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Inflammatory bowel disease (IBD), a condition of the digestive tract and one of

the autoimmune diseases, is becoming a disease of significant global public

health concern and substantial clinical burden. Various signaling pathways have

been documented to modulate IBD, but the exact activation and regulatory

mechanisms have not been fully clarified; thus, a need for constant exploration of

the molecules and pathways that play key roles in the development of IBD. In

recent years, several protein post-translational modification pathways, such as

ubiquitination, phosphorylation, methylation, acetylation, and glycolysis, have

been implicated in IBD. An aberrant ubiquitination in IBD is often associated with

dysregulated immune responses and inflammation. Mesenchymal stem cells

(MSCs) play a crucial role in regulating ubiquitination modifications through the

ubiquitin-proteasome system, a cellular machinery responsible for protein

degradation. Specifically, MSCs have been shown to influence the

ubiquitination of key signaling molecules involved in inflammatory pathways.

This paper reviews the recent research progress in MSC-regulated ubiquitination

in IBD, highlighting their therapeutic potential in treating IBD and offering a

promising avenue for developing targeted interventions tomodulate the immune

system and alleviate inflammatory conditions.
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1 Introduction

Over the past 20 years, the incidence and prevalence of

Inflammatory bowel disease (IBD) have increased in the newly

industrialized countries of Asia, South America, the Middle East,

and Africa, and the rate is particularly significant in South America

and East Asia. Thus, IBD is gradually expanding to become a global

disease of public health concern1. According to China’s

epidemiological data, the incidence of IBD, ulcerative colitis (UC)

and Crohn’s disease (CD), in the north of China is lower than in the

south. For instance, the age-standardized incidence of IBD in

Daqing City (Heilongjiang Province), Wuhan, and Guangzhou

are 1.77/100,000, 1.96/100,000, and 3.14/100,000 respectively (1,

2). According to a study (3), the number of IBD patients in China

will reach 1.5 million by 2025. Similar observations have been

reported, with an estimated 6·8 million cases of IBD globally, where

the USA had the highest age-standardized prevalence rate (464·5

[438·6–490·9] per 100 000 population), followed by the UK (449·6

[420·6–481·6] per 100 000) (4).

IBD has evolved from a common and fatal condition to a

manageable chronic condition (5), which is divided into two broad

categories, mainly UC and CD (6, 7). The main clinical

manifestations are persistent abdominal pain, diarrhea, and

bloody stool, accompanied by malnutrition, weight loss, mental

distress, and other symptoms. If the course of the disease is

prolonged, there is a possibility of colorectal cancer, a severe

threat to human health. It has been observed that people with a

history of digestive disease, a family history of IBD, and a functional

imbalance in the body’s immune system are more likely to develop

IBD than the general population (8). As a chronic non-specific

intestinal inflammatory disease, IBD is associated with

environmental, gut microbial, genetic, and immune factors. If

IBD is not correctly diagnosed and treated in time, the disease

becomes severe and lesions accumulate in organs of the body, with

complications for disease such as colon cancer, coronary heart

disease, primary sclerosing cholangitis, and phlebitis.

Ubiquitination is an important post-translational modification

of proteins, and the enzymes involved mainly include the E1

ubiquitin-activating enzyme (E1), E2 ubiquitin binding enzyme

(E2), and E3 ubiquitin-ligase (E3). Ubiquitin modification can

regulate the localization and function of proteins in cells, degrade

proteins, and regulate life activities such as signal transmission, gene

expression regulation, cell proliferation, differentiation, apoptosis,

inflammation and immunity (9). Abnormal ubiquitination can

cause cancer, metabolic syndrome, neurodegenerative diseases,

autoimmune diseases, inflammatory diseases, infections, and

muscular dystrophy. Recent studies have reported associations

between ubiquitination and/or deubiquitination and the onset

and development of IBD (10). A genome-wide association

analysis (GWAS) study showed that rare variants of E3 ligase

RNF186 were associated with IBD (11). At the same time, the

expression of ubiquitin mRNA in the colonic tissue of experimental

colitis rats was significantly higher than that in the normal group.

Therefore, abnormal ubiquitination may be one of the important

mechanisms of colonic inflammation and immune damage in IBD.
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In recent years, extracellular vesicles (Evs), as a strategy of “cell-

free therapy,” have become a “new favorite” in research. With the

development of various related technologies, more and more

researchers have turned their attention to the use of Evs for

disease diagnosis, prognosis, and therapeutic clinical applications.

Mesenchymal stem cells (MSCs) and their derived exosomes (MSC-

Exs) have been shown to play a significant role in the repair of

various diseases, including IBD (12). MSCs and MSC-Exs play an

important role in the information transmission process between

damaged intestinal cells and can be involved in the regulation of

intestinal inflammation and damage repair, showing great potential

in the treatment of IBD (13). The main mechanism by which

mesenchymal stem cells-derived extracellular vesicles (MSC-Evs)

inhibit the activation of colon macrophages depends on the

inhibition of NF-kB and iNOS transduction signals. After

injection of MSC-Evs, the expression of NF-kB p65 in colon

macrophages can be downregulated, and the production of NO,

IL-1b, and IL-18 can be reduced, thus alleviating the symptoms of

colitis (14, 15). At the same time, ubiquitination plays an essential

role in the regulation of multiple biological functions, including

inflammation. Studies in mice with colitis found that ubiquitin

protein from inflammatory tissue is upregulated, and ubiquitin

(Ub) is involved in the signaling pathway that regulates the

expression of inflammatory factors (mTOR signaling pathway)

(16). Wu et al. found that human umbilical cord mesenchymal

stem cells-derived exosome (hucMSC-Ex) can down-regulate the

expression level of ubiquitin protein. This, in turn, reduces NF-KB

and mTOR activation (17). In addition, hucMSC-Ex can modulate

the expression of polyubiquitination, including K48. It is concluded

that MSC-Ex may play an anti-inflammatory role by regulating the

level of ubiquitin modification. Currently, the product development

and clinical translational application of MSCs and MSC-Exs are a

hot topic in drug development, and cell-free therapy plays a unique

role as a breakthrough clinical therapy technology. However, no

literature currently summarizes the research progress of MSCs

regulating ubiquitin modification to repair IBD. This review can

provide a theoretical basis for Cell-free therapy to treat IBD through

ubiquitin modification, which has important research value.
2 Mesenchymal stem cells

MSCs are a class of pluripotent stem cells with the function of

self-renewal, self-proliferation, and multi-differentiation (18, 19).

They positively express CD73, CD90, and CD105 and negatively

express CD19, and CD45 (20). MSCs are derived from a wide range

of sources, including bone marrow, adipose tissue, endometrial

polyps, umbilical cord, amniotic fluid, and placenta (21). They

generally possess the functions of inducing regeneration,

maintaining general tissue homeostasis, and homing at target

sites, which are their inherent characteristics (22). However, the

differentiation and proliferation potential of MSCs from different

sources may be very different (23).

MSCs can interact with cells of both the innate and adaptive

immune systems. Evidence has shown that MSCs exert
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immunomodulatory functions by regulating the activation,

proliferation, and differentiation of immune effector cells,

including natural killer cells (NK), macrophages (Mø), dendritic

cells (DC), B lymphocytes, and T lymphocytes (24). MSCs can

down-regulate NKp30 and natural-killer group 2, member D

(NKG2D), to inhibit the cytotoxic activity of resting NK cells, and

the latter is an activated receptor involved in NK cell activation and

target cell killing (25). MSCs can regulate Th1/Th2 balance (T

helper cells) by influencing the levels of interleukin-4 (IL4) and

interferon (IFN-g) in effector T cells (26). MSCs can also reduce

inflammation, improve tissue damage, and prevent infection by

secreting a variety of immunomodulatory factors, including IFN-g,
prostaglandin E2 (PGE2), and growth factors (TGF-b, VEGF) (27).
In conclusion, MSCs have strong immunomodulatory properties

but are less immunogenic.

At present, MSCs are widely used in the research and treatment

of various human diseases such as cardiovascular diseases,

osteoarthritis, metabolic disease, etc. (28)). LAI et al. believe that

MSCs play a role through their secreted products (29). It has been

reported that MSCs can secrete a variety of Evs, including exosomes

(30). In recent years, exosomes, as a promising substitute for MSCs,

have attracted more attention, and have great research significance

for experimental and clinical applications.
3 Biogenesis, composition, and
characteristics of MSC-
derived exosomes

Extracellular vesicles (Evs) secreted by cells are divided into

apoptotic bodies, microvesicles, and exosomes based on their size,

content, and formation mechanism (31). Table 1 presents the

classification and function of Evs. Evs are released by almost all

living cells and are found in blood, urine, and bronchoalveolar
Frontiers in Immunology 03
lavage fluid (32). At present, exosomal research is the most

attractive and constantly expanding. In 1983, the research team of

Rose M. Johnstone (33), a professor in the Department of

Biochemistry of McGill University in Canada, first found

exosomes in sheep reticulocytes, which were considered to be cell

follicles that could transport nonessential proteins between cells and

were considered the “garbage” of cell metabolism. With further

study, Johnstone named these small vesicles as exosomes in 1987.

Exosomes, uniform in size and 50 to 200nm in diameter, have

no cellular structure and are highly stable (34–36). Exosomes

facilitate intercellular communication by carrying bioactive

substances including mRNA, miRNA, IncRNA, DNA fragments,

proteins, and lipids from parent cells, thereby regulating the

activities of target cells. They positively express markers such as

the tetraspanins protein family (CD63, CD81, and CD9), MVB

biogenic proteins (Alix, TSG101, and ESCRT Complex), membrane

transporters and heat shock proteins (HSP70, HSP90), lipid-

associated proteins, etc. (37).

