins (RPs), mitochondrial OXPHOS system, and glycolytic

factors represent the dominant fraction of the GBM EV-mRNA

species. Ribosome activity is a critical regulator of growth and

metabolism as ribosomal availability affects glycolysis and

mitochondrial function (119). For instance, enolase-1 mRNA is

encapsulated in both GBM stem cells’ MVs and exosomes. This

mRNA encodes alpha-enolase, a key glycolytic enzyme, frequently

overexpressed in glioma and multiple other cancers (120).

Intriguingly, with its direct role in glycolysis, enolase-1 promotes

cell proliferation by regulating the PI3K/AKT signaling pathway

and is associated with glioma progression (120).

The EV-mediated transfer of oncogenes may contribute to the

dysregulated proliferative and metabolic phenotypes observed in the

astrocytes. Zeng and colleagues have shown that c-Myc and CCND3

mRNAs were encapsulated in gliomaMVs (97). It is evident that Myc

deregulation in cancer is a dramatic event in the cell. The MYC

oncogene encodes a transcription factor, c-Myc, which tightly

controls metabolic pathways to maintain cellular homeostasis in

nontransformed cells. c-Myc is often genetically deregulated in

cancer and correlates with the grade of glioma malignancy (121).

Deregulated cancer metabolism impacts Myc expression and

function. Consistently, it is no longer surprising that Myc operates

at the intersection between metabolic pathway activation and gene

expression. Furthermore, the uncontrolled growth of gliomas can be

driven by frequent mutation and transcriptional dysregulation of cell

cycle factors, such as cyclin D3 encoded by CCND3, and involved in

the control of G1/S phase transition (122, 123).

To conclude, GBM-derived EVs mirror the molecular features

of the tumor and its microenvironment (124–127). The expression

level of several GBM-derived EV miRNAs and proteins has been

linked to GBM pathogenesis and progression. Direct transfer of

these mRNAs and proteins from tumor cells to normal cells within

the brain microenvironment may aid/enhance their metabolic
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reprogramming and drive neoplast ic transformation.

Transformed cells adapt malignant mechanisms, through protein

synthesis and metabolism, to support tumor growth and recurrence

via EV-mediated horizontal mRNA transfer.
4 Role of EVs in the cross-talk
between cancer cells and
immune cells

The main infiltrating immune cell populations within the GBM

microenvironment are tumor-associated macrophages (TAMs),

immunosuppressive myeloid-derived suppressor cells (MDSCs),

and CD4+CD25+Foxp3+T-regulatory cells (Tregs) that function

as tumor growth promoters and induce T-cell dysfunction (128).

However, despite the reduced proportion of GBM-infiltrating T

cells, these are among the most critical cells in the antitumor

response (129).
4.1 Effects on innate immune cells

Innate immune cells present in the GBMmicroenvironment are

represented by cytotoxic NK cells and myeloid cells. It has been

shown in vitro that GBM-derived EVs can impair the antitumor

function of NK cells by suppression of NKG2D activating receptor

expression and, thus, NK cell activation (129). It is well known that

tumor-derived MVs secreted under hypoxic conditions

compromise NK cell cytotoxic responses (130–132). Using

multiple tumor models, it has been shown that hypoxic tumor-

derived MVs contain two immunosuppressive factors, TGF-b1 and
miR-23a, involved in the impairment of NK cell cytotoxicity.

Following hypoxic tumor-derived MV uptake by NK cells, the

transferred TGF-b1 decreases the NK cell surface expression of

the activating receptor NKG2D, thus resulting in NK cell function

inhibition. Similarly, miR-23a in hypoxic MVs reinforces the

immunosuppression by targeting the expression of CD107a in

NK cells (132). On the other hand, activated NK-derived EVs

contain the cytotoxic proteins, perforin, granulysin, and

granzymes A and B, and are known to induce dose-dependent

apoptosis in neuroblastoma by caspase-dependent apoptotic

pathways, which is possibly the same mechanism in other tumors

like GBM (133).

Growing evidence reveals a central role for myeloid cells in the

GBMmicroenvironment, including DCs, monocytes, macrophages,

and microglia, and comprising around one-third of cells of the

GBM tumor mass. The proportion of these tumor-associated cells is

correlated with the clinical outcome in GBM and other solid cancers

(134). Macrophages are of particular interest, as they can acquire

different phenotypes according to microenvironment conditions. In

solid tumors, including GBM, it is believed that the M1/M2

macrophage paradigm plays a key role in tumor progression.

Historically, polarized M1 macrophages are deemed as antitumor

cells, because of their enhanced capacity of phagocytosis,

cytotoxicity, antigen presentation, and secretion of inflammatory
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cytokines. On the other hand, the M2-polarized macrophages are

commonly regarded as tumor-associated macrophages (TAMs),

and associated to pro-tumorigenic outcomes through angiogenic

and lymphangiogenic regulation, immune suppression, EV

production, hypoxia induction, tumor cell proliferation, and

metastasis (135).

In GBM, recent observations suggest that non-polarized M0

macrophages, part of the so-called glioma-associated macrophages

(GAMs), are present in the microenvironment (136).

