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Osteosarcoma is a cancerous bone tumor that develops frommesenchymal cells

and is characterized by early metastasis, easy drug resistance, high disability, and

mortality. Immunological characteristics of the tumor microenvironment (TME)

have attracted attention for the prognosis and treatment of osteosarcoma, and

there is a need to explore a signature with high sensitivity for prognosis. In the

present study, a total of 84 samples of osteosarcoma were acquired from the

UCSC Xena database, analyzed for immune infiltration and classified into two

categories depending on their immune properties, and then screened for DEGs

between the two groups and analyzed for enrichment, with the majority of DEGs

enriched in the immune domain. To further analyze their immune characteristics,

the immune-related genes were obtained from the TIMER database. We

performed an intersection analysis to identify immune-related differentially

expressed genes (IR-DEGs), which were analyzed using a univariate COX

regression, and LASSO analysis was used to obtain the ideal genes to construct

the risk model, and to uncover the prognostic distinctions between high-risk

scoring group and low-risk scoring group, a survival analysis was conducted. The

risk assessment model developed in this study revealed a notable variation in

survival analysis outcomes between the high-risk and low-risk scoring groups,

and the conclusions reached by the model are consistent with the findings of

previous scholars. They also yield meaningful results when analyzing immune

checkpoints. The risk assessment model developed in this study is precise and

dependable for forecasting outcomes and analyzing characteristics

of osteosarcoma.
KEYWORDS

osteosarcoma, tumor microenvironment, immune-related genes, immunotherapy,
immunization checkpoints
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1423194/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1423194/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1423194&domain=pdf&date_stamp=2024-11-25
mailto:sdszyybss@163.com
https://doi.org/10.3389/fimmu.2024.1423194
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1423194
https://www.frontiersin.org/journals/immunology


Wu et al. 10.3389/fimmu.2024.1423194
1 Introduction

Osteosarcoma(OS) originates from bone tissue and is a

malignant tumor with local invasion and rapid infiltrative

metastasis, prevalent in children and adolescents (1, 2).

Osteosarcoma has a high disability rate. Currently, surgery

combined with chemotherapy is the universal treatment for

osteosarcoma, but the survival rate of patients after 5 years is still

relatively poor (3). Consequently, there is a pressing requirement to

develop novel evaluation methods to enhance the effectiveness of

treatment. Immunotherapy has emerged as the most promising

treatment in the past few decades.

The immune system plays a role in every phase of tumor

formation and advancement. Thus, dysfunction in the immune

system plays a significant role in the onset of tumors. When the

immune system interplays with the tumor microenvironment, the T

cells associated with the anti-tumor immune response will be

activated, and they will up-regulate the expression of various

inhibitory receptors on their cell surfaces and bind to the

corresponding ligands expressed on the exterior of the tumor

cells, resulting in the suppression of the immune response, i.e.,

the intensity of the anti-tumor immune response will be weakened,

and ultimately, the tumor cells will be able to achieve immune

escape. The goal of immune checkpoint blockade (ICB) therapy is

to enhance the functionality of T cells by disrupting the interaction

between these receptors and their ligands, thereby enabling more

efficient eradication of cancer cells through the immune system. An

increasing body of clinical research has shown the efficacy of

immune checkpoint blockade (ICB) therapy in the treatment of

many kinds of tumor types (4–6). These trials have facilitated the

study of the osteosarcoma tumor microenvironment(TME). TME

and tumor clinical presentation, prognosis, and response to

immunotherapy are closely related (7, 8), and TME is considered

a key factor in OS progression (9). Enhanced comprehension of the

immune system ’s role in osteosarcoma and the tumor

microenvironment (TME) contributes to the advancement of

immunotherapy for this condition.

In this study, osteosarcoma samples were obtained from an

online database and the samples were immuno-scored, divided into

two groups, and analyzed for further analysis of immune-related

differential genes between the two groups. A comprehensive

immune profile was constructed based on the correlation between

the expression levels, prognostic value, and immune infiltration

levels of these genes. This study may assist in immunological

precision therapy.
2 Materials and methods

2.1 Data acquisition

TARGET-OS fragment per kilobase of transcript per million

mapped reads (FPKM) values (https://gdc-hub.s3.us-east-

1.amazonaws.com/download/TARGET-OS.htseq_fpkm.tsv.gz) was

obtained from UCSC Xena web platform(https://xenabrowser.net/
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datapages/) for downstream analysis, and Counts values(https://

gdc-hub.s3.us-east-1.amazonaws.com/download/TARGET-

OS.htseq_counts.tsv.gz) were obtained for differential analysis.

Eighty-eight osteosarcoma samples were initially retrieved from

the UCSC Xena web platform; samples with no or incomplete

clinical information were excluded, for a total of 84 osteosarcoma

samples. The clinical characteristics of 84 patients with

osteosarcoma are shown in Supplementary Table S1. In addition,

we obtained the set of immune-related genes from the TIMER

database for subsequent analyses(Supplementary Table S2). The

somatic mutation data and the copy number variation (CNV)

profile were obtained from TCGA (https://portal.gdc.cancer.gov/).
2.2 Immune assessment, clustering, and
comparison of immune properties

The tumor samples were scored using the ESTIMATE algorithm

to obtain StromalScore, ImmuneScore, ESTIMATEScore, and

TumorPurity (10), and the samples were divided into two groups,

named high and low, based on the average of the above four data sets.