Exosome biogenesis includes three main stages of endosomes,

multivesicular body (MVBs) formation and exosome release

(Figure 1), which involve double invagination of the plasma

membrane (38, 39). Exosomes originate in the endosomal system

of cells. Extracellular substances first enter the cell through

membrane invagination and endocytosis, fuse with early

endosomes (ESEs), and gradually develop and mature into late

endosomes (LSEs). Late endosomal invagination leads to the

emergence of intracavitary vesicles (ILVs), and multiple ILVs

aggregate to form MVBs. MVBs are fused with the cell

membrane and released outwards as exosomes in lipid bilayers.

Because exosomes can be detected in body fluids, they are

considered noninvasive or minimally invasive biomarkers for

disease diagnosis. Studies have implicated exosomes in the

pathophysiology of several diseases (40). For example, Gui et al.

found that compared with healthy controls, the expressions of miR-

1 and miR19b-3p in CSF exosomes of Parkinson’s disease (PD)

patients were down-regulated, while miR-153, miR-409–3p, and

miR-10a5p were up-regulated (41). The exosomal miRNAs

significantly correlated with the severity of PD and may be an

effective biomarker for evaluating disease development in clinical

PD patients. Exosomes can also be used as diagnostic markers of

cancer. Roccaro et al. showed that the expression of miRNA-15a in

bone marrow MSC-exosomes (BMMSC-Ex) of multiple myeloma

patients is significantly down-regulated, which is closely related to

the characteristics of multiple myeloma (42). In addition, the

presence of high levels of Evs expressing TGF-b2 in the breast

milk of normally lactating women can induce breast cancer. What is

interesting is that exosomes can play a therapeutic role by delivering

drugs themselves or as functional cargo for drug delivery (43, 44).

For example, MSC-Exs are used in the treatment of graft-versus-

host disease (GVHD), with significant therapeutic effects observed

after repeated injection without serious side effects (45, 46).

MSC-Exs have similar biological functions to MSCs, playing an

important role in improving tissue repair, immune regulation,

inhibiting inflammatory response, and reducing apoptosis (47).

They exhibit no tumorigenicity, and are easier to extract, modify,

and store (48). MSC-Ex is a natural, non-toxic vesicle that can
TABLE 1 Classification and function of Evs.

Exosomes Microvesicles Apoptotic
Bodies

Origin Endocytic
pathway

Cell
plasma membrane

Cell
plasma membrane

Size 50–200 nm 100–1000 nm 1000–5000 nm

Content
of EVs

Proteins and
nucleic acids
(mRNA,
miRNA,

IncRNA, and
DNA

fragments),
lipids

Membrane proteins,
phospholipids, RNA

and
other biomolecules

Cell membranes,
DNA, coding and
non-coding RNA,

lipids, and
containing specific

vesicular
membrane proteins,

Functions

Intercellular
communication,

affects the
physiological

and pathological
state of

host cells.

Cell recognition and
signaling functions
that help host cells
transmit information

and regulate
immune responses

Phagocytosis, affects
the cellular immune

state and
pathological process.
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deliver mRNA, miRNA, and protein. Therefore, it has received

extensive attention as a cell-free therapeutic carrier in treating

autoimmune diseases, including IBD (49). MSC-Ex research has

made substantial progress in the treatment of multiple sclerosis,

type-1 diabetes, and other diseases (50–52) (Table 2 shows the

application of MSCs and MSC-Ex in various clinical diseases). In

the DSS-induced IBD model, hucMSC-Exs treatment reduces the

infiltration of macrophages in colon tissue and inhibits the

expression of IL-7 (74). Moreover, hucMSC-Exs alleviate insulin

secretion function in T2DM by reversing peripheral insulin

resistance and alleviating b cell destruction, providing a new

approach for T2DM treatment (60). In clinical treatment, MSC-

Exs have obvious advantages over MSCs and may completely

replace MSC therapy in the future.
4 Ubiquitination

Ubiquitination is an important process that regulates the

normal expression of genes, along with phosphorylation,

glycosylation, acetylation, amidation, etc. (76, 77) Ubiquitination

modifies post-translated proteins (PTMs), including protein

degradation, signal transduction, and DNA damage repair (78,

79). Ubiquitination modulates various cellular activities involved

in inflammatory responses, innate or adaptive immune responses,

and ribosomal functions, which are essential for many cell life

processes (80).
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Cellular processes depend on ubiquitin (Ub) and ubiquitin-like

proteins (UBLs) in ubiquitination systems. Ub, a highly conserved

small protein in eukaryotes, contains 76 amino acid residues and is

a significant part of regulating the everyday life activities of

biological proteins (81). The UBLs found so far include NEDD8

(neural-precursor-cell expressed developmentally down-regulated

8) and SUMO (1–5, small ubiquitin-like modifier). Although they

have similar functions to Ub, the receptors and signaling molecules

they contact are not the same and play different roles. Related

studies have shown that NEDD8 which has the same homologous

sequence (> 50%) as Ub, binds to Cullin, the subunit cullin of

Cullin-ring ligase (the largest multi-unit E3s ubiquitase family,

CRLs). After overactivation, it promotes the degradation of tumor

suppressor factors (p21, p27) and the occurrence and evolution of

cancer (82). Yang W et al. experimentally demonstrated that

increased SUMOylating has a neuroprotective effect and seems

necessary for survival, at least under certain conditions (ischemia)

(83). This theory was further validated in animal models, which

found that cerebral ischemia in mice leads to a significant increase

in SUMO2/3 conjugates in the hippocampus and cerebral cortex,

and a neuroblastoma cell model undergoing hypoxia/glucose

deprivation followed by a short period of reoxygenation under

the same conditions also exhibits significant increases in SUMO2/3

conjugation (84, 85).

From a more microscopic point of view, the Ub molecule itself

contains seven lysine (Lys) residues, and the amino terminus of the

Lys residues (K6, K11, K27, K29, K33, K48, and K63) on the
A B

FIGURE 1

Biogenesis and composition of exosomes. (A) Exosomes originate from endosomal pathways, and extracellular substances enter cells through
membrane invagination and endocytosis and then develop into early endosomes (ESEs), late endosomes (LSEs), and intracavitary vesicles (ILVs).
Multiple intracavitary vesicles (ILVs) aggregate to form MVBs. MVBs can fuse with lysosomes to degrade and release content into the cytoplasm or
be released outside the cell by budding through the cell membrane, and the latter is called exosomes. (B) Exosome composition.
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subs t r a t e p ro t e in monopep t ide can be l abe l ed fo r

monoubiquitination. Table 3 summary of the different types of

ubiquitination and their functions. When the Ub molecule forms a

specific isopeptide bond with the carboxyl terminus of another Ub

molecule through Lys residues, it is further coupled to form a

multiubiquitin chain. Ubiquitin can also bind to non-lysine

residues, such as cysteine (Cys). Ubiquitin chains with different

links have different cellular functions, constituting the “ubiquitin

code” of diversity and complexity (86). Monoubiquitination is

generally associated with receptor internalization, while

polyubiquitination is usually associated with proteasome

degradation signaling (87). Related studies have found that K48

and K11 connected ubiquitin chains mediate substrate proteins to

be digested into amino acids by soluble peptidase (26S proteasome

complex) in cytoplasm or nucleus through a series of enzymatic

reactions (88, 89). Many experimental studies have shown that the

polyubiquitin chain of K63 is associated with non-proteasome

functions, such as DNA repair, protein sorting, immune

modulation, and regulation of the activation of the NF-kB
Frontiers in Immunology 05
signaling pathway, and also protects target proteins from multiple

signaling pathway functions, including T cell receptors, Toll-like

receptors (TLRs) and RIG-I-like receptor-mediated signal

transduction (90–93). The mechanisms determining whether a

protein is monoubiquitinated or polyubiquitinated are not fully

understood and require further studies.

Ubiquitination of proteins is accomplished through a series of

continuous enzymatic reactions (94–96) (Table 4). For the enzymes

required for ubiquitination, it is currently estimated that eukaryotic

organisms have two E1 enzymes (UBA1 and UBA6), with

approximately 30–50 E2 enzymes and more than 600 E3

enzymes. In a tertiary E1-E2-E3 enzyme-linked reaction in

mammals, any two members of the E1 family can label all E2

with Ub, and 40 known E2 enzymes can further transmit Ub to the

E3s family. Auxiliary E4 enzymes have been explored (97); When

the substrate protein signals, the E1 enzyme activates ubiquitin and

starts the ubiquitination process, which requires ATP to provide

energy. Then, the E3 ubiquitin ligase specifically recognizes the

substrate protein and guides the E2 conjugation-carried Ub to
TABLE 2 Applications of MSCs and MSC-Ex in various clinical diseases.

Disease Study type Treatment used Observation Reference

Acute myocardial infarction Case Reports MSCs Improved (53)

Clinical Trial MSCs Improved (54)

Animal model MSC-Ex Improved (55, 56)

Ischemic heart disease Clinical Trial MSCs Improved (57)

Type 1 diabetes Animal model Both Improved (52, 58)

Clinical Trial MSCs Improved (59)

Type 2 diabetes Animal model MSC-Ex Improved (60)

Systemic lupus erythematosus Clinical Trial MSCs Improved (61, 62)

Graft versus
host disease

Animal model MSCs Improved (63)

Case Reports MSCs Improved (47)

Multiple Sclerosis Clinical Trial MSCs Improved (64)

Lung disease Clinical Trial Both Improved (65–68)

Alzheimer’s disease Animal model MSC-Ex Improved (69, 70)

Kidney injury Clinical Trial MSCs Improved (71)

Animal model MSC-Ex Improved (72)

Apoplexy Clinical Trial MSCs Improved (73)

IBD Animal model MSC-Ex Improved (12, 74, 75)
TABLE 3 Summary of the different types of ubiquitination and their functions.