From research within the last few years, released GBM-derived

EVs were shown to promote a tumor-supportive macrophage

phenotype. In vitro, GBM cell line-derived EVs were able to

polarize blood-derived monocytes to M2‐like macrophages in

vitro (99, 100, 137). Moreover, EVs from the hypoxic zones of

GBM tumors induce M2 macrophage polarization, in vitro, which

promote glioma proliferation, migration and invasion.

Interestingly, it was shown that a polarization switch towards M2

phenotype exists through EV-mediated delivery of miR1246, which

inhibit NF-kB and activate STAT3 pathways in macrophages (138,

139). Furthermore, glioma stem-like cell-derived exosomes (GDEs)

are predilected toward monocytes and skew them toward the

immunosuppressive M2 phenotype, including PD-L1 expression.

GDEs contain members of the signal transducer and activator of

transcription 3 (STAT3) pathway that functionally mediate this

immune suppressive switch. Mass spectrometry analysis

demonstrated that the GDEs are enriched in ephrin and axonal

guidance signaling proteins, which are directly transferred to the

cytoplasm of the monocytes (140). Glioma-derived exosomes

suppress CD3+ and CD4+ T-cell activation and responses by

acting on monocyte maturation and formation of monocytic

MDSCs rather than on direct interaction with T cells (101). The

use of EVs with immune checkpoints is one of the most important

mechanisms leading to tumor immune escape and growth in many

solid tumors, potentially including GBM. One such mechanism is

the receptor Tim-3 that could be engaged by its natural ligand

Galectin-9 and lead to immunosuppressive pathways (141). Indeed,

it has been shown that cerebrospinal fluid-derived GBM EVs are

enriched in Galectin-9 and decrease the antigen-presenting

properties of DCs in vitro, in a Tim-3-dependent pathway (142).

Glioma-derived EVs exert pro-tumorigenic functions in

monocytes and promote their conversion into suppressor cells

involved in inhibition of activated CD4+ T cells through

upregulation of suppressive cytokines, PD-L1, and lymphocyte

ant igen s ix complex (Ly6C), and downregulat ion of

proinflammatory cytokines, MHC II, and costimulatory molecule

expression (143).
4.2 Effects of EV on T-cell function

In one of the first studies to investigate GBM EVs’ effects on

cytotoxic activity of immune cells, it has been reported that mouse

GBM EVs promoted tumor growth and inhibited CD8+ T-cell

cytolytic activity (144). Interestingly, high and low concentrations

of GBM-derived EVs were shown to induce differential modulatory

effects on peripheral blood mononuclear cells. Data provided by
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Hellwinkel et al. revealed that EVs at high concentrations induce

selective tolerance associated with decreased IFN-g secretion and

migration capacities in peripheral blood mononuclear cells from

healthy donors (145). Accordingly, EV-derived signals can act to

suppress different aspects of T-cell responses. Indeed, in vitro

secreted GSC-derived EVs were shown to be enriched in

Tenascin-C that inhibits T-cell proliferation through interaction

with a5b1 and avb6 integrins on T lymphocytes, associated with

reduced mTOR signaling (146). The mTOR signaling pathway

plays an essential regulatory role in the differentiation and

function of both innate and adaptive immune cells (147). GBM-

derived EVs exert an important role in immune evasion through the

PD-1/PD-L1 axis (106). The EVs express PD-L1, which binds to

PD-1 on activated T cells, resulting in the suppression of T-cell

activation and proliferation. This leads to immune escape in

glioblastoma patients (148), which confirm the critical function of

EVs in facilitating intercellular communication during cancer

development (149). Likewise, the expression of PD-L1 on EVs is

associated with the mesenchymal GBM subtype and is identified in

distinct niches of GBM samples, suggesting a possible involvement

in tumor growth (106). Furthermore, treatment of IFN-g in

glioblastoma cells increases expression of PD-L1 and indoleamine

2,3-dioxygenase 1 (IDO1) in EVs, without affecting their size or

frequency. IFN-g-exposed GBM-derived EVs lead to higher

differentiation of immunosuppressive MDSCs and NCMs in

healthy donor monocytes when compared to naive GBM EVs.

Monocytes treated with IFN-g-exposed GBM EVs exhibit greater

suppression of T-cell growth versus those treated with naive GBM

EVs. Knocking down PD-L1 and/or IDO1 in GBM cells removes

the immunosuppressive effect of IFN-g-exposed GBM EVs on

monocytes, suggesting that these molecules could be considered

as possible therapeutic targets to combat GBM EV-mediated

immunosuppression (143). It was shown that human GSC-

derived EVs inhibited TCR-mediated T-cell activation and

proliferation and that these effects arise through direct PD-L1/

PD-1 interactions (106). By binding to PD-1 expressed on the

surface of activated T cells, PD-L1, expressed by GBM cells and

myeloid cells, induce T cell-mediated immune tolerance in tumor

local microenvironment, leading to tumor immune escape and

tumor growth stimulation (150).