Survival analysis was conducted to investigate the correlation between

the four parameters and overall survival (OS).

Subsequently, the abundance of 30 immune cells in the tumor

samples was assessed using the ssGSEA algorithm (11), and the

tumor samples were consistently clustered to obtain immune

subtype groupings. An examination was conducted to explore

variations in various attributes among clinical phenotypes. Clinical

characteristics, including gender, age, survival time, survival status,

whether metastatic or not, and previously obtained immune subtype

groupings, were visualized using a heatmap, and a box plot was

created to assess the levels of immune infiltration among different

immune subtypes. In addition, box plots of the four scores obtained

from the previous ESTIMATE algorithm were compared according

to the immune subtype groupings. To assess the tumor mutational

burden (TMB), we examined the total count of unique genes without

synonymous somatic mutations per megabase (Mb) in each sample.

Truncating mutations comprised frame-shift deletions or insertions,

nonsense mutations, and splice-site mutations. In addition, non-

truncating mutations encompass in-frame deletions or insertions,

missense mutations, and nonstop mutations. We identified

mutational differences between the two groups based on

immunological grouping. Subsequently, differently expressed genes

(DEGs) were identified through comparative analysis of immune

subtype classifications utilizing the limma package in R software

version 4.3.2, with a significance threshold set at P<0.05 and |logFC|

>1. Volcano plots were generated to visualize differentially expressed

genes (DEGs), which were further subjected to gene ontology (GO)

function annotation and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis. Pathway differences between immune

subtypes were analyzed using GSEA. GO and KEGG analyses were

obtained from the DAVID Database (https://david.ncifcrf.gov/) and

then visualized using the R software ggplot2 package, and GSEA

results were analyzed using the R software clusterProfiler package

and the GseaVis package.
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2.3 Assessment of immune-related DEGs

Immune-related differentially expressed genes (IR-DEGs) were

identified by intersecting differentially expressed genes (DEGs) with

immune-related genes. The IR-DEGs were imported into the

STRING platform for protein-protein interaction (PPI) analysis,

and the IR-DEGs were analyzed for their functions using GO

functional annotation and KEGG pathway analysis. The

intersecting genes were also analyzed for GSEA enrichment using

the above methods. Finally, the MCC algorithm in Cytoscape

software version 3.10.1 was used to obtain the top ten genes.

Next, we explored the overall survival and immune infiltration

among various immune subtypes based on the top ten genes.
2.4 Risk model construction

By setting the significance level at P < 0.05, the univariate Cox

regression analysis was conducted to explore the IR-DEGs and identify

genes related to survival outcomes. Next, the study utilized Least

Absolute Shrinkage and Selection Operator (LASSO) estimation for

survival modeling of genes showing significant correlations with

survival to identify potential candidate genes. Following this, the

sample’s risk score was computed based on the selected candidate

gene. The samples are divided into training sets and test sets on average.

The grouping is strictly randomly followed, and there is no statistical

difference between the two groups. Calculate the prognosis of the

training set, test set, and all groups, and present with the ROC curve.
2.5 Prognosis of features

We first assessed tumor immune escape and immune checkpoint

blockade responses using the Tumor Immune Dysfunction and

Exclusion (TIDE) online website (http://tide.dfci.harvard.edu/),

followed by risk scoring to divide the sample into a high-risk

scoring group and a low-risk scoring group, and then TIDE

values were calculated between the two groups, with higher TIDE

scores associated with poorer immune checkpoint blockade

therapy. The differences in immune checkpoint-related genes

between the two groups were subsequently calculated and

represented by a scatter plot. The samples were categorized based

on the high and low levels of candidate genes, and then the disparity

in immune checkpoint-related genes was computed between the

two sets. This dissimilarity was visually depicted through a scatter

plot to investigate the potential connection between the candidate

genes and immune checkpoint genes. The immune infiltration of all

samples was calculated using CIBERSORT to screen for differential

immune cells between the high-risk scoring group and the low-risk

scoring group, and the expression of candidate genes in the differential

immune cells was calculated. MicroenvironmentScore was calculated

for all samples using the xCell (https://xcell.ucsf.edu/) online site.

Differences in MicroenvironmentScore between the high-risk

scoring group and the low-risk scoring group were calculated and

visualized in a boxplot.
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3 Results

3.1 A holistic landscape of
immunological features

Based on the tumor stroma and immune characteristics of

osteosarcoma, the acquired osteosarcoma samples were analyzed

using the ESTIMATE algorithm to reveal the level of immune

infiltration of tumor samples in osteosarcoma. StromalScore,

ImmuneScore, ESTIMATEScore, and TumorPurity were calculated

and analyzed in the tumor samples (Supplementary Table S3). The

scores were grouped according to their median (median of

StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity

were 488.57, 424.86, 1095.16, and 0.72 in that order), and were

named as high and low groupings, respectively. These scores reflect

the different compositions of the tumor microenvironment, assessing

the degree of stromal and immune cell infiltration, and by grouping

them, it is possible to understand the biology of the tumor better and

to explore its relationship with tumor prognosis by performing a

Kaplan-Meier curve analysis based on survival time and status

(Figures 1A–D). In StromalScore, ImmuneScore, and

ESTIMATEScore, high grouping was significantly associated with

high survival, while low TumorPurity was associated with high

survival. Of these, ImmuneScore was most significantly associated

with survival. The data obtained from the above suggests that

osteosarcoma can be analyzed prognostically based on

ImmuneScore, followed by ssGSEA analysis.