Ubiquitin type Function

K11 Protein degradation, regulation of cell cycle, DNA damage, and
signal transduction.

K48 Protein degradation.

K63 DNA repair, translation, signal transduction, and trafficking.

Others Protein degradation and DNA repair.
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covalently bind to the substrate protein (Figure 2) (98). In the

ubiquitination system, these three different types of enzymes

cooperate to complete the task of modifying proteins. The

ubiquitin activator E1 binds to the tail of the ubiquitin molecule,

and regulates the downstream of the ubiquitination reaction.

Ubiquitin coupling E2 enzyme controls the length and connection

type during the assembly of ubiquitin chains, and K48 and K63-

mediated polyubiquitination regulates the inflammatory

development of the NF-kB signaling pathway. The specificity of

the ubiquitin chain is widely believed to be determined by E2-E3

(RING-E3s) matching or substrate-E3 (HECT and with E6-APC)

complexes (99).

The stability, functional activity, and interaction of the modified

proteins may change, but the modification is a reversible PTM

process that can be removed by the UPS (Ubiquitin-proteasome
Frontiers in Immunology 06
system) or DUBs (Deubiquitinating enzymes) (100). The UPS can

remove proteins that have been damaged or are no longer needed in

cells (tumor suppressor proteins, cell cycle regulatory proteins, etc.),

which is an energy-consuming but highly efficient way to degrade

proteins. When the substrate has four or more UB or UBLs, the 26s

protease hydrolyzes it into peptide chains, releasing ubiquitin

monomers that can be recycled (101). DUBs catalytic

deubiquitination modification makes the ubiquitination process

maintain the dynamic balance of the cellular process. After DUBs

are bound to the ubiquitin substrate protein complex, the ubiquitin

chain is broken by severing the isopeptide bond between Lys and

the C-terminal of ubiquitin, and the ubiquitin monomer is free and

can be collected, thus starting the next round of ubiquitination.

There are approximately over 100 types of DUBs, including

ubiquitin-specific proteases (USP), ubiquitin-c-terminal hydrolases
FIGURE 2

Binding of ubiquitin to protein substrates is a multi-step process. Ubiquitin molecules can be attached to ubiquitin or proteases containing lysine
residues such as K6, K11, K27, K29, K33, K48, and K63. First, ATP provides energy, and the E1 enzyme activates ubiquitin and initiates the
ubiquitination process. E2 enzyme can provide ubiquitin directly to the protein substrate through lysine (K) residues in the target protein. The third
step is to bind the E2 ubiquitase-linked ubiquitin to the E3 ligase-linked target protein, and there are two binding forms, respectively,① E2-Ub-
substrate protein-E3 or ② Ub substrate protein-E3. Ubiquitin protein ligase (E3) can promote the interaction with substrate proteins. Ubiquitination is
a reversible post-translational protein modification; thus, the substrate carrying the ubiquitin chain can be deactivated by the UPS (Ubiquitin-
proteasome system) or DUBs (Deubiquitinating enzymes), and free ubiquitin monomers can be re-recruited for the next round of ubiquitination. The
ubiquitin chain usually determines the fate of ubiquitinated proteins.
TABLE 4 Ubiquitination involves several enzymes: ubiquitin-activating enzyme (E1), ubiquitin-coupling enzyme (E2), ubiquitin-ligase (E3), and
deubiquitination enzyme (DUBs).

Ubiquitin-
related enzymes

Effect

E1 E1 activates ubiquitin molecules in an ATP-dependent manner by forming E1-ubiquitin thioesters.

E2 E2 dominates the determination of ubiquitination and polyubiquitination and attaches ubiquitin peptides to the substrate.

E3 E3 determines substrate specificity and covalently binds ubiquitin carried by E2 to the target protein, thereby triggering degradation or
modification of the target protein.

DUBs Reversal of the ubiquitination of the substrate, cutting the ubiquitin chain from the substrate protein into a single reusable
ubiquitin fragment.
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(UCH), and so on (102, 103).Different DUBs play different roles in

inflammation and cancer development by affecting their substrates’

protein stability, enzyme activity, or subcellular localization (104).

The USPs family is the most commonly studied DUB family. USPs

regulate protein activation by dissociating single or multiple

ubiquitin chains from ubiquitinated substrates (105). In

malignant tumors, USP18 is elevated and activates AKT/mTOR

signaling, promotes phosphorylated AKT (p-AKT) and p-mTOR

protein expression, leading to cancer cell proliferation and

migration (106). USP11 controls its stability by promoting

deubiquitination of a residual protein (VGLL, a tumor

suppressor) and exerts its tumor suppressor effect through the

VGLL4/YAP-TEAD regulatory ring (107). Overexpression of

USP14 inhibits I-kB and increases NF-kB phosphorylation while

increasing cancer cell migration, invasion, and EMT (108). Under

selective conditions, USP7, USP10, USP29, USP42, and other DUBs

regulate p53 ubiquitination levels (109).
5 The relationship between
ubiquitination, MSC/MSC-Ex, and IBD

The occurrence of IBD is mainly due to the abnormal

amplification of the immune response of the intestinal mucosal

immune system to microbial antigens from the gut in some specific

populations carrying susceptible genes under certain circumstances,
Frontiers in Immunology 07
resulting in inflammatory damage of the intestinal mucosa. In 2001,

NOD2 was identified as a susceptibility gene for CD due to its

polymorphism (110). In addition, approximately 240 gene loci have

been found to be associated with IBD susceptibility and occurrence,

of which about 30 are CD and UC (111, 112). The loss of balance

between proinflammatory and anti-inflammatory factors leads to

the activation of NF-kB, TNFa, NLR, and TLR pathways to expand

the range of inflammation and promote the development of IBD

(Figure 3). According to mechanistic studies, a variety of signaling

pathways have regulatory effects on IBD, but the specific activation,

effects, and regulatory mechanisms largely remain unclear.

Therefore, further exploratory studies on the pathogenesis of IBD,

new targets for its treatment, and diagnostic biomarkers are needed.

The immune system is mainly composed of the innate and

adaptive systems (113, 114). Ubiquitination plays a vital role in the

regulation of innate immune signal transduction, but so far, only Lys

residues have been identified as ubiquitination sites in innate immune

signal molecules.Whether ubiquitination of non-lysine residues plays

a role in innate immune signal transduction needs further study.

Adaptive immunity relies on specific immune cells (T and B

lymphocytes), mediating humoral and cellular immunity, and is

characterized by the presence of highly specific antigen recognition

receptors, namely T cell receptors (TCR) and B cell receptors (BCR).

The regulatory effects of ubiquitination on immune cells are varied

and not fully understood. MSCs and MSC-Exs have been shown to

target the treatment of inflammatory diseases, including IBD, asthma,
FIGURE 3

Key signaling pathways associated with IBD ① TLR stimulation triggers MyD88 to interact with IRAK4 (interleukin-1 receptor-associated kinase 4) and
② NLRs interact with RIP2, causing TRAF3, TRAF6, and Lys63 polyubiquitinizes RIP1, to recruit TAK1/TAB2/3 complex or IkK complex. This triggers
the activation of NF-kB and mitogen-activated protein kinase (MAPK) signaling pathways, promoting the transcription of proinflammatory and anti-
inflammatory genes. Endosomal TLRs transmit signals through a TRIF-dependent pathway, and TRIF, along with RIP1 and TRAF3, activates TAK1 or
IKKe, leading to phosphorylation of IRF3 and expression of interferon b.
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and rheumatoid arthritis (115, 116). Ubiquitination is involved in the

inflammatory response in IBD, serving as a potential therapeutic

target through the modulation of MSC and MSC-Ex.
5.1 NF-kB signaling, ubiquitination, and
MSC/MSC-Ex

Protein ubiquitination can regulate various signal-mediated

inflammatory responses and plays an important role in the

occurrence, development, and outcome of inflammatory diseases

such as IBD. As a key component of the innate immune response,

the NF-kB signaling pathway is one of the ultimate targets for

regulating multiple upstream signaling pathways. Research has

shown that the NF-kB signaling pathway is crucial in inducing

pro-inflammatory gene expression, regulating inflammasome,

activating inflammatory T lymphocytes, and innate immune cell

differentiation in IBD patients. The activation of the NF-kB signaling

pathway requires RIP2 and TAK1-mediated polyubiquitination of

NEMO (NF-kB essential regulator kinase, also known as IKg) and
phosphorylation of the kappaB kinase inhibitor (IKK) complex

consisting of NEMO, IKKa, and IKKb. IKKs can be activated by

bacterial lipopolysaccharide (LPS), tumor necrosis factor-a (TNF-a),
IL-1b, and various physical and chemical stresses (117).

Phosphorylated IkB family proteins become targets of K48

polyubiquitination-dependent proteome degradation, releasing

active NF-kB molecules into the nucleus. The classical NF-kB
pathway is dominated by the action of IKKb, which phosphorylates

IKKb family members such as IKKa and P105. When stimulated by

LPS, IKK promotes nuclear translocation of p65 and p50 and induces

expression of inflammatory factors such as TNF-a, IL-1b, IL-6, and
IL-12, further leading to tissue damage (118).

