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The silent information regulator sirtuin 1 (SIRT1) protein is an NAD+-dependent

class-III lysine deacetylase that serves as an important post-transcriptional

modifier targeting lysine acetylation sites to mediate deacetylation

modifications of histones and non-histone proteins. SIRT1 has been reported

to be involved in several physiological or pathological processes such as aging,

inflammation, immune responses, oxidative stress and allergic diseases. In this

review, we summarized the regulatory roles of SIRT1 during allergic disorder

progression. Furthermore, we highlight the therapeutic effects of targeting SIRT1

in allergic diseases.
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Introduction

The silent information regulator sirtuin 1 (SIRT1) protein is a highly conserved NAD+-

dependent deacetylase in the sirtuin family which mainly acts as a post-translational

regulator and plays a key role in histone and non-histone deacetylation. Among the

sirtuins, SIRT1 was the first one discovered in mammals. The deacetylation mediated by

SIRT1 profoundly impacts numerous biological processes, including DNA damage repair

(1), gene transcription, glucose and lipid metabolism (2), oxidative stress (3), inflammation

(4), apoptosis (5), aging (6), and autophagy (7). In addition to regulating histone

acetylation, SIRT1 is also involved in many post-translational modifications of non-

histones, such as transcription factors. The expression of SIRT1 was down-regulated in

many acute inflammatory responses or inflammation-related diseases. SIRT1 can directly

interact with or promote the histone deacetylation in the gene promoter region of

inflammatory cytokines, further inhibit the transcription of target genes, and play an

anti-inflammatory role, such as deacetylated HAK16 inhibits TNF-a transcription (8–10).

Moreover, SIRT1 can mediate the deacetylation of inflammation associated transcription

factors such as nuclear factor kB (NF-kB), activating protein 1(AP1) and HIF-1a and

further decrease the expression of pro-inflammatory genes (11–15).
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Hypersensitivity denotes an abnormality of immune system,

contributing to hyperactive immune cells production and aggressive

inflammation, which culminates in physiological disorders and/or

tissue and cell damage. In recent years, the potential roles of SIRT1

in allergic diseases has been confirmed. In this review, we take

deeper insights into the role of SIRT