The impact of immunity on osteosarcoma was explored using

ssGSEA (Supplementary Table S4). Subsequently, unsupervised

clustering was performed on the ssGSEA results, and the number

of clusters with the highest average within-group concordance was

2 (Figure 2B). Therefore, based on their immune characteristics, the

samples were categorized into two groups, and the 30 immune cells

were subsequently displayed along with clinical characteristics

including gender, age, survival time, survival status, and whether

the tumor has metastasized or not (Figure 2A). There are noticeable

variations in immunological features observed between the

clustered groups. Groups with rich immune profiles were named

high immune groups, therefore, groups with lower immune profiles

were named low immune groups (Supplementary Table S5).

Tumour metastasis was more frequent in the low-immunity

group than in the high-immunity group. To further investigate

the relationship between immune groupings and the levels of TME,

immune activation, and tumor cell infiltration, several analyses of

osteosarcoma TME were performed. As expected, StromalScore,

ImmuneScore, and ESTIMATEScore were higher and TumorPurity

was lower in the hyperimmune group (Figures 2C–F), suggesting

that the hyperimmune group was associated with higher survival.

Immune checkpoints and immune cell abundance were also

significantly higher in the hyperimmune group (Figure 2G).

Subsequent Principal Component Analysis (PCA) was performed

and the immune characteristics differed significantly between

the two groups (Figure 2H), therefore, we hypothesized that the

immune groupings found above could well distinguish the immune

and genetic characteristics of the samples.
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3.2 Mutation analysis

The analysis of gene mutations revealed a notably elevated

mutation rate in the low immunity group, with TP53 being

identified as the gene exhibiting the highest frequency of

mutations (Figure 3A). Tumor Mutation Burden (TMB) analysis

was carried out (Supplementary Table S6) and visualized using

scatter plots (Figure 3B). Following this, an analysis of TMB in the

high and low-immunity cohorts demonstrated a variation in TMB

levels between the two groups, with TMB showing an elevation in

the low-immunity cohort (Figure 3C). We hypothesized that this

may be related to the poorer prognosis of the low-immunity group.
3.3 Screening and evaluation of
differentially expressed genes

The examination of gene expression variations between

immune subtypes identified a pool of 836 differentially expressed
Frontiers in Immunology 04
genes for subsequent scrutiny (Supplementary Table S7), with 697

genes showing up-regulation (83.37%) and 139 genes

demonstrating down-regulation (16.63%) (Figure 4A).

Enrichment analyses of DEGs by GO annotation and KEGG

pathway enrichment analyses identified 497 biological processes

(BPs), 94 cell components (CCs), 118 molecular functions (MFs),

and 69 KEGG pathways (Figures 4C, D). The DEGs were also

analyzed for GSEA enrichment (Figure 4B).

As shown in the figure, the top ten biological processes were

filtered according to P-value, most of which were related to immunity,

including immune response, inflammatory response, innate immune

response, neutrophil chemotaxis, and adaptive immune response. In

addition, KEGG pathways are also related to immunity, including

Phagosome, Antigen processing and presentation, B cell receptor

signaling pathway Th17 cell differentiation, etc. In summary, DEGs

and immunity are closely related, subsequently, GSEA enrichment

analysis of DEGs was performed to further investigate the pathway

differences between immune subtypes, based on P<0.05, a total of 47

enriched pathways were obtained, and the top ten were Tuberculosis
FIGURE 1

The ESTIMATE algorithm was utilized to conduct survival analysis on patient groups categorized based on high and low immune scores, and the
results were visually represented through Kaplan-Meier (K-M) curves. (A) ESTIMATE score, (B) Tumor purity score, (C) Stromal score, and
(D) Immune score.
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(NES=3.11,p.value=6.73E-10) in order, Leishmaniasis (NES=3.01,

p .va lue=3 .03E-09) , S taphy lococcus aureus in fec t ion

(NES=3.01,p.value=7.05E-09), Th17 cell differentiation (NES=2.90,

p.value=4.69E-08), Th1 and Th2 cell differentiation (NES=2.82,
Frontiers in Immunology 05
p.value=1.13E-07), Hematopoietic cell lineage (NES=2.72,

p.value=5.33E-07), Influenza A (NES=2.71,p.value=4.87E-07),

Systemic lupus erythematosus (NES=2.60,p.value=1.83E-06),

Phagosome (NES=2.66,p.value=2.21E-06) and Neutrophil
FIGURE 2

Immune subtype identification and comparative analysis. The symbols * represent p-values less than 0.05, ** represent p-values less than 0.01,
*** represent p-values less than 0.001, **** represent p-values less than 0.0001. (A) ssGSEA analyses of 84 samples, divided into two groups based
on 30 ssGSEA scores per sample. (B) Unsupervised clustering of the samples based on their immunological characteristics, where the number of
clusters with the highest average within-group agreement is 2. (C–F) shows, in order, the differences in ESTIMATEScore, ImmuneScore,
StromalScore, and TumorPurity between the high and low immunity groups. (G) A box plot is utilized to display the levels of immune cell infiltration
in groups categorized as either having high or low immunity. In this visualization, the red boxes correspond to the high immunity group, while the
blue boxes correspond to the low immunity group. (H) PCA analysis of the two immune subtypes, with purple and yellow dots representing the
immunity–high and —low groups, respectively. "ns" stands for no statistical difference.
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FIGURE 4