Ub plays a crucial role in regulating the activation of NF-kB
signaling. Relevant studies have shown that ubiquitin modification

can affect intestinal mucosal inflammatory injury and intestinal

epithelial cells’ permeability and apoptosis by regulating the NF-kB
signaling pathway. TRAF6, one of the E3 ubiquitin ligases, contains

a highly conserved RING domain important for activating the NF-

kB pathway (119). Chen et al. report that TRAF6 could only activate

IKK under the condition of K63 polyubiquitination and that RING

domain mutation results in the loss of ubiquitin ligase activity of

TRAF6 and the failure to activate IKK (120). NIK is a central kinase

in the non-classical NF-kB pathway and is also involved in the

classical NF-kB pathway (121). Inhibition of the E3 ligase TRIM16

effectively increases the formation of K48-linked polyubiquitin

chains on NIK (122). NEDD4 is associated with chronic

inflammatory diseases, and a single rs8032158 transcription

variant (TV3) in the NEDD4 genome has been found in keloid

patients to activate the NF-kB signaling pathway by binding to the

connexin RIP and highly selectively expressed (123, 124).

MSC and MSC-Ex regulate the NF-kB signaling pathway to

influence the treatment of IBD. According to the current literature,

the degradation of IkB is mainly dependent on neddylation, and

when cullin1 activation is blocked, the accumulation of IkB leads to

inhibition of NF-kB activity. Wang et al. verified that miR-326 in

hucMSC-Ex inhibits the binding of free NEDD8 and substrate
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protein cullin1, preventing the expression of E1, E2, and E3

enzymes during neddylation formation (125). The hucMSC-Ex

also inhibits the activation of the NF-kB signaling pathway,

alleviating IBD. In addition, Qi et al. showed that serum-

preconditioned adipose-derived MSCs (CM-AcMSC) significantly

prevent the phosphorylation of p65 and IkB in colon cells of DSS-

induced colitis model in rats, up-regulate the expression of MUC2

and tight-junction proteins such as ZO-1, claudin-1, and occludin,

and protect the integrity of colon mucus (126). These results suggest

that CM-AcMSC can significantly mitigate inflammation in colitis

rats. A similar study showed that bone marrow MSCs (BM-MSCs)

down-regulate the expression of NF-kB p65 mRNA in the colonic

mucosa, suggesting that BM-MSCs may influence TNBS-induced

colitis by regulating NF-kB mediated proinflammatory response

(127). DC-derived exosomes activate the NF-kB signaling pathway

via exosomal miR-146b to improve intestinal barrier function in

DSS-induced colitis (128). Thus, a number of studies indicate that

MSC and MSC-Ex play a role in the treatment of IBD by down-

regulating NF-kB signaling, but the specific mechanism related to

their regulation of NF-kB signaling via ubiquitination needs

further study.
5.2 TLR signaling, ubiquitination, and MSC/
MSC-Ex

TLRs are pattern recognition receptors. As an important part of

the innate immune system, TLRs activate a series of downstream

signals after recognizing pathogen-associated molecular patterns

(PAMPs), inducing the secretion of inflammatory cytokines,

chemokines, and type I interferons (129, 130). After binding to

different stimuli, most TLRs initiate signal transduction by

recruiting the adaptor protein MyD88, which contains the TIR

domain and is a common important adaptor protein of most TLRs

and a variety of envelope receptor-mediated signaling pathways. It

plays a role in recruiting downstream kinases and regulating signal

transmission; ① In the MyD88-dependent pathway, MyD88 recruits

IL-1 receptor-associated kinase-4 (IRAK4) to attract TLR, and the

MyD88-IRAK4 complex recruits IRAK4 substrate IRAK2 or related

IRAK1 to realize Myddosome (131, 132). This protein interacts with

TRAF6, self-ubiquitination modification of TRAF6, activates

TAK1, and ultimately stimulates NF-kB and JNK/P38/ERK

signaling pathways, which participate in the colon inflammation

in IBD; ② MyD88 signaling pathway can also be used as another

pathway for TLR to induce inflammation. After TLR activation, it

can activate the toll-like receptor-associated activator of interferon

(TRIF) and TRAF3, resulting in NF-kB inhibiting the recruitment

of protein kinase e/tank-binding kinase 1 (IKe/TBK1), inducing the
phosphorylation of IRF3 and the expression of interferon-b, and
playing an antiviral role. TRIF- and MyD88-mediated signaling

involve a series of ubiquitination events. TRAF3 and TRAF6, as

members of the E3 ubiquitin ligase family, play an essential

regulatory role in MyD88-dependent and TRIF- (non-MyD88)

dependent signal transduction, which can be either a “positive

signal” or a “negative signal”. Moreover, TRAF3 and TRAF6 can

regulate the activation of inflammation-related signaling pathways
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through ubiquitin modification effects and initiate the gene

transcription of many proinflammatory cytokines, such as IL-1,

IL-6, TNF-a, and other transcription factors to activate a variety of

immune responses, thereby playing a role in immune defense or

rel ieving inflammation. Nrdp1 directly binds to and

polyubiquitinates MyD88 and TBK1 while promoting TLR-

tr iggered macrophages to inhibi t the product ion of

proinflammatory cytokines. In addition, Nrdp1 and Smurfp1/2

can catalyze the ubiquitination modification of MyD88 or remove

the ubiquitin chain for negative regulation (133, 134). A20 and

SIGIRR can also adjust the duration and/or strength of the TLR

signal (135–137).

Macrophages are considered classic cells in TLR studies (138).

They are the most critical cells in inducing colon inflammation,

releasing large amounts of DAMP in damaged intestinal epithelial

cells and activating NF-kB in intestinal macrophages signaling

pathways that promote the secretion of inflammatory factors such

as TNF-a and IL-1b, lymphocytes and monocytes, recruit

chemokines (CCL-17 and CCL-24) and NO, and promote colon

damage. Duan et al. demonstrated that LIM domain 7 (LMO7) is an

important molecule that regulates macrophage polarization and

inhibits intestinal inflammation in a DSS-induced IBDmodel (139).

When proinflammatory activates macrophages, PFKFB3(6-

phosphofructose-2-kinase/fructose-2,6bisphosphatase 3) promotes

glycolysis by increasing the activity of phosphofructokinase-1

(PFK1). LMO7 promotes the degradation of PFKFB3 through

K48-related ubiquitination, thereby effectively preventing

excessive inflammatory response of macrophages and protecting

tissues from inflammatory damage.

In the regulation of IBD by MSC and MSC-Ex, Liotta et al.

demonstrated that the binding of TLR3 or TLR4 to MSCs can

modulate their immunosuppressive activity against T lymphocyte

proliferation, thereby restoring an effective T cell response during

infections (140). Studies have shown that MSCs can inhibit the LPS/

TLR4 signaling pathway, thereby reducing the release of

inflammatory factors, improving intestinal symptoms of IBD, and

reducing parenteral complications (141). Liu’s team reports that

metallothionein-2 in MSC-Exs, a key negative regulator of

macrophage inflammatory response, plays an anti-inflammatory

role in conjunction with other components of MSC-Exs to maintain

intestinal barrier integrity and reduce experimental colitis in mice

(142). Other studies indicate that MSC-Ev inhibits the activation of

proinflammatory M1 macrophages and promotes their polarization

to M2 macrophages, alleviating the inflammatory response and

DSS-induced IBD (143). Deng et al. developed a technique that can

sustainably release MSC-Exs for regenerative purposes using an in

situ synthetic biotin-modified MSC-Ex (Bio-Ex) self-assembled

biotinylation (144). The Bio-Ex can be taken up by macrophages

and play an immunomodulatory role similar to MSC-Ex,

promoting the polarization of macrophages to the M2 phenotype.

Perhaps ubiquitin is involved in alleviating IBD through the TLR

signaling pathway, or the regulation of macrophage inflammatory

response by MSCs and MSC-Exs are linked with TLR/

ubiquitination. However, the direct link to this hypothesis

remains to be proven.
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5.3 NLR signaling, ubiquitination, and MSC/
MSC-Ex

Nucleotide-binding and oligomeric domain (NOD)-like

receptors (NLRs) are a type of PRRs that are primarily distributed

in the cytoplasm and have four broad classes of functions:

inflammasome assembly, signal transduction, transcriptional

activation, and autophagy (145–147). Cumulative data suggest

that NLRs play a vital role in a variety of autoimmune diseases,

such as IBD, multiple sclerosis (MS), and systemic lupus

erythematosus (SLE) (148).

The C-terminal of NLRs (except NLRP10) contains a leucine-

rich repeat sequence (LRR) that specifically recognizes the PAMPs’

or DAMPs’ molecular pattern. Based on the unique functional

features of the N-terminal effector domain, NLRs can be divided

into five subfamilies: NLRA, NLRB, NLRC, NLRP, and NLRX1. The

structure of the NLRA subfamily includes CIITA (class II

transcription activator), the activation of which is dynamically

regulated by a series of post-translational modifications, such as

acetylation, phosphorylation and ubiquitination.

Ubiquitination is involved in activating and terminating NOD

signaling cascades. After NOD1 and/or NOD2 activation, the

oligomerization of the NACHT domain between the NLRs N-

terminal and the LRR domain activates and recruits the interacting

proteins to form a semallome including RIP2(also known as RICK).

E3 ubiquitin ligase cIAP1 forms a ubiquitin chain with RIP2,

catalyzes the ubiquitination of RIP2, induces the activation of the

TAK1 complex, triggers the activation of NF-kB and MAPK

signaling pathway, and promotes the transcription of

proinflammatory genes (IL1b, IL-18). Studies have shown that

when the NOD1-RIP2 signaling pathway is activated, hybrid

ubiquitin chains containing M1-Ub and K63-Ub bonds are rapidly

produced, and hybrid ubiquitin chains may affect the

deubiquitination rate of K63-Ub and M1-Ub chains. This affects

the duration of the innate immune response (149). After NOD2-RIP2

activation, it promotes K)63-linked polyubiquitination of NEMO,

thereby promoting the recruitment of TAK1 and activating the NF-

kB signaling pathway (150, 151). TRAF4 is an E3 ligase that has been

shown to negatively regulate NOD2 signaling (152). Moreover,

autophagy-associated protein 16-like-1 (ATG16L1) negatively

regulates NOD-driven inflammatory responses by interfering with

RIP2 junction polyubiquitination (153).