Furthermore, PD-L1 on GBM-derived EVs in combination with

other immunosuppressive molecules, FasL, CTLA-4, and CD39,

suppresses CD4+ T-cell activation and induces apoptosis in CD8 T

cells associated with reduced IFN-g and TNF-a production, as well as

an inhibition of NK cell and CD4+ T-cell response (129). This

significant role in immunosuppression can be at least partially

mediated by FasL, suggesting that both FasL expressed on GBM

cells (by cell–cell contact) and FasL expressed on GBM-derived EVs

inhibit T-cell functions (151). In GBM, it seems that the two

immunosuppressive mechanisms are involved in T-cell inhibition

(1): direct interaction of cancer cell-derived EVs with T cells in the

TME, and (2) myeloid cell-dependent T-cell inhibition (101, 152–

155). Owing to the natural origin, small size, and short half-life of

EVs, monitoring whether in vitro results are representative of

direct EV-mediated GBM/T-cell interactions in vivo remains

extremely challenging.
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5 Emerging role of bacterial
extracellular vesicles in cancer
Microbe–host interactions are complex processes that directly

and indirectly influence host health by modulating, among other

mechanisms, immune responses, metabolism, and integrity of the

intestinal barrier (156–162).

Bacteria communicate and interact with nearby bacteria, their

environment, and the cells of their host through direct contact and

secretion of soluble factors, such as metabolites, lipoglycans, nucleic

acids, and proteins (163, 164). Bacteria also communicate via

bacterial extracellular vesicles (BEVs), which are likely to be a

highly efficient, robust, and economic manner of exchanging

information between cells. BEVs are spherical membrane-

enveloped particles ranging in size from 20 to 400 nm secreted by

both pathogenic and non-pathogenic bacteria. Several lines of

evidence show that BEVs can enter the systemic circulation and

be detected in human body fluids that disseminate part of the

molecular content of the parent bacterium into the extracellular

milieu (165, 166). A combination of proteomic and biochemical

analyses has demonstrated that BEVs carry a dynamic range of

membrane-bound and periplasmic proteins, metabolites, nucleic

acids (DNA and RNA), enzymes and toxins, polysaccharides, and

peptidoglycan, and their cargo is controlled by specific molecular

sorting machineries (165, 167, 168). Accumulating data now

indicate that BEVs are heterogeneous in their structure, size,

density, molecular cargo composition, and function, with different

subtypes that vary based on their different biogenesis routes, the

membrane envelope structure, the genetic background of the

parental bacterium, and the environmental growth conditions

(166). Chromosomal DNA in released BEVs from various Gram-

negative pathogenic bacteria like Pseudomonas aeruginosa,

Porphyromonas gingivalis, and Salmonella typhimurium is mainly

extraluminal with a small fraction in the intraluminal space (169). It

has been suggested that external DNA acts in biofilm formation

while internal BEV DNA is involved in intercellular cross-talk and

horizontal gene transfer of virulence, stress response, antibiotic

resistance, and metabolism (169). In addition to innate immune

response modulation, pathogenic BEV-derived DNA can be found

inserted in the host genome in the nucleus of non-phagocytic cells

(e.g., epithelial cells) (169). Like DNA viruses, the possibility that

bacterial genetic material could be transferred to human somatic

cells and integrated into the host genome is intriguing. The

mechanisms underlying these integration events are still poorly

characterized. The first proof-of-concept evidence that bacterial

DNA sequences integrate into the human genome of cancer cells

was reported by Riley and colleagues in gastrointestinal tumors with

close proximity to the gut microbiome, suggesting a bacterial DNA

role in carcinogenesis (170).

The mechanisms by which bacteria and BEVs impact

carcinogenesis as well as tumor progression and therapy response

are largely unknown. Several mechanisms have been advanced,

including direct tumor-promoting mechanisms such as induction

of genomic instability or indirect ones such as generation of

proinflammatory and immunosuppressive TME (171, 172). For
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BEVs, almost all we know about their pathological potential is based

on inflammatory disease studies (165, 173). The interkingdom

cross-talk, either mutually tumor promoting or tumor inhibiting,

between the intestinal, intratumoral microbiome, and host cells in

the TME can be mediated through secreted microbial metabolites

such as short-chain fatty acids or BEVs. Moreover, it is admitted

that gut microbiome-derived BEVs can enter the circulatory system

to disseminate to distant organs and tissues and interact with

various resident immune cell populations like DCs, neutrophils,

and macrophages. The potential role of circulating BEVs have been

largely discussed as immunomodulators or even a key driver of

premetastatic niche formation in distant organs, a conducive

microenvironment to the survival and outgrowth of tumor cells

before their arrival at these sites (174). In the same line, a

retrospective pan-cancer examination of whole-genome

sequencing datasets in the TCGA for microbial reads found

unique microbial signatures in tissue and blood that could

discriminate between and within most major types of cancer

(175). This was confirmed with a study demonstrating that

pancreatic adenocarcinoma microbiome composition, which

cross-talks to the gut microbiome, influences the host immune

response and predicts long- versus short-term survival (176).