Enrichment analysis was conducted on the DEGs identified in the two immune subtypes. (A) Volcano diagram showing the regulation of DEG
expression, with green, grey, and red dots representing down-regulation, unregulation, and up-regulation, respectively. (B) Bubble diagram showing
the top ten pathways according to Gene Set Enrichment Analysis (GSEA). (C) Bubble plots showing the top 10 enriched GO BP, CC, and MF.
(D) Bubble plots showing the top 20 enriched terms of the KEGG pathway, with the size of the dots representing the number of enrichments.
FIGURE 3

Mutations between high and low immunity groups. The symbols represent p-values less than 0.01. (A) Mutation status of genes in the high and low
immunity groups. (B) TMB distribution of all samples. (C) Bar graph showing the difference in TMB between the high and low immunity groups. **
represent p-values less than 0.01.
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extracellular trap formation (NES=2.46,p.value=9.22E-06). These

findings imply that the activation of the immune system in the

tumor microenvironment is implicated in the development

of osteosarcoma.
3.4 Screening and Evaluation of IR-DEGs

From the TIMER database, 1811 immune-related genes were

obtained, and these genes intersected with DEGs to obtain 221 IR-

DEGs (Figure 5A). The IR-DEGs were entered into the STRING
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online database to obtain the protein-protein interaction network

(Figure 5B). The IR-DEGs were subjected to GO annotation and

KEGG pathway enrichment analyses (Figures 5C, D), resulting in

418 BP, 57 CC, 57 MF, and 69 KEGG pathways. These IR-DEGs

were mainly enriched in biological pathways such as immune

response, inflammatory response, and adaptive immune response.

Among KEGG-enriched pathways, the top five were Cytokine-

cytokine receptor interaction, Viral protein interaction with

cytokine and cytokine receptor, Rheumatoid arthritis, Chemokine

signaling pathway and Graft-versus-host disease. GSEA enrichment

analyses were also performed for IR-DEGs (Figure 5E). Their top
FIGURE 5

Identification and enrichment analysis of differentially expressed genes (DEGs) associated with the immune system. (A) Venn diagram showing 221
immune-associated DEGs overlapping 836 DEGs and 1811 IRGs. (B) Protein interaction network diagram of DEGs (C) Bubble plots showing the top
10 enriched GO BP, CC, and MF. (D) Bubble plots showing the top 20 enriched terms of the KEGG pathway, with the size of the dots representing
the number of enrichments. (E) Bubble plots showing the top 20 enriched terms of the KEGG pathway, based on GSEA analyses of the top 10
pathways with the highest gene enrichment.
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five were Th17 cell differentiation (NES=2.56, p.value=1.35E-05),

Th1 and Th2 cell differentiation (NES=2.46,p.value=3.33E-05),

Staphylococcus aureus infection (NES=2.30,p.value=0.0002),

Tuberculosis (NES=2.09,p.value=0.0005), Leishmaniasis

(NES=2.13,p.value=0.001). Similar to the above results. According

to the results, it is clear that immune activation, especially T cells, is

important for the development of osteosarcoma.

Following that, an examination of the connections and

relationships among these IR-DEGs was carried out through the

analysis of the protein-protein interaction network (Supplementary

Table S8), and associations were found for a variety of IR-DEGs,

with the most significant correlations between IL6, IL10, CD4,

CD8A, IL1B, TNF, and CCL5 and the other immune IR-DEGs.

The interaction network is characterized by the presence of

Interleukin (IL) family genes (including IL10, IL1B and IL6), T-Cell

Surface Glycoprotein genes (including CD8A, CD86 and CD4), C-C

Motif Chemokine Receptor genes (including CCR7 and CCR5) and

C-C Motif Chemokine Ligand genes (including CCL2 and CCL5),

which are among the hub nodes. Subsequently, the MCC algorithm

was applied to obtain the top ten genes (Supplementary Table S9),

and prognostic survival analysis and immune infiltration analysis

were performed on these ten hub genes (Figures 6, 7).

The results showed that ten genes were closely associated with

immune cells, and among all hub genes, Tumor Infiltrating

Lymphocyte (TIL) infiltration levels were the highest, and mast

cells and dendritic cell infiltration levels were lower. In the K-M

survival analysis of the hub genes, CD4, CD8A, CCR5, and CCL5

were prognostically significant.
3.5 Risk modelling

Twenty-six genes were screened from 221 IR-DEGs using one-

way COX analysis based on p<0.05, and then the 26 genes were

further analyzed by applying the LASSO algorithm using ten-fold

cross-validation when lambda.1se= 0.1745826 (Figures 8A, B), a

risk model was developed using two candidate genes, namely PDK1
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and PPARG. Utilizing the expression levels and coefficient values of

the candidate genes, a risk score model was created through the

application of the subsequent formula: risk score = (0.6839441 ×

PDK1 expression) + (-0.6420120 × PPARG expression). The risk

score formula was utilized on all samples to calculate the risk score

for each sample (Supplementary Table S10). Subsequently, The

samples were divided into two cohorts at random, with no statistical

distinction observed between the pair. The median risk scores of the

original dataset, the training set, and the test set were used as

thresholds (-0.279689391, -0.2077641135, and -0.3399543645),

which were divided into a high-risk score group and a low-risk

score group, respectively. To assess the accuracy of the risk scoring

model constructed by PDK1 and PPARG on prognosis and to

provide effective biomarkers for the prediction of osteosarcoma. K-

M curve analysis and ROC curve analysis were then performed on

the two cohorts and the original combined cohort (Figures 8C–H).