In addition to NOD-mediated activation of NF-kB and MAPK,

inflammatory bodies (NLRs) can also regulate inflammatory

responses through ubiquitination modification (154). The NLRP3

inflammasome (NOD-, LRR- and pyrin domain protein 3) is the

most studied, an intracellular polymeric protein signaling complex

that participates in the innate immune system and plays an

important role in maintaining intestinal homeostasis and

preventing colitis (155, 156). NLR proteins such as NLRP3 detect

pathogens or danger signals and trigger the assembly of caspase-1

inflammasome, leading to the processing and secretion of IL-1b and
IL-18, promoting the proliferation and differentiation of pro-

inflammatory macrophages and tissue damage. It also contributes

to pyrosis, either directly or through ASC junction proteins. A study
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found that in the GVHD model, activated NLRP3 inflammasome

stimulates choline metabolized TMAO (trimethylamine N-oxide)

to induce M1 macrophage polarization, leading to the

differentiation of T1 and T17, which aggravated the disease (157).

Ubiquitination also plays a vital role in the NLR signaling pathway.

According to Xu et al. found that E3 ubiquitin ligase gp78 mediates

the mixed ubiquitination of NLRP3 and inhibits the activity of

NLRP3 by preventing the oligomerization and subcellular

translocation of the NACHT domain of NLRP3, thereby reducing

the activation of inflammasome and harmful effects (158). Mai et al.

confirmed that promoting mitochondrial autophagy driven by E3

(Parkin) and inhibiting the activation of colonic NLRP3

inflammasome has an inhibitory effect on mouse DSS-induced

colitis (159). The E3 ligase TRIM31 binds NLRP3 directly and

promotes K48-linked NLRP3 ubiquitination and proteasome

degradation, maintaining low NLRP3 expression and preventing

unwanted inflammasome activation (160). Moreover, interference

with A20 inhibits macrophage proliferation and M2-like

polar izat ion by act ivat ing the NLRP3 inflammasome

pathway (161).

Studies report that MSC-Ex miR-378a-5p targets and blocks

NLRP3 inflammasome activation in macrophages, leading to

Caspase-1 cleavage and IL-1b and IL-18 reduction, delaying

pyroptosis cell death and improving IBD (162). MSC-Ex alleviates

colitis by increasing FXR in the colon, which binds to the NLRP3

inflammasome and inhibits the activation of inflammasome

components (163, 164). The regulation of IBD inflammation by

ubiquitination and the treatment of IBD with MSCs and MSC-Exs

also involve NOD and NLR signaling pathways, and there may be

some unknown relationships that require further studies.
5.4 T cell activation, ubiquitination, and
MSC/MSC-Ex

Whenmicrobes andmetabolites interact with pattern recognition

receptors (PRR), such as pregnane X receptor (PXR) and TLR, there

is activation of signaling pathways and key proteins that control

mucosal barrier and intestinal immune functions. When pathogens

invade the human body, TLRs guide mucosin-2 (MUC2) in the

intestinal mucus layer to prevent intestinal pathogens and their

secretions from penetrating the mucosa, thus playing an essential

role in preventing inflammation (165–167). During the progression

of IBD, activated T lymphocytes infiltrate the inflamed site and

produce a variety of cytokines, further aggravating intestinal

inflammation. T cells in IBD patients are composed of pro-

inflammatory effector subsets (Th1, Th2, and Th17) and/or

regulatory T (Treg) cells that have immunosuppressive effects and

maintain intestinal homeostasis (168, 169). The proportion of CD8+

T suppressor cells and CD4+ T helper cells in the lamina propria and

epithelium of the intestinal tract of IBD patients is usually normal,

but the activated cells showed an increasing trend. The cytokine IL-13

secreted by Th2 cells plays a role in UC, and Th17 is involved in the

pathogenesis of IBD through the production of IL-17A. On the other

hand, Treg cells suppress the immune response and prevent self-
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hyperimmunity, and IL-10 produced by Treg cells inhibits the

proinflammatory cell Th17 in the gut. In contrast, the elimination

of IL-10 receptors in Treg cells leads to Th17 dysregulation and

colitis (170).

Both programmed death protein 1 (PD-1) and cytotoxic T

lymphocyte-associated antigen 4 (CTLA-4) appear to be key

markers for controlling T cell tolerance and have negative

regulatory effects on T cell immune function (171, 172). CTLA-4

is mainly involved in the early stages of T cell immune responses in

lymph nodes (173, 174), while PD-1 is mainly involved in the late

stages of T cell immune responses in peripheral tissues. PD-1 is

expressed by activated T cells and downregulates T cell effector

function after binding to its ligands PD-L1 and PD-L2 on antigen-

presenting cells (175). Intestinal epithelial cells of IBD patients

overexpress PD-L1 and PD-L2 (176), and PD-1 blocking can

reverse the in vitro inhibition of effector T cells mediated by Treg.

Most studies have shown that Tregs constitutively express CTLA-4,

which is considered important for its inhibitory function (177).In a

FoxP3+ conditional knockout mouse model with CTLA-4 deletion,

Wing et al. clearly demonstrated that CTLA-4 deficiency in FoxP3+

Treg cells impairs its inhibitory function (178). Experimental data

of Takahashi et al. showed that the signals sent by TCR and CTLA-4

may activate CD25+CD4+ regulatory T cells, thereby transmitting

negative signals of activation and proliferation to other T cells.

These possibilities are currently being investigated (179).Therefore,

maintaining a balanced ratio of Th17 and Treg cell populations is

essential for maintaining the intestinal immune system (180).

There is growing evidence that ubiquitination-degrading proteins

play a role in suppressing immune responses by targeting the

destruction of signaling proteins and pro-transcription factors.

Dysfunction of E3s ubiquitin ligase, the final step in catalyzing

ubiquitin attachment to substrate proteins, can lead to abnormal T

cell activation and loss of tolerance to autoantigens, resulting in

immune dysfunction (181), and mice lacking these proteins show

significant inflammation and/or autoimmune-like symptoms. Several

E3 ubiquitin ligases, most notably Itch, Roquin, and CBI-b, have been

shown to regulate T cell activation. Ramon et al. found that NEDD4

family interacting protein 1(Ndfip1) is a regulatory protein of Itch,

and the combination of the two can make JunB ubiquitination (182).

JunB is a transcription factor that promotes the expression of Th2

cytokines IL-4 and IL-5, Therefore, blocking the production of IL-4

and IL-5 may be one of the targeted mechanisms of Th-cell associated

gastroenteritis and IBD. In addition, deubiquitinating enzymes USP22

and UCHL1 have been shown to deubiquitinate and stabilize PD-L1

protein (183, 184). Proteolytic targeting chimeras (PROTACs) can

recruit the E3 ligase RNF43 to the lysosomes that induce PD-L1,

promoting its ubiquitination and subsequent degradation (185).

Fujiwara et al. first demonstrated that Cbl-b deficiency in mice leads

to functional resistance of T cells and NK cells to PD-L1/PD-1-

mediated immune regulation and mild autoimmune reactions (186).

To date, there has been no report of any E3 directly ubiquitinating

CTLA-4 or CTLA-4 ubiquitination sites. However, multiple studies

have shown a strong correlation between CTLA-4 ligation and the

function and expression of Cbl-b (187). It is currently known that the

main CTLA-4 inhibitory function is mediated by key T cell inhibitory
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E3 ligases, namely Cbl-b, Itch, and GRAIL (188). Overall, Cbl-b not

only mediates CTLA-4 signaling but also mediates PD-1-

induced immunosuppression.

Exosome-mediated immune response has been shown in the

pathophysiology of IBD (189). The effect of MSCs on T cells seems

to depend on the MSC/T cell ratio: a high MSC/T cell ratio has a

strong inhibitory effect, while a low ratio may enhance T cell

proliferation. It is known that T-box (T-BET) and retinol-

associated orphan receptor g(t) in T cells (RORgT), as central

regulators of Th1 and Th17 cells, respectively, are pathogenic

factors for IBD progression, while MSCs may down-regulate Th1-

Th17driven autoimmune and inflammatory responses by

influencing the expression of T-bet and RORgt (190). HucMSC

prevents experimental colitis by increasing the number of CD5+ B

cells and CD5+Bregs that produce IL-10, and restores Treg/Th17/

Th1 imbalances (191). Olfactory Ecto-Mesenchymal Stem Cell-

Derived Exosomes (OE-MSC-Exs) regulate T cell responses and

have a significant inhibitory function on CD4+ T cells, presenting a

novel cell-free therapy for IBD and other inflammatory

diseases (192).
5.5 TGF-b signaling, ubiquitination, and
MSC/MSC-Ex

Impairment of the TGF-b signaling pathway is associated with

the development of intestinal inflammation in experimental models

and IBD patients. TGF-b is an immunosuppressive cytokine

produced by various cell types (immune cells, nonhematopoietic

cells) and activated by integrins. There are three types of TGF-b in

mammals: TGF-b1, TGF-b2, and TGF-b3. TGF-b receptors are

widely expressed in body tissues and cells; therefore, members of the

TGF-b family regulate the proliferation, differentiation, apoptosis,

and inflammation of many cells. TGF-b signaling requires two

transmembrane receptors, RI and RII types, that have serine/

threonine kinase activity. When the active TGF-b ligand binds to

the RII receptor, it activates the kinase activity of the RI receptor

and the recruitment of Smad protein, inducing Smad complex

formation, nuclear transport, and Smad DNA binding (193).