The role of BEVs on oncogenesis and tumor progression is likely

to be context-dependent. Based on studies of BEVs in infectious

diseases, it has been suggested that microbial dysbiosis in cancer

could enhance the systemic release of microbiome-derived BEVs,

which could promote tumor progression by immunosuppressive

reprogramming of the TME. BEVs can drive suppressive cellular

monocytic differentiation and indirectly induce T-cell anergy, in a

TLR-dependent manner (171). On the other hand, BEVs are able to

interact with host cells in distant organs through engaging their

microbe-associated molecular pattern (MAMPs) to initiate

proinflammatory signaling and drive alterations in the immune

landscape, particularly myeloid cells, to foster pre-metastatic niches.

Gut bacteria-derived BEVs have been shown to prime the host

innate immune system with subsequent activation of T-cell

responses, in a strain-specific manner. Specific immunomodulatory

effects were due, in part, to the differential regulation of miRNAs

(177). It has been shown that exosomes released by BEV-activated

DCs were enriched in surface proteins involved in antigen

presentation and T-cell activation, but differed in the content of

immune-related miRNA, depending on the origin of the BEVs (177).

From a therapeutic standpoint, to identify new candidates for

inclusion in the acellular vaccine formulations, spontaneously

released outer membrane vesicles (OMVs) were used as a potential

source of key adhesins (178). Adhesins are virulence factors that are

surface-bound protein or polysaccharide molecules that confer tissue-

specific binding during microbial pathogenesis (179). The clinically

approved OMV-based 4CMenB vaccine (4CMenB; Bexsero, GSK) is

a four-component protein-based meningococcal B vaccine that was

licensed in the European Union in 2013. This vaccine is composed of

three highly immunogenic recombinant antigens (factor H–binding

protein, Neisseria heparin–binding antigen, and Neisseria adhesin A),

as well as OMV containing Porin A subtype P1.4 from the strain

NZ98/254 (180). Interestingly, the OMV-based 4CMenB was shown

to confer a broad protective antibody response against different
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Neisseria meningitidis and provide a level of cross-protection against

Neisseria gonorrhoeae because of the molecular similarities shared

between the two pathogens (181–183) (Figure 4).

As biologically derived entities, the properties of BEVs, like

endotoxicity, can be easily determined through molecular biology

and genetic engineering approaches. It is expected that, in the

future, BEVs will be used as cancer immunotherapeutic agents or

cancer vaccines in conjunction with other therapeutic forms, to

elicit durable antitumor immune responses. Kim et al. showed the

greater immunogenic potential of OMVs over bacteria and the

evidence to explore this further in animal models. In a recent report,

they showed that systemic intravenous administration of BEVs,

from the genetically modified Escherichia coli msbB −/− strain

(endotoxin-free), in CT26 murine colon adenocarcinoma

transplanted mice significantly reduced the tumor volume in a

concentration-dependent manner. Biodistribution studies indicated
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a selective tropism for tumor tissue, which was attributed to the

enhanced permeability and retention (EPR) effect given the nano-

size range of these OMVs (38.7 ± 4.2 nm) (184). The EPR effect is a

property in which the appropriate sizes of nanoparticles leak

preferentially into tumor tissue through permeable tumor vessels

and are then retained in the tumor bed due to reduced lymphatic

drainage (185). The remarkable capability of inducing long-term

antitumor immune responses was associated with CXCL10 and

interferon-g cytokine production that can fully eradicate established

tumors without notable adverse effects (184). A mutant E. coli strain

that exhibits less immunogenicity and consequently less toxicity

toward human cells was engineered to generate OMVs displaying a

cellular selectivity, incorporated genetically with a human

epidermal growth factor receptor 2 (HER2)-specific affibody in

the membrane as a targeting ligand. The authors used the approach

of endogenous loading of antigens to the OMV lumen to generate
FIGURE 4

Therapeutic applications of bacterial extracellular vesicles. OMVs can be used in therapeutic strategies and combined with chemotherapy agents or
siRNAs to improve the antitumor response. OMVs: outer membrane vesicles. SyBV: synthetic bacterial vesicles. BEVs: bacterial extracellular vesicles.
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OMV-HER2 carrying kinesin spindle protein (KSP) siRNA, which

is an overexpressed protein in rapidly dividing cancer cells. KSP

inhibition cause cell cycle arrest during mitosis by inhibiting KSP

function, ultimately leading to cell death. In vivo studies in the

HCC1954 xenograft model showed that siKSP-packaged OMVs

caused targeted gene silencing and induced highly significant tumor

growth regression. Interestingly, passive siKSP-loaded OMVs,

without HER2 targeting, showed partial tumor regression, offered

by the EPR effect, which increases extravasation and retention

within the tumor bed (186). Another approach to reduce toxicity

and avoid excessive activation of the immune system is the synthetic

bacterial vesicles (SyBVs), which are spherical synthetic bacterial

vesicles with similar morphology and size to natural bacterial

OMVs, but carry less proteins and nucleic acids. The better

toxicity profile of SyBVs, compared to OMVs, is due to the

limited cytosolic molecular content. Furthermore, SyBVs are

capable of engaging cells of the immune system such as DCs and

eliciting an adaptive immune response. Co-immunization with

SyBV and mouse melanoma derived EVs enhances tumor

regression in melanoma-bearing mice in a Th1-dependant

manner. Moreover, the immunotherapeutic effect of SyBV was

synergistically enhanced by anti-PD-1 inhibitor (187).