ROC curves with area under the curve (AUC) values greater than

0.5 were considered statistically different. The results showed that

the p-value of the K-M curve was less than 0.05 for the training set,

the test set, and the merged set, so this feature was considered to

have prognostic value. Whereas, in all three cohorts, the ROC

curves indicated that the AUC values for 1-year, 3-year, and 5-year

were above 0.5, and the feature had a higher predictive sensitivity

for 3 and 5 years (AUC values were greater than 0.7 for both 3 and 5

years). In all three cohorts, a higher survival advantage was

demonstrated for low-risk scores, and low-risk scores were

strongly correlated with high survival.PDK1 and PPARG were

analyzed according to the risk score grouping, and it was found

that the expression of PDK1 was positively correlated with the risk

score, while the expression of PPARG was inversely correlated with

the risk score (Figure 8I). Then, the differences in TMB between the

high and low-risk score groups were compared based on the

previously calculated TMB values, and as expected, there was a

difference between the two groups (P<0.05) (Figure 8J), with higher

TMB values in the high-risk score group, which may be related to

the poorer prognosis of the high-risk score group. Subsequently, we

calculated the TIDE scores of the tumor samples (Figure 8K), which
FIGURE 6

Analysis of immune cell infiltration was conducted on the ten hub genes, visualized using lollipop charts.From left to right, the order is CCR5, TNF,
IL10, IL6, CD8A, CD4, IL1B, CCR7, CCL5, and CCL2.
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were higher in the high-risk scoring group, suggesting that immune

checkpoint blockade therapies were less effective in the high-risk

scoring group. In contrast, the opposite was true for the low-risk

scoring group. Finally, we used the third quartile of the TMB(0.62

muts/Mb) as a threshold to classify the TMB into two groups: high

and low scores. The top 25% of patients were defined as the high

TMB group, and the results, as shown in Figure 8L, showed that the

high TMB group had a worse prognosis.
3.6 Performance of risk models

The samples were categorized based on the median risk score

(-0.279689391), resulting in the formation of a high-risk group and

a low-risk group. Subsequently, the variations in immune

checkpoint-associated genes between these two groups were

analyzed (Figure 9A). The results showed that most of the

immune checkpoint-associated genes were differentially expressed,

and of the genes that were differentially expressed, all had higher

gene expression values in the low-risk score group. Differences in

the expression of immune checkpoint-related genes in the high-risk

scoring group and the low-risk scoring group are shown in

Supplementary Table S11. Subsequently, to assess the correlation

of immune checkpoint-associated genes with PDK1 and PPARG,

the two candidate genes were grouped according to the median log2

(FPKM+1) value (PDK1: 1.24; PPARG: 1.75) into high and low

expression groups, with differences in the expression of most of the

genes (Figures 9B, C). High expression of PDK1 was positively

correlated with low expression of immune-related genes, while high

expression of PPARG was positively correlated with high expression

of immune-related genes. The two candidate genes were shown to

have opposite roles. Subsequently, CIBERSORT immune

infiltration analysis was performed (Figure 9D), which showed

differences in five immune cell subpopulations. Subsequently, the

two candidate genes were still grouped according to median
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expression, and differential analysis of the five immune cell

subpopulations obtained by CIBERSORT immune infiltration

showed that high expression of PDK1 was positively correlated

with high expression in Macrophages M0 and inversely correlated

with high expression in Macrophages M2, and the opposite was true

in PPARG (Figures 9E, F). Once again, the two candidate genes

were shown to have opposite roles. Finally, the samples were

analyzed using the xCell online website to obtain the

MicroenvironmentScore (Supplementary Table S12), which was

significantly different between the high-risk scoring and low-risk

scoring groups and was higher in the low-risk scoring

group (Figure 9G).
4 Discussion

Recent studies have shown that cancer development is

influenced by the activation of the immune response (12). To

delve deeper into the immune-related mechanisms of

osteosarcoma, we explored the DEGs across two groups of

immune characteristics. Furthermore, the majority of the IR-

DEGs were found to be up-regulated in our study, exhibiting

substantial enrichment in various immune-related biological

pathways. Macrophages play a significant role in the tumor

microenvironment, and in tumor development, tumor-associated

macrophages can interact with other immune cells in the tumor to

promote tumor development and progression. In addition, they can

suppress tumor growth by promoting the phagocytosis of the cells

(13). Furthermore, it has been shown that cytotoxicity of T cells can

lead to tumor cell death (14). Tumor-infiltrating macrophages are

plentiful within the tumor microenvironment and regulate the

activity of T cells (15), tumor-associated macrophages and T cells

play a key role in determining cancer prognosis and the efficacy of

immunotherapies (16). Whereas macrophages and T cells were

found to be statistically significant in the present study, therefore,
FIGURE 7

Ten hub genes were subjected to survival analysis.
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the immunological profile of TME in osteosarcoma is considered to

have prognostic value.