Smad works with universal transcription factors (GTF),

-determining transcription factors (LDTF), and other driving

factors or helper proteins to regulate target gene transcription.

The TGF-b signaling pathway has been studied for its effective

regulatory and inflammatory activity (194). In intestinal immunity,

TGF-b inhibits intestinal bacterial antigens’ inflammatory response

and helps induce immune tolerance. IBD is characterized by

abnormal TGF- b signaling (195). High expression of Smad7 in

CD4+ T cells is associated with severe colitis (196). Studies have

shown that sCYLD (a short splicing form of CYLD) mediates

ubiquitination of K63 junctions and nuclear translocation of

Smad7 and that the sCYLD-Smad7 complex inhibits TGF-

bsignaling in CD4+ T cells (197). It is worth noting that Smurf1

and Smurf2, members of the E3 ubiquitase family, are critical

negative regulators of the TGF-b signaling pathway (198). Smad7

recruits E3 ubiquitin ligases such as Smurf1, Smurf2, and NEDD4L

to TGF-b receptors, promoting their ubiquitin-mediated
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degradation. RNF11 may mediate AMSH ubiquitination through

the formation of the Smurf2/RNF11 complex, leading to its

degradation by the 26S proteasome, negatively regulating TGF-b
signaling (199).

TGF-b1 in exosomes is thought to have therapeutic potential in

IBD. Exosomes produced by TGFb1 gene-modified DCs can inhibit

the development of IBD by inhibiting Th17 (200). Another study

showed that TGF-b1-modified exosomes (TGF-b1-Exs) induce

CD4+ Foxp3+ Tregs, reducing the proportion of Th17 in

lymphocytes at the site of inflammation, mitigating the

inflammatory response in a mouse model of colitis (201). In

experimental models and IBD patients, impaired TGF-b signaling

pathways have been associated with the development of intestinal

inflammation. OE-MSC-Exs can regulate cell proliferation, decrease

the levels of inflammatory cytokines IL-17 and IFN-g, and increase

the inhibitory cytokines TGF-b and IL-10, suggesting that OE-

MSC-Exs may effectively alleviate the severity of experimental

colitis by inhibiting effector T cells and enhancing regulatory T

cells (192). Ma ZJ et al. found that MSC-Ex decreased the

concentrations of IFN-g, TNF-a, and IL-1b and increased the

secretion of TGF-b1 and IL-10 by up-regulating anti-

inflammatory response and down-regulating inflammatory

response (202). It is suggested that MSC-Ex shows therapeutic

power in a mouse model of DSS-induced colitis by inhibiting

inflammatory mechanisms. Pd-MSC-Ev inhibits TGF-b1-induced
inflammatory cytokine secretion and fibrotic marker expression,

suggesting that MSC-EVs is expected to be a promising anti-fibrotic

drug (203).
5.6 Deubiquitase and E3 ubiquitin ligase in
IBD and MSC/MSC-Ex modulation

A variety of deubiquitases and E3 ubiquitin ligases are involved

in regulating the process of IBD. USP15 binds to Lys48-linked

ubiquitin chains to achieve deubiquitination, inhibiting the

degradation of TAB2 and TAB3, thus hindering the selective

autophagy degradation mediated by autophagy cargo receptor 1

(204). The proteasomal-associated deubiquitinase USP14 is

involved in the negative regulation of the type 1 IFN signaling

pathway and can also inhibit the activation of the NF-kB signaling

pathway by deubiquitinating K63-linked retinoid-inducing gene I

(RIG-I) (205, 206). USP19 negatively regulates the activation of

TAK1-TAB1 dependent NF-kB signaling pathway by specifically

removing TAK1 coupled Lys63 and Lys27 linked polyubiquitin

chains, resulting in impaired TAK1 activity and destruction of the

TAK1-TAB2/3 complex (207). The E3 ubiquitin ligase TRIM56

induced by type I IFN interacts with STING and targets STING for

K63 junction polyubiquitination, recruitment of TBK1, and

induction of IFN-b to induce innate immune response

(208).TRIM32 can also interact with STING on mitochondria and

ER, facilitating STING interaction with TBK1 (9). Upregulation of

surface MHC Class II (MHCII) and co-stimulatory molecules such

as CD80 and CD86 leads to DC maturation, E3 ligase membrane-

associated RING-CH-1 (MARCH1) promotes endocytosis and

lysosomal degradation of MHCII and CD86 by ubiquitinating
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them. Thus limiting the antigen-presenting capacity of dendritic

cells (209–211).

Sun et al. showed that USP11 plays a catalytic and non-catalytic

role in regulating the stability of IkBa, thereby negatively regulating
TNF-a induced NF-kB activation (212). Deubiquitination of USP26

has been found to stabilize SMAD7, leading to reduced TGF-b
signaling (213). Moreover, RNF182 promotes the degradation of

cytoplasmic p65 through K48 ubiquitination, inhibiting

inflammatory responses (214). In patients with IBD, up-regulated

USP16 expression levels can be found in macrophages. When

stimulated by LPS or TNF-a, USP16 specifically removes Lys33-

linked IKKs polyubiquitin chains and promotes IKK-b-mediated

phosphorylation of P105, leading to autoimmune responses and

the development of IBD (215). Li Y et al. confirmed that CVMSC-

Exs promote trophoblast migration and proliferation by up-

regulating TRIM72 expression, thereby promoting P53

ubiquitination, proteasome degradation, and reducing cell

apoptosis (216). Patients with inflammatory bowel disease (IBD)

have higher levels of angiotensin-converting enzyme 2 (ACE2)

expression in the gut (217).ACE2 deubiquitination mediated by

deubiquitination enzyme UCHL1 and ACE2 SUMO mediated by

E3 SUMO protein ligase PIAS4 can increase ACE2 protein levels,

while AP2-mediated lysosomal degradation can decrease ACE2

protein levels (218, 219). NEDD4 has been shown to be involved in

Ev biosynthesis (exosome production), and NEDD4 is a novel

GSDMD interacting protein. Bulek et al. ‘s data suggest that

GSDMD uses selective autophagy components (including LC3+

vesicles) to mediate NEDD4-dependent sEV biosynthesis for IL-1b
output, thereby supporting the interaction between autophagy and

exosome biosynthesis (220), Regardless of the proposed mechanism,

exosomes can alleviate DSS-induced colitis in mice by controlling

ubiquitin modification levels (17). However, at present, there is little

literature on the clear association between deubiquitin/E3 ubiquitin

ligase and MSC/MSC-EX in IBD disease, and the specific mechanism

still needs to be further explored (17, 221–223).
6 Conclusion

Scientists have been exploring more effective and easier ways to

treat IBD, mainly focusing on the interaction between genetic,

environmental, immunological, and gut microbial factors, to

discover further fundamental mechanisms of IBD occurrence and

preventive strategies. The aim is to reduce patients’ medical and

disease burden and improve the quality of life of affected individuals

(224). Despite the best efforts, the application of MSCs and MSC-

Exs remains a black box filled with unknown secrets. Studies have

reported that treatment with MSCs or similar cells may promote the

likelihood of cancer in patients; although this risk is unlikely to

exist, there is still a chance of occurrence (225). As research

continues to deepen and clinical trials advance, we hope to better

understand the risks and potential benefits of exosome treatment

for patients. Thus, the search for new, safe, efficient, and low-cost

treatments for IBD, including MSC-Exs, is still underway.

Several experimental conclusions have proved that ubiquitin

modification is involved in regulating important signaling
Frontiers in Immunology 12
pathways, such as NF-kB, NOD, TGF-b, and TNF-a. In addition,

the dysregulation of components of the ubiquitination system often

leads to various diseases such as cancer, IBD, and other

autoimmune diseases. Some ubiquitin enzymes are known to

directly regulate various inflammation-related transcription

factors from the Smad, p53, Jun, and other families, and the

ubiquitination-mediated degradation of signaling intermediates is

an essential means to terminate inflammatory responses (226).