Recently, combination therapy using OMVs, as a nanoparticle

coating, in tandem with conventional cancer therapies was

evaluated. The combination of attenuated Salmonella-derived

OMVs with chemotherapeutics has been evaluated (188). First,

the OMV coating approach has been used to elicit an innate

immune response as it travels to the TME, followed by targeting

the tumor cells via the arginyl-glycyl-aspartic acid (RGD) peptide

on the surface, and subsequently delivering the chemotherapeutic

prodrug 5-fluorouracil (5-FU) tegafur (188). The study’s promising

results show that successive pretreatment in the mouse model

protects against tumor challenge and seems to act like a vaccine.

The therapeutic efficacy was also confirmed in melanoma and

breast cancer murine models, eliciting repressed tumor growth,

reduced metastatic nodules, and better survival than control and

tegafur-treated mice groups. In the non-small-cell lung cancer

mouse model, apoptotic and cytotoxic effects have been observed

with passively loaded doxorubicin in attenuated Klebsiella

pneumonia-derived OMVs. This antitumor effect of doxorubicin-

loaded OMVs was synergized by macrophage recruitment in the

TME and enhanced immunogenicity (189). In another study using

a triple-negative breast cancer model, genetically engineered E. coli

BL21-derived OMVs were loaded with paclitaxel and Redd1 siRNA,

to enhance immune system activation and chemotherapeutic drug

delivery (190). Redd1 is a negative regulator of mTOR signaling and

is defined as a key metabolic regulator suppressing tumorigenesis

(191). The results show that, after reaching the TME, the paclitaxel

is released, followed by OMV-associated siRNA uptake by M2

macrophages leading to tumor-associated macrophage

repolarization and tumor immune response activation (190).

Li et al. generated modified OMVs expressing the ectodomain

of PD-1 on the surface (OMV-PD-1) capable of inducing a

proinflammatory immune response in DCs, and interacting with

PD-L1 on the tumor surface (192). Importantly, the engineered

OMV-PD-1 can bind to PD-L1 on the tumor cell surface and
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facilitate its internalization, thereby protecting T cells from the PD-

1/PD-L1 immune inhibitory axis. Moreover, in the colon carcinoma

cell line CT26 model, 40% of mice exhibited complete tumor

regression associated with increased levels of pro-inflammatory

cytokines IFN-g, IL-6, and TNF-a in tumor and serum, and

enhanced CD8+ T-cell infiltration. More broadly, the study

illustrates the potential of OMVs as a promising agent for cancer

immunotherapy capable of regulating the TME and subsequently

increasing antitumor therapy efficacy.

Finally, the interaction of OMVs with the host immune system

makes them an exciting option for therapeutic cancer vaccines

(193–195). Engineered OMVs have elicited an efficient cytotoxic

CD8+ T-cell activation by DCs (196). A recent study has

demonstrated that OMVs conjugated to antigenic epitope

tyrosinase-related protein 2 (TRP2) drive antitumor immunity by

eliminating tumor metastasis and inducing a strong cytotoxic T-cell

response. These OMVs accumulate in the lymph nodes and carry

the potential to efficiently present antigens to the DCs, bringing us

one step closer to personalized cancer vaccines (193).

While fecal microbiota transplantation seems to hold promise for

many diseases, including cancers, recent events have triggered a

greater need to monitor the transfer of antibiotic resistance, which

is the main significant risk directly related to fecal microbiota

transplantation. Moreover, other causes of deaths following fecal

microbiota transplantation have been attributed to heart attack and

associated with increased amount of trimethylamine oxide, a

metabolite produced by gut bacteria that was shown to be involved

in cardiovascular diseases (197). A safer and more controlled way of

utilizing the immune-modulatory effect of microbial parts would be

to use BEVs. Systemic administration of BEVs directly to tumor-

bearing hosts may constitute one of the promising directions of

BEVs-based cancer therapy, and could represent a superior

alternative to fecal microbiota transplantation (198). The intrinsic

properties of BEVs including immunogenicity, a cell-free system, the

non-replicative nature, and, thus, safety and nanoscale structure

made them become a potential candidate for cancer treatment.

Based on their inbuilt adjuvanticity, thermostability, and resistance

to low pH and enzymatic degradation, and immunomodulatory

properties, several studies tried to evaluate BEVs use for

vaccination against infectious pathogens (165, 199).
6 EVs in interkingdom communication
in the immune
tumor microenvironment

The horizontal EV transfer is a new form of intercellular

communication that operates at both short and long distances to

regulate gene expression, angiogenesis, immune responses, and cell

metabolism (112, 200). In cancer, the transfer of EV-associated

biomolecules delivers complex biological messages from one cell to

another and thereby spread malignant traits across the

microenvironment (113). It has been shown in multiple studies

that GBM-released EVs are incorporated by neighboring cells in the

brain microenvironment, including endothelial cells and microglia,

leading to altered phenotypes and functionality, and creating a
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more supportive TME (95, 98, 109). Bidirectional EV

communication shares functional molecules between cancer and

stromal cells to facilitate intercellular communication and

regulation within the TME.