The results showed that ImmuneScore had a significant

correlation with prognosis, with higher ImmuneScore

representing a higher level of immune infiltration, leading to

higher survival. TumorPurity was inversely correlated, with
Frontiers in Immunology 10
high TumorPurity associated with low survival. Subsequently,

we analyzed the correlation between the mutations and

immunological features of the genes. The correlation between

mutations in the TP53, ATRX, and RB1 genes and osteosarcoma

has been extensively studied. TP53 prevents the transformation of

bone marrow mesenchymal stem cells to osteosarcoma (17),
FIGURE 8

Construction of the total risk profile. The symbols * represent p-values less than 0.05, *** represent p-values less than 0.001. (A, B) Employing the
LASSO method for the identification of key candidate genes. (C–E) Survival analysis K-M curves for the training cohort, validation cohort, and initial
combined cohort, respectively. (F–H) ROC curves were generated to assess the prognostic significance of risk features in the training, validation, and
original merged groups. (I) Differences in PDK1 and PPARG gene expression between high and low-risk score groups. (J) Differences in TMB
between high and low-risk score groups. (K) Differences in TIDEscore in high and low-risk score groups. (L) Difference in risk scores between high
and low TMB groups.
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and Lang et al. showed that (18), in mice, mutation of TP53

promotes the development of osteosarcoma. Furthermore.

Walkley et al. showed (19) that combined deletion of TP53 and

RB1 in mouse osteoblasts leads to a high frequency of metastatic

osteosarcoma, and that mutations in RB1 are a key driver of cancer

(including osteosarcoma) (20). A meta-analysis (21) that included

491 patients with osteosarcoma showed that RB1 mutations were

associated with a significantly reduced histological response to

chemotherapy and a high risk of metastasis in osteosarcoma.

ATRX plays an important tumor-suppressor role in OS, and

deletion of this gene leads to tumor cell growth, migration, and

invasion, and was one of the most commonly mutated genes in 288

osteosarcoma patients surveyed by the Genomics Evidence

Neoplasia Information Exchange consortium in the USA (22).

Taken together, mutations in the TP53, ATRX, and RB1 genes

promote the development, invasion, and metastasis of

osteosarcoma, and in Figure 3, the mutation frequency of these

three genes is significantly higher in the low-immunity group than

in the high-immunity group, indicating that the frequency of

metastasis of osteosarcoma is also higher in the low-immunity

group, which is in line with the results we obtained above.

Based on the findings from GO, KEGG, and GSEA enrichment

analyses, numerous differentially expressed genes (DEGs) showed

enrichment in pathways related to the immune system. Neutrophil

chemotaxis was associated with more DEGs during BP in all GOs.

Previous studies have shown that neutrophils are a major

component of TME (23), which can exert a tumour-killing effect

by affecting T cells (24, 25). In this study, two groups with high and

low levels of immune activation were also studied in depth, and

noticeable variances were observed in the extent of immune cell
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infiltration between the two groups, and the level of immune cell

infiltration in the high-immunity group was significantly higher

than that in the low-immunity group, which may be associated with

the high survival rate of the high-immunity group. Ten pivotal

genes were then identified, all of which are closely associated with

neutrophils, macrophages, and T cells.

Following that, a univariate COX regression analysis and

LASSO analysis were utilized to identify PDK1 and PPARG. A

risk model was then established using these two factors, revealing a

pronounced prognostic distinction between individuals in the high-

risk and low-risk categories. Notably, the low-risk group exhibited a

significantly superior prognostic survival rate. Pyruvate

dehydrogenase kinase-1 (PDK1) is an enzyme involved in

glycolysis that facilitates the transition from glucose oxidative

metabolism to glycolytic metabolism in cancer cells by

phosphorylating substrates (26) and also reduces the damage

caused by reactive oxygen species (ROS) accumulation. In recent

years, more and more evidence suggests that PDK1 is associated

with tumor progression and metastasis (27–29), which provides a

new idea for the development of targeting PDK1 for the treatment

of osteosarcoma, as evidenced by Liu et al. who constructed a novel

organoarsenic compound, Aa-Z2, which induces apoptosis of

osteosarcoma by reprogramming metabolism through targeting

PDK1 (30). Peroxisome proliferator-activated receptor-gamma

(PPARG), a member of the nuclear receptor family, is a major

regulator of adipocyte differentiation and function (31). PPARG has

been shown to play a role in several cancers, and its association with

cancer is primarily a result of the recording of PPARG in cancer

cells and the tumor cell microenvironmental role (32). The role of

PPARG is widely debated and it exerts inhibitory or promotional
FIGURE 9

Role of risk models for immune checkpoints. The symbols * represent p-values less than 0.05, ** represent p-values less than 0.01, and ***
represent p-values less than 0.001. (A) Comparison of the expression levels of immune checkpoint-related genes in the group with high-risk scores
and the group with low-risk scores. (B, C) The expression levels of immune checkpoint-related genes between the two groups by dividing the gene
expression of PDK1 and PPARG into high and low groups according to the median. (D) CIBERSORT immune infiltration analysis of all samples.
(E, F) Infiltration abundance levels of some immune cells by dividing gene expression of PDK1 and PPARG into high and low groups by median.
(G) MicroenvironmentScore in the high and low-risk scoring groups.
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effects on cancer growth depending on the tumor cell conditions

and the pathways stimulated (33). In the literature, PPARG is an

oncogene, which exerts anti-tumour effects by inhibiting cell

proliferation, differentiation, cell growth, cell cycle, and inducing

apoptosis. It has been shown that in human osteosarcoma, the pro-

apoptotic effects exerted by Oridonin inhibition of the Nrf2

pathway require PPARG activation (34). PPARG can trigger cell

apoptosis and suppress the growth of osteosarcoma cells by

facilitating the terminal differentiation of osteoblasts (35).