However, how ubiquitination mediates the transmission and

function of inflammatory signals to trigger the occurrence of IBD

is largely unexplored and requires further studies. Moreover, the

link between ubiquitination, IBD, and MSCs/MSC-Exs could

provide an experimental basis for a novel therapeutic target and

subsequent clinical application. More exploratory studies are

needed in this area.
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45. Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and
therapeutic opportunities. Cell Stem Cell. (2018) 22:824–33. doi: 10.1016/
j.stem.2018.05.004

46. Le Blanc K, Rasmusson I, Sundberg B, Götherström C, Hassan M, Uzunel M,
et al. Treatment of severe acute graft-versus-host disease with third party haploidentical
mesenchymal stem cells. Lancet. (2004) 363:1439–41. doi: 10.1016/S0140-6736(04)
16104-7

47. Shen Z, Huang W, Liu J, Tian J, Wang S, Rui K. Effects of mesenchymal stem
cell-derived exosomes on autoimmune diseases. Front Immunol. (2021) 12:749192.
doi: 10.3389/fimmu.2021.749192

48. Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-
Free Therapy [published correction appears in Stem Cells. Stem Cells. (2017) 35:851–8.
doi: 10.1002/stem.2575

49. Fang Y, Ni J, Wang YS, Zhao Y, Jiang LQ, Chen C, et al. Exosomes as biomarkers
and therapeutic delivery for autoimmune diseases: Opportunities and challenges.
Autoimmun Rev. (2023) 22:103260. doi: 10.1016/j.autrev.2022.103260
frontiersin.org

https://doi.org/10.1371/journal.pone.0101296
https://doi.org/10.1111/jgh.12164
https://doi.org/10.1038/nrgastro.2015.150
https://doi.org/10.1016/S2468-1253(19)30333-4
https://doi.org/10.1093/ecco-jcc/jjab029
https://doi.org/10.1053/j.gastro.2014.02.009
https://doi.org/10.1016/j.crohns.2013.09.009
https://doi.org/10.1016/j.crohns.2013.09.009
https://doi.org/10.15585/mmwr.mm6706a4
https://doi.org/10.15585/mmwr.mm6706a4
https://doi.org/10.1038/cr.2016.40
https://doi.org/10.3389/fimmu.2021.769167
https://doi.org/10.1371/journal.pgen.1003723
https://doi.org/10.1371/journal.pgen.1003723
https://doi.org/10.14336/AD.2021.0601
https://doi.org/10.4252/wjsc.v11.i9.618
https://doi.org/10.1016/j.intimp.2018.12.043
https://doi.org/10.1371/journal.pone.0140551
https://doi.org/10.1038/mi.2016.58
https://doi.org/10.1038/cddis.2015.417
https://doi.org/10.1038/cddis.2015.417
https://doi.org/10.1186/s13287-015-0197-8
https://doi.org/10.2217/rme.13.23
https://doi.org/10.3727/096368910X
https://doi.org/10.1155/2019/8106818
https://doi.org/10.15283/ijsc.2014.7.2.118
https://doi.org/10.1634/stemcells.2006-0548
https://doi.org/10.1634/stemcells.2006-0548
https://doi.org/10.1038/nri2395
https://doi.org/10.1177/0963689719837897
https://doi.org/10.1177/0963689719837897
https://doi.org/10.1016/j.jcyt.2021.01.008
https://doi.org/10.1038/emm.2013.94
https://doi.org/10.1016/j.semcdb.2015.03.001
https://doi.org/10.1093/nar/gky1029
https://doi.org/10.1208/s12248-021-00554-4
https://doi.org/10.1208/s12248-021-00554-4
https://doi.org/10.1208/s12248-017-0160-y
https://doi.org/10.1016/S0021-9258(18)48095-7
https://doi.org/10.1016/S0021-9258(18)48095-7
https://doi.org/10.1007/s00109-013-1020-6
https://doi.org/10.1007/s00109-013-1020-6
https://doi.org/10.1155/2015/657086
https://doi.org/10.1155/2015/657086
https://doi.org/10.1016/j.ceb.2009.03.007
https://doi.org/10.3390/ijms21030727
https://doi.org/10.1126/science.aau6977
https://doi.org/10.1016/j.tcb.2016.11.003
https://doi.org/10.1016/j.tcb.2016.11.003
https://doi.org/10.26355/eurrev_201808_15727
https://doi.org/10.18632/oncotarget.v6i35
https://doi.org/10.1172/JCI66517
https://doi.org/10.1038/nrd3978
https://doi.org/10.1016/j.bbcan.2018.07.003
https://doi.org/10.1016/j.stem.2018.05.004
https://doi.org/10.1016/j.stem.2018.05.004
https://doi.org/10.1016/S0140-6736(04)16104-7
https://doi.org/10.1016/S0140-6736(04)16104-7
https://doi.org/10.3389/fimmu.2021.749192
https://doi.org/10.1002/stem.2575
https://doi.org/10.1016/j.autrev.2022.103260
https://doi.org/10.3389/fimmu.2024.1423069
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liao et al. 10.3389/fimmu.2024.1423069
50. Pusic AD, Pusic KM, Kraig RP. What are exosomes and how can they be used in
multiple sclerosis therapy? Expert Rev Neurother. (2014) 14:353–5. doi: 10.1586/
14737175.2014.890893

51. Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lässer C, Segaliny AI, et al. Stem
cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative
disorders. ACS Nano. (2019) 13:6670–88. doi: 10.1021/acsnano.9b01004

52. Mahdipour E, Salmasi Z, Sabeti N. Potential of stem cell-derived exosomes to
regenerate b islets through Pdx-1 dependent mechanism in a rat model of type 1
diabetes. J Cell Physiol. (2019) 234:20310–21. doi: 10.1002/jcp.28631

53. Zeinaloo A, Zanjani KS, Bagheri MM, Mohyeddin-Bonab M, Monajemzadeh M,
Arjmandnia MH. Intracoronary administration of autologous mesenchymal stem cells
in a critically ill patient with dilated cardiomyopathy. Pediatr Transplant. (2011) 15:
E183–6. doi: 10.1111/j.1399-3046.2010.01366.x

54. Yang Z, Zhang F, Ma W, Chen B, Zhou F, Xu Z, et al. A novel approach to
transplanting bone marrow stem cells to repair human myocardial infarction: delivery
via a noninfarct-relative artery. Cardiovasc Ther. (2010) 28:380–5. doi: 10.1111/j.1755-
5922.2009.00116.x

55. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, et al.
Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative
stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent
adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. (2013)
10:301–12. doi: 10.1016/j.scr.2013.01.002

56. Li X, Hu X, Chen Q, Jiang T. Bone marrow mesenchymal stem cell-derived
exosomes carrying E3 ubiquitin ligase ITCH attenuated cardiomyocyte apoptosis by
mediating apoptosis signal-regulated kinase-1. Pharmacogenet Genomics. (2023)
33:117–25. doi: 10.1097/FPC.0000000000000499

57. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP,
Suncion VY, et al. Comparison of allogeneic vs autologous bone marrow–derived
mesenchymal stem cells delivered by transendocardial injection in patients with
ischemic cardiomyopathy: the POSEIDON randomized trial [published correction
appears in JAMA. JAMA. (2012) 308:2369–79. doi: 10.1001/jama.2012.25321

58. Lachaud CC, Cobo-Vuilleumier N, Fuente-Martin E, Diaz I, Andreu E, Cahuana
GM, et al. Umbilical cord mesenchymal stromal cells transplantation delays the onset
of hyperglycemia in the RIP-B7.1 mouse model of experimental autoimmune diabetes
through multiple immunosuppressive and anti-inflammatory responses. Front Cell Dev
Biol. (2023) 11:1089817. doi: 10.3389/fcell.2023.1089817

59. Brandhorst H, Brandhorst D, Abraham A, Acreman S, Schive SW, Scholz H,
et al. Proteomic profiling reveals the ambivalent character of the mesenchymal stem cell
secretome: assessing the effect of preconditioned media on isolated human islets. Cell
Transplant. (2020) 29:963689720952332. doi: 10.1177/0963689720952332

60. Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, et al. Humanmesenchymal stem cell
derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin
resistance and relieving b-cell destruction. ACS Nano. (2018) 12:7613–28. doi: 10.1021/
acsnano.7b07643

61. Sun L, Akiyama K, Zhang H, Yamaza T, Hou Y, Zhao S, et al. Mesenchymal stem
cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus
mice and humans. Stem Cells. (2009) 27:1421–32. doi: 10.1002/stem.68

62. Liang J, Zhang H, Hua B, Wang H, Lu L, Shi S, et al. Allogenic mesenchymal
stem cells transplantation in refractory systemic lupus erythematosus: a pilot clinical
study [published correction appears in Ann Rheum Dis. Ann Rheum Dis. (2010)
69:1423–9. doi: 10.1136/ard.2009.123463

63. Guo J, Yang J, Cao G, Fan H, Guo C, Ma YE, et al. Xenogeneic
immunosuppression of human umbilical cord mesenchymal stem cells in a major
histocompatibility complex-mismatched allogeneic acute graft-versus-host disease
murine model. Eur J Haematol. (2011) 87:235–43. doi: 10.1111/ejh.2011.87.issue-3

64. Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He XL, et al. The
mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline
cohort characteristics: an open-label pre-test: post-test study with blinded outcome
assessments. Trials. (2011) 12:62. doi: 10.1186/1745-6215-12-62

65. Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, et al.
Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial.
Lancet Respir Med. (2015) 3:24–32. doi: 10.1016/S2213-2600(14)70291-7

66. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-
controlled, randomized trial of mesenchymal stem cells in COPD. Chest. (2013)
143:1590–8. doi: 10.1378/chest.12-2094

67. Lightner AL, Sengupta V, Qian S, Ransom JT, Suzuki S, Park DJ, et al. Bone
marrow mesenchymal stem cell-derived extracellular vesicle infusion for the treatment
of respiratory failure from COVID-19: A randomized, placebo-controlled dosing
clinical trial. Chest. (2023) 164:1444–53. doi: 10.1016/j.chest.2023.06.024

68. Harrell CR, Miloradovic D, Sadikot R, Fellabaum C, Markovic BS, Miloradovic
D, et al. Molecular and cellular mechanisms responsible for beneficial effects of
mesenchymal stem cell-derived product "Exo-d-MAPPS" in attenuation of chronic
airway inflammation. Anal Cell Pathol (Amst). (2020) 2020:3153891. doi: 10.1155/
2020/3153891

69. Yang L, Zhai Y, Hao Y, Zhu Z, Cheng G. The regulatory functionality of
exosomes derived from hUMSCs in 3D culture for alzheimer's disease therapy. Small.
(2020) 16:e1906273. doi: 10.1002/smll.201906273

70. Lee M, Ban JJ, Yang S, ImW, KimM. The exosome of adipose-derived stem cells
reduces b-amyloid pathology and apoptosis of neuronal cells derived from the
Frontiers in Immunology 14
transgenic mouse model of Alzheimer's disease. Brain Res. (2018) 1691:87–93.
doi: 10.1016/j.brainres.2018.03.034