Recent research has revealed that EVs have a role in the

progression of GBM and in the reconstruction of the TME (201)

through the interaction with stromal cells, monocytes,

macrophages, mast cells, microglia, T cells, astrocytes, and

oligodendrocytes (202). GBM-derived EVs also regulate many

cellular and extracellular components of the TME, leading to

GBM growth and progression (203). GBM-derived EV-mediated

interactions may allow TME cells to become activated, notably

fibroblasts, microglia, and macrophages. The latter may also adopt

either M1 or M2 phenotypes. On the other hand, this cross-talk

could potentially result in lineage conversion towards more

aggressive phenotypes, such as anaplastic astrocytoma arising

from astrocytoma or oligodendroglioma (204). Furthermore, EVs

influence other types of cells in the CNS to support the TME. For

example, GBM EV-treated astrocytes demonstrate enhanced

migration and cytokine production, leading to a tumor-

supporting phenotype with a senescence-associated secretory

profile (205). Moreover, during treatment with GBM-derived

EVs, normal astrocytes demonstrate enhanced migration rates

and heightened release of cytokines and growth factors, which

could then cooperate with EGF in recruiting precursor cells of

mesenchymal origin (110).

Several studies have shown that microglial cells or astrocytes

play a critical role in GBM progression (206). Based on recent

findings, the complex network of interaction between microglial/

astrocytes cells and GBM constitute a potential therapeutic target

(207). One reason for this is that because of the glioma-derived EV

uptake by astrocytes, the cells possessing high transformation

capacity to glioma provide a pool of glioma-initiating cells in the

brain microenvironment. It has been shown that EVs enhance self-

renewal, proliferation, and anchorage-independent growth

properties of human astrocytes, by triggering Ras and telomerase

activation or simultaneously p53 and pRb inactivation pathways,

the most common signaling aberrations observed in GBM (102,

115). The astrocyte transformation is related to the malignant

characteristics of GBM-derived EVs that can elicit additional

effects on astrocytes, such as promoting their migration (110).

It has been shown that GBM-derived EVs regulate immune cell

activity in the TME (208). Notably, GBM-derived EVs generated

upon tumor apoptotic cells may bind to adjacent cells and change

their phenotype to become more aggressive. Additionally, these EVs

help create an immunosuppressive environment that prevents GBM

from antigen-specific detection and death by T cells (208). For

example, it has been demonstrated that GBM-derived EVs can

facilitate recruitment of Tregs along with additional suppressor cells

(209). MDSCs, like other kinds of immune cells, are impacted by

GBM and GBM-derived EVs. In vitro treatment of PBMCs with

GBM-derived EVs raises the MDSC population that exhibit more

pronounced immunosuppressive phenotypes and aberrant miRNA

profiles approximately 1.5-fold (210, 211). In spite of the increased

number and activated state of DCs in GBM patients’ cerebrospinal

fluid, the majority of these cells are unable to adequately present
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tumor antigens. In several situations, GBM-derived EVs severely

reduced the antigen-presenting ability of DC as mentioned earlier

(142). GBM-derived EV specifically impacts cells of the monocytic

lineage, such as monocytes, macrophages, and microglia (100). In

fact, GBM-derived EVs can cause peripheral blood monocytes to

differentiate into alternatively activated M2-type macrophages. This

impact is seen in EVs derived from established cell lines as well as

initial cultures of GBM stem-like cells (GSC) (100). Furthermore,

GSC-derived EVs influenced primary human microglia, resulting in

elevated production of membrane type 1-matrix metalloproteinase,

a hallmark for tumor-supportive microglia (100). Moreover,

modulatory effects on PBMCs were determined through

differential low and high EV concentration effects. These findings

suggest that high concentration of EVs can cause specific immune

tolerance within the TME (145). Overall, GBM-derived EVs

negatively impact the TME immune cells, resulting in an

immunosuppression that promotes tumor growth.

Additionally, in glioma, accumulated data suggest that high

expression of glycolytic signature genes predicts unfavorable

prognosis and immunological heterogeneity (212–217).

Interestingly, the GBM-derived EVs can reprogram the

metabolism of the recipient pre-transformed astrocytes by

activating both glycolysis and OXPHOS, providing a dynamic

cross-talk between cancer cells and neighboring cells of the TME.

Notably, according to proteomic studies, exosomes contain several

key glycolytic enzymes, such as GAPDH, enolase, pyruvate kinase,

and phosphoglycerate kinase (108, 218). Several classes of mRNAs

are highly enriched in GBM and, most remarkably, transcripts for

RP, OXPHOS, and glycolytic factors account for more than 50% of

the EV-abundant mRNA (97). In addition to these described

means, EV-mediated transfer of oncogenes is another mechanism

driving the proliferative and metabolic phenotypes observed in the

astrocytes. The full complete coding sequences of c-Myc and

CCND3 mRNAs were shown to be encapsulated in glioma-

derived EVs (97). The transcription factor c-Myc, which

correlates with the grade of glioma malignancy, is known to

modulate metabolic reprogramming in the pathogenesis of

glioma. c-Myc is also important for the proliferation, growth, and

survival of glioma cancer stem cells (121).

It is now well established that the gut microbiome affects the

behavior of tumors through blood circulation, bacterial metabolites,

and enterohepatic circulation (219–221). Mucosal barriers of the

gastrointestinal tract are the hub for interspecies and even

interkingdom communication. It is now well established that the

gut microbiota is one of the key elements implicated in cancer and

shown to modulate anticancer drug efficacy. EVs released by host

eukaryotic cells and from prokaryotic symbiotic and/or pathogenic

cells, fungi, and parasite-derived EVs meet in intraluminal space

and interact constantly with intestinal host cells (222, 223).

Interspecies communication between nematodes and host

intestinal cells has been recently reported in a mouse model

showing that Heligmosomoides polygyrus secreted miRNA-loaded

EVs suppress host immune response after being internalized by

host mice cells (224).

Production of EVs from human parasites, such as trematodes and

nematodes, or parasitized cells has been described for a number of
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parasitic infections (225–227). Recognizing the presence of invading

pathogens by germline-encoded pattern recognition receptors is key

tomounting an effective innate immune response (228). For example,

circulating exosomal miRNAs act as ligands of Toll-like receptors

(TLRs) after internalization by target host cells (229). In the same

line, mice TLR13 recognize the 23S ribosomal RNA molecule of

bacterial pathogen Staphylococcus aureus (230). Recently, bacterial

DNA integration into the human genome has become a hot topic as it

has been found around cancers, such as pancreatic cancer, breast

cancer, and colorectal cancer. New lines of evidence support the

hypothesis that bacterial integrations and related mutagenesis

through lateral gene transfer occur in the human somatic genome

and play a role in carcinogenesis (170, 231, 232).

In esophageal squamous cell carcinoma (ESCC), it has been

hypothesized that intratumoral microbiota constitute a bridge

between digestive tract microbiota and the tumor immune

microenvironment, which inevitably influence esophageal

carcinogenesis (233, 234). In a study published by Zhang et al.,

the characterization of the ESCC TME unveils a high abundance of

intratumoral Lactobacillus and bacterial alpha-diversity, associated

with the formation of the immunosuppressive TME depicted by the

upregulated PD-L1 expression on epithelial cells and TAMs, and

reduced infiltration of NK cells and activated cytotoxic T

lymphocytes (235). The authors speculate that intratumoral

microbiota might influence patients’ outcomes through the

immunosuppressive TME (235, 236).

Moreover, tumor molecular mimicry by gut and extra-gut

microbial species producing epitopes that resemble tumor

neoantigen epitopes is likely to influence the quality and strength

of the immune anticancer response (237). Molecular mimicry

occurs when similarities between foreign and self-peptides favor

an activation of T or B cells (238). Molecular mimicry can lead to

the formation of cross-reactive antigens and/or T-lymphocyte

activation and proliferation. Furthermore, epitope spreading,

defined as the diversification of epitope specificity from the initial

dominant epitope-specific immune response directed against a self

or foreign protein, damages healthy tissue and induces apoptosis

and concomitant presentation of self- and microbial antigens (239,

240). In an elegant work of Fluckiger et al., the authors reported that

MHC-I epitopes derived from a prophage in the gut microbiomes

are cross-reactive tumor antigens that enhance immunotherapeutic

efficacy in both the preclinical murine model and cancer patients

(241). These data highlight the important role of microbiome in

modulating antitumor responses and that one of the mechanisms is

molecular mimicry.

In CRC, it has been hypothesized that EV-derived proteomes

from gastrointestinal tract cancer cells match gut microbiome

protein sequences. To investigate this, the CRC EV proteome has

been compared with protein sequences from different commensal

bacteria and viruses and a number of matching microbial sequences

were identified (242–245). Strikingly, the pseudokinase domain

sequence in the B. fragilis genome matches the PDGFR-a
sequence . The oncogenic mutat ions of PDGFRs and

overexpression of PDGF/PDGFRs members are implicated in

cancers and are associated with the stage, grade, and poor
Frontiers in Immunology 13
outcomes of various cancers (246–249). In CRC, it has been

suggested that the presence of pseudokinase with activation loop

and homology to PDGFR-a in Bacteroides spp. may be related to

PDGFRa’s role in CRC pathogenesis (250). Hence, matching

protein sequences from the host cell-derived EV proteome with

the protein sequences of microbiome will help to identify new

similarities between bacteria and host cells, including cancer and

immune cells and proteins, and understand their functional role in

cancer pathogenesis.

Exosomes offer numerous options to study physiological

processes and pathologies. Aside from their innate cargo,

exosomes from several taxonomic kingdoms have been shown to

be loadable with therapeutic agents, acting as nanocarrier for drug

delivery (251). Some of the exosomes’ advantages regarding

therapeutic purposes are their biocompatibility, stability, low

toxicity, penetration into deep tissues, a characteristic zeta

potential allowing prolonged circulation, and their intrinsic cell-

targeting properties (251–253). Medical potential applications of

exosomes include therapeutic approaches such as anticancer

therapies, regenerative medicine, microbial vaccines with low

immunogenicity that help avoid autoimmunity, cancer vaccines,

drug delivery systems, and biomarkers in early diagnosis and

therapy monitoring (251).

GBM-derived EVs play vital roles in the induction of the TME,

which in the GBM context involves the relationship between GBM

tumors and adjacent cells, inducing immunosuppression and

stimulating cancer cell proliferation within the brain.

Furthermore, in the TME, EVs can serve as a vehicle for both

paracrine and endocrine signaling, to adjust metabolic pathways of

cells to fit into the objective of the TME.
7 Conclusions and future perspectives

To conclude, it is now well established that EV release by cancer

cells and other cells within the GBM microenvironment, as well as

their presence in biological fluids, is an incontrovertible feature of

GBM biology. However, further research efforts are needed to

understand and address the functional properties of EVs to

potentially gain from the GBM TME-derived EVs.

GBM-derived EVs show strong therapeutic translation

potential. Such EVs carry biomolecules that are similar to those

that might be secreted by tumor cells, which makes these EVs useful

for both diagnostic and therapeutic purposes in GBM.

Investigations have shown their ability to cross the blood–brain

barrier, allowing imaging agents and treatments to be delivered

directly to GBM lesions. Furthermore, EV cargo acts as a

pharmacodynamic reporter, providing information about drug

distribution and target interaction, which may improve early-

phase clinical trials of new therapies. Large amount of data

highlights the critical significance of GBM-EVs in improving

diagnosis and therapy relating to this challenging brain cancer.

In order to understand the very complex interactions between

cancer cells, immune cells, and microbes in the TME, the biologically

active concentrations of EVs that actually reach the different
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intratumoral structures of GBM (e.g., enhancing tumor, necrotic,

edema, and non-enhancing tumor) remain to be determined.

Characterizing EV-producing cells provide opportunities to

modulate EV biogenesis, release, and cargo content, such as a

bioactive proteins or miRNAs. Different strategies can be

considered to modulate EV content and biological activities,

including biochemical stimuli and genetic modification of the

producing cells to overexpress specific proteins or miRNAs.

However, the cargo molecule that will be therapeutically

targeted would need to be chosen based on using the relevant

non-clinical models for rigorous functional testing of recipient cell

responses, ultimately in vivo. By gaining a better understanding of

the biological functions of EVs and manipulating their biogenesis,

research methods in GBM need to be ahead of the game to control

their pathophysiological effects in tumor development and produce

populations of EVs with antitumor effects.

Finally, isolation and characterization of distinct subsets of EVs

from plasma, CSF, or urine have established the proof of principle

of using EVs as liquid biopsy biomarkers for the early detection,

prognosis, and monitoring of various cancers. Moreover, the non-

invasive use of EVs from blood of GBM patients should be

envisaged for the monitoring of cancer therapy response efficacy

and overcoming cancer drug resistance, notably in immunotherapy

clinical trials, with appropriate use of precise and robust EV and

cargo characterization.

Finally, further research needs to be performed in this area to

comprehensively characterize EV biogenesis and release, and cope

with complexity that exists in the interactions between organisms

on interspecies and interkingdom levels.
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238. Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y,
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Glossary

ARF6 ADP ribosylation factor 6

ARMMs Arrestin-domain-containing protein 1-mediated microvesicles

ARRDC1 Arrestin-domain-containing protein 1

BEVs Bacterial extracellular vesicles

CNS Central nervous system

CRC Colorectal cancer

DCs Dendritic cells

EGFR Epidermal growth factor receptor

ESCC Esophageal squamous cell carcinoma

EVs Extracellular vesicles

GAMs Glioma-associated macrophages

GBM Glioblastoma multiforme

GDEs Glioma stem-like cell-derived exosomes

HER2 Human epidermal growth factor receptor 2

IDH Isocitrate dehydrogenase

IGFBP Insulin-like growth factor binding protein

IL Interleukin

ILVs Intraluminal vesicles

KSP Kinesin spindle protein

lncRNA Long non-coding RNA

Ly6C Lymphocyte antigen 6 complex

MAMPs Microbe-associated molecular pattern

miRNAs MicroRNAs

MMP-9 Metalloproteinase-9

mRNA Messenger RNA

MSDC Myeloid-derived suppressor cells

MVBs Multivesicular bodies

MVs Microvesicles

OMV Outer membrane vesicles

OXPHOS Oxidative phosphorylation system

PDGFs Platelet-derived growth factors

PD-L1 Programmed death ligand-1

PLNTY Polymorphous low-grade neuroepithelial tumor of the young

RGD Arginyl-glycyl-aspartic acid

RP Ribosomal protein

rRNA Ribosomal RNA

sRNA Small RNA

SyBV Synthetic bacterial vesicles
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TAMs Tumor-associated macrophages

TGF-b1 Transforming growth factor-b1

TILs Tumor-infiltrating lymphocytes

TLRs Toll-like receptors

TME Tumor microenvironment

Tregs Regulatory T cells

tRNA Transfer RNA

TRP2 Tyrosinase-related protein 2

TSG101 Tumor susceptibility gene 101

VPS4 Vacuolar protein sorting 4

WHO World Health Organization

5-FU 5-Fluorouracil
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