When constructing the risk model, it was found that elevated

levels of PDK1 were linked to the high-risk score group, which in

turn was correlated with increased mortality rates. This implies that

PDK1 may act as an oncogene. In contrast, high expression of

PPARG was positively associated with the low-risk score group,

which played the role of oncogene, which was consistent with the

findings of previous scholars mentioned above, and further

proved the accuracy of the risk model. While the high expression

of PDK1 is proportional to the high expression of Macrophages

M0 and inversely proportional to the high expression of

Macrophages M2, the opposite is true in PPARG. Lin et al.

Showed (36) that Nuanxinkang (NXK) reduced the transcript and

protein levels of HIF-1a and PDK1 in vivo. NXK inhibited

macrophage M1 and significantly increased macrophage M2 via

the HIF-1a/PDK1 axis, and PDK1 and macrophage M2 levels in

vivo were negatively correlated, which is in line with the findings

of this study. Consistent with the findings of this study.

Macrophage M1 is biased towards glycolytic metabolic processes,

whereas macrophage M2 is more biased towards oxidative

phosphorylation (OXPHOS) metabolic processes, and under the

stimulation of lipopolysaccharides, the macrophage shifts from

OXPHOS metabolism to glycolytic metabolism, PDK1 is a

glycolytic enzyme, and when PDK1 is inhibited, glycolytic

metabolism is inhibited, and the oxidative phosphorylation

metabolic process is also strengthened, thus promoting the

macrophage M2. PPARG agonists promote macrophage M2

polarisation (37). When PPARG signaling is inhibited, it

promotes the macrophage transition from M2 to M1 (38),

suggesting a positive correlation between PPARG levels and

macrophage M2 levels, validating the accuracy of the findings of

this study. Tumor-associated macrophages (TAM) are populations

of macrophages that infiltrate into tumor tissue, including the M1

and M2 cell populations. TAM is closely associated with tumors,

with M1 acting as an anti-tumor agent and M2 inhibiting T cell-

mediated anti-tumor effects and promoting tumor formation

(39, 40). TAMs are derived from monocytes in the bone marrow,

and a variety of cytokines and chemokines can direct the migration

of monocytes to the tumor site (41), the growth of tumors can also

result in the transformation of CCR2+ monocytes into TAMs (42).

TAMs can modulate the cytotoxicity of T cells and NK cells towards

tumor cells. TAM can suppress the proliferation of CD8 T cells by

nitrogen species, iNOS, and oxygen radicals (43–45). In addition,

TAM can further inhibit the antitumor effects produced by T cells

by recruiting Treg cells via CCL22 (46). Chen et al.’s study (47)

showed that TAM promotes tumor growth by generating

inflammatory Th subpopulations to stimulate an inflammatory
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response in tumors. TAM is also regulated by other immune cells,

and Treg cells function to inhibit the release of IFN-g from CD8 T

cells (48), which is the main cytokine responsible for macrophage

M2 inhibition; thus, Treg indirectly and selectively maintains

metabolic fitness and survival of M2-like TAM. A study by

Kumar et al. (49) showed that myeloid-derived suppressor cells

(MDSC) could regulate TAM differentiation by down-regulating

STAT3, promoting tumor proliferation. In addition, B cells can also

induce macrophage M2 polarisation in tumors and inhibit T cells

and macrophage M1 from promoting tumor proliferation (50). The

role of Macrophages M0 for osteosarcoma is currently unclear (51).

Therefore, immunotherapy targeting macrophage transformation

may become a promising therapeutic strategy for the treatment

of osteosarcoma.

In recent years, immunotherapy has been a widely researched

therapeutic approach that has achieved excellent results in the

treatment of many types of cancer. Immune checkpoint inhibitors

(ICIs) are a form of immunotherapy that works by stimulating the

body’s immune system to combat cancer. This is achieved through

the inhibition of immune checkpoint molecules like programmed

cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1),

which play crucial roles in regulating the immune response.