71. Swaminathan M, Kopyt N, Atta MG, Radhakrishnan J, Umanath K, Nguyen S,
et al. Pharmacological effects of ex vivo mesenchymal stem cell immunotherapy in
patients with acute kidney injury and underlying systemic inflammation. Stem Cells
Transl Med. (2021) 10:1588–601. doi: 10.1002/sctm.21-0043

72. Zhang G, Zou X, Huang Y, Wang F, Miao S, Liu G, et al. Mesenchymal stromal
cell-derived extracellular vesicles protect against acute kidney injury through anti-
oxidation by enhancing nrf2/ARE activation in rats. Kidney Blood Press Res. (2016)
41:119–28. doi: 10.1159/000443413

73. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, et al.
Intravenous administration of auto serum-expanded autologous mesenchymal stem
cells in stroke. Brain. (2011) 134:1790–807. doi: 10.1093/brain/awr063

74. Mao F, Wu Y, Tang X, Kang J, Zhang B, Yan Y, et al. Exosomes derived from
human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in
mice. BioMed Res Int. (2017) 2017:5356760. doi: 10.1155/2017/5356760

75. Chang X, Song YH, Xia T, He ZX, Zhao SB, Wang ZJ, et al. Macrophage-derived
exosomes promote intestinal mucosal barrier dysfunction in inflammatory bowel
disease by regulating TMIGD1 via mircroRNA-223. Int Immunopharmacol. (2023)
121:110447. doi: 10.1016/j.intimp.2023.110447

76. Singh V, Ram M, Kumar R, Prasad R, Roy BK, Singh KK. Phosphorylation:
implications in cancer. Protein J. (2017) 36:1–6. doi: 10.1007/s10930-017-9696-z

77. Diallo I, Seve M, Cunin V, Minassian F, Poisson JF, Michelland S, et al. Current
trends in protein acetylation analysis. Expert Rev Proteomics. (2019) 16:139–59.
doi: 10.1080/14789450.2019.1559061

78. Duan G, Walther D. The roles of post-translational modifications in the context
of protein interaction networks. PloS Comput Biol. (2015) 11:e1004049. doi: 10.1371/
journal.pcbi.1004049

79. Pickart CM. Ubiquitin enters the new millennium. Mol Cell. (2001) 8:499–504.
doi: 10.1016/S1097-2765(01)00347-1

80. Higgins R, Gendron JM, Rising L, Mak R, Webb K, Kaiser SE, et al. The unfolded
protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal
proteins. Mol Cell. (2015) 59:35–49. doi: 10.1016/j.molcel.2015.04.026

81. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. (1998)
67:425–79. doi: 10.1146/annurev.biochem.67.1.425

82. Zhou L, Jiang Y, Luo Q, Li L, Jia L. Neddylation: a novel modulator of the tumor
microenvironment. Mol Cancer. (2019) 18:77. doi: 10.1186/s12943-019-0979-1

83. Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health
and disease. Annu Rev Biochem. (2013) 82:357–85. doi: 10.1146/annurev-biochem-
061909-093311

84. Yang W, Sheng H, Warner DS, Paschen W. Transient global cerebral ischemia
induces a massive increase in protein sumoylation. J Cereb Blood Flow Metab. (2008)
28:269–79. doi: 10.1038/sj.jcbfm.9600523

85. Yang W, Thompson JW, Wang Z, Wang L, Sheng H, Foster MW, et al. Analysis
of oxygen/glucose-deprivation-induced changes in SUMO3 conjugation using SILAC-
based quantitative proteomics. J Proteome Res. (2012) 11:1108–17. doi: 10.1021/
pr200834f

86. Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. J Cell Sci.
(2016) 129:875–80. doi: 10.1242/jcs.183954

87. Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in
homeostasis and cancer. Int J Mol Sci. (2022) 23:5925. doi: 10.3390/ijms23115925

88. Wang Y, Le WD. Autophagy and ubiquitin-proteasome system. Adv Exp Med
Biol. (2019) 1206:527–50. doi: 10.1007/978-981-15-0602-4_25

89. Lu Y, Lee BH, King RW, Finley D, Kirschner MW. Substrate degradation by the
proteasome: a single-molecule kinetic analysis. Science. (2015) 348:1250834.
doi: 10.1126/science.1250834

90. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent
DNA repair is linked to modification of PCNA by ubiquitin and SUMO.Nature. (2002)
419:135–41. doi: 10.1038/nature00991

91. Liu P, Gan W, Su S, Hauenstein AV, Fu TM, Brasher B, et al. K63-linked
polyubiquitin chains bind to DNA to facilitate DNA damage repair. Sci Signal. (2018)
11:eaar8133. doi: 10.1126/scisignal.aar8133

92. Ohtake F, Saeki Y, Ishido S, Kanno J, Tanaka K. The K48-K63 branched
ubiquitin chain regulates NF-kB signaling. Mol Cell. (2016) 64:251–66. doi: 10.1016/
j.molcel.2016.09.014

93. Skaug B, Jiang X, Chen ZJ. The role of ubiquitin in NF-kappaB regulatory
pa t hway s . Annu Rev B i o ch em . ( 2 0 09 ) 78 : 7 69–96 . do i : 1 0 . 1 146 /
annurev.biochem.78.070907.102750

94. Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. (2012) 81:203–
29. doi: 10.1146/annurev-biochem-060310-170328

95. Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev
Biochem. (2009) 78:399–434. doi: 10.1146/annurev.biochem.78.101807.093809

96. Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell
Biol. (2009) 10:755–64. doi: 10.1038/nrm2780

97. Hoppe T. Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends
Biochem Sci. (2005) 30:183–7. doi: 10.1016/j.tibs.2005.02.004
frontiersin.org

https://doi.org/10.1586/14737175.2014.890893
https://doi.org/10.1586/14737175.2014.890893
https://doi.org/10.1021/acsnano.9b01004
https://doi.org/10.1002/jcp.28631
https://doi.org/10.1111/j.1399-3046.2010.01366.x
https://doi.org/10.1111/j.1755-5922.2009.00116.x
https://doi.org/10.1111/j.1755-5922.2009.00116.x
https://doi.org/10.1016/j.scr.2013.01.002
https://doi.org/10.1097/FPC.0000000000000499
https://doi.org/10.1001/jama.2012.25321
https://doi.org/10.3389/fcell.2023.1089817
https://doi.org/10.1177/0963689720952332
https://doi.org/10.1021/acsnano.7b07643
https://doi.org/10.1021/acsnano.7b07643
https://doi.org/10.1002/stem.68
https://doi.org/10.1136/ard.2009.123463
https://doi.org/10.1111/ejh.2011.87.issue-3
https://doi.org/10.1186/1745-6215-12-62
https://doi.org/10.1016/S2213-2600(14)70291-7
https://doi.org/10.1378/chest.12-2094
https://doi.org/10.1016/j.chest.2023.06.024
https://doi.org/10.1155/2020/3153891
https://doi.org/10.1155/2020/3153891
https://doi.org/10.1002/smll.201906273
https://doi.org/10.1016/j.brainres.2018.03.034
https://doi.org/10.1002/sctm.21-0043
https://doi.org/10.1159/000443413
https://doi.org/10.1093/brain/awr063
https://doi.org/10.1155/2017/5356760
https://doi.org/10.1016/j.intimp.2023.110447
https://doi.org/10.1007/s10930-017-9696-z
https://doi.org/10.1080/14789450.2019.1559061
https://doi.org/10.1371/journal.pcbi.1004049
https://doi.org/10.1371/journal.pcbi.1004049
https://doi.org/10.1016/S1097-2765(01)00347-1
https://doi.org/10.1016/j.molcel.2015.04.026
https://doi.org/10.1146/annurev.biochem.67.1.425
https://doi.org/10.1186/s12943-019-0979-1
https://doi.org/10.1146/annurev-biochem-061909-093311
https://doi.org/10.1146/annurev-biochem-061909-093311
https://doi.org/10.1038/sj.jcbfm.9600523
https://doi.org/10.1021/pr200834f
https://doi.org/10.1021/pr200834f
https://doi.org/10.1242/jcs.183954
https://doi.org/10.3390/ijms23115925
https://doi.org/10.1007/978-981-15-0602-4_25
https://doi.org/10.1126/science.1250834
https://doi.org/10.1038/nature00991
https://doi.org/10.1126/scisignal.aar8133
https://doi.org/10.1016/j.molcel.2016.09.014
https://doi.org/10.1016/j.molcel.2016.09.014
https://doi.org/10.1146/annurev.biochem.78.070907.102750
https://doi.org/10.1146/annurev.biochem.78.070907.102750
https://doi.org/10.1146/annurev-biochem-060310-170328
https://doi.org/10.1146/annurev.biochem.78.101807.093809
https://doi.org/10.1038/nrm2780
https://doi.org/10.1016/j.tibs.2005.02.004
https://doi.org/10.3389/fimmu.2024.1423069
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liao et al. 10.3389/fimmu.2024.1423069
98. Luo QF, Chen W, Zhang ST. Identification of Nedd4 as a novel regulator in
Hedgehog signaling. Chin Med J (Engl). (2012) 125:3851–5.

99. Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Ubiquitin-like protein
conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug
Discovery. (2011) 10:29–46. doi: 10.1038/nrd3321

100. Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N,
et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable
ubiquitin chain restriction analysis. Cell. (2013) 154:169–84. doi: 10.1016/
j.cell.2013.05.046

101. Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1-
E2-E3 enzyme ubiquitin thioester cascade. Nature. (1995) 373:81–3. doi: 10.1038/
373081a0
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