programmed cell death ligand-1 (PD-L1) to activate the body’s

immune response to fight cancer. The results have been satisfactory

in the treatment of many cancers. Nevertheless, targeted PD-1/PD-

L1 therapy yields unsatisfactory outcomes in osteosarcoma (52),

possibly attributed to the distinct PD-1/PD-L1 regulation in the

tumor, commonly known as a “cold tumor” (53). Numerous studies

have indicated a relationship between elevated levels of PD-L1 and

unfavorable outcomes in osteosarcoma patients, yet the precise role

of PD-L1 in osteosarcoma pathogenesis remains ambiguous. It can

be seen from this study that most of the immune checkpoint-related

genes have higher gene expression in the low-risk scoring group and

lower gene expression in the high-risk scoring group, which

suggests that the risk model obtained in this study has

significance for the gene regulation of immune checkpoints. High

expression of these immune checkpoint-associated genes was

associated with better prognosis, whereas PDK1 was highly

expressed in the high-risk scores and was associated with poorer

prognosis, so PDK1 was negatively correlated with the expression of

immune checkpoint-associated genes, whereas PPARG was highly

expressed in the low-risk scores group, and, in contrast to PDK1,

PPARG was positively correlated with the expression of immune

checkpoint-associated genes. This may be because the tumor

microenvironment in the low-risk group was more amenable to

immune cell infiltration and activation, resulting in increased

expression of immune checkpoint molecules, reflecting good

immune surveillance of the tumor. High expression of immune

checkpoint genes is associated with a better clinical prognosis, and

we speculate that this may be because the immune system of

osteosarcoma patients can efficiently recognize the tumor and

develop an immune response, and because highly mutated genes

in osteosarcoma does not produce sufficient neoantigens that can

elicit an immune response so that targeted inhibition of PD-1/PD-

L1 therapy in osteosarcoma is unsatisfactory. Therefore, PDK1 and
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PPARG may become prognostic genes in osteosarcoma and may be

targets for subsequent regulation of ICI-related genes for

osteosarcoma treatment.

As we said above, mutations in TP53, RB1, and ATRX genes can

promote the growth, invasion, and metastasis of osteosarcoma,

which is a kind of ‘cold tumor’, and the microenvironment of

osteosarcoma can monitor the tumor well, and it is less responsive

to immune checkpoint blockade, which is confirmed by the

calculation of the TIDE score, so the effect of high TMB on

osteosarcoma is more inclined to promote the development of

osteosarcoma, resulting in a poorer prognosis of osteosarcoma

patients with high TMB.

In this study, the majority of IR-DEGs were found to be

overrepresented in T lymphocytes. It has been well-documented

in previous research that the infiltration and activation of T cells are

crucial in the therapeutic management of osteosarcoma, and that

adoptive T-cell therapy (ACT) has a promising future for the

treatment of osteosarcoma, whereas ICI activates the immune

system, ACT directly “tells” the T-cells the characteristics of the

tumor, and then attacks the tumor in a targeted manner. Based on

prior studies, it has been recognized that there are three primary

categories of penicillin combination treatments: chimeric antigen

receptor (CAR)-modified T cells, T cell receptor (TCR)-modified T

cells, and tumor-infiltrating lymphocytes (TILs) (54). Our research

findings indicate that there was a notable difference in the extent of

immune cell infiltration between the hyperimmune and

hyperimmune groups, with a marked increase in the

hyperimmune group. This heightened immune response was

correlated with a better survival outcome in the hyperimmune

group. Ten hub genes were obtained in this study, which were

significantly correlated with TILs and therefore they are highly

specific for targeting tumors. Combining ICI with TIL T-cells may

also be an effective option for individual therapy, and recent

findings by Wang et al. showed that TILs in combination with

anti-PD1 therapy demonstrated significant clinical efficacy in

patients with metastatic osteosarcoma compared to anti-PD1

therapy applied alone. The objective remission rate of this

combination regimen was almost five times higher than that of

single anti-PD1 therapy, while intermediate progression-free

survival and intermediate overall survival were also significantly

prolonged (55).

More and more studies are being conducted, and the present

study fully considers the effect of immune infiltration on

osteosarcoma and uses it for risk modeling, demonstrating

excellent prognostic specificity and providing a novel and

valuable tool for future research.
5 Strengths and limitations

The strength of this study is the use of bioinformatics to

investigate osteosarcoma from the perspective of immune

infiltration, which revealed that higher immune infiltration has a

better prognosis, and then concluded that two important genes,

PDK1 and PPARG, whose high or low expression is associated with
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the prognosis of osteosarcoma, and whose effect on Macrophages

M0 and Macrophages M2 regulation also has a crucial impact and

can even regulate immune checkpoint-related genes. Subsequently,

a risk model was constructed using PDK1 and PPARG, and the risk

model provided a good prognosis prediction.

This study has some limitations. This study only used

computers and their related software to analyze the data, and it

still lacks relevant experimental validation. In our future work, we

will further expand the clinical samples and conduct animal or

human experiments to improve the study’s accuracy and lay a more

solid foundation for treating osteosarcoma.
6 Conclusions

From the above description of this study, it can be concluded

that a high Immune score is associated with a better prognosis in

osteosarcoma. Subsequently, several analyses were performed to

verify the effect of immune infiltration on osteosarcoma, firstly, the

samples were immuno-infiltrated using ssGSEA, and the samples

were divided into two groups based on the immune score, with the

group with high immune activation having a significant survival

advantage over the other group. Then, using a univariate COX

regression analysis and LASSO analyses, two genes, PDK1 and

PPARG, were obtained, and a risk model was constructed based on

the derived genes, in which PDK1 was positively correlated with the

risk score, and PPARG was negatively correlated with the risk score,

and through further analyses, we found that PDK1 was negatively

correlated with macrophage M2, and the opposite was true for

PPARG, and that the group with a high-risk score had a more high

TMB and their prognosis was poorer. We also analyzed immune

checkpoint-related genes, which were negatively correlated with

risk scores, suggesting that the osteosarcoma microenvironment has

good tumor surveillance and responds poorly to ICB treatment.

Finally, we also analyzed the TMB of the samples. We found that

high TMB was associated with low immune infiltration and that an

increased mutation rate increased the risk of osteosarcoma.

Therefore, the prognostic model obtained in this study is suitable

for further optimization and eventual clinical application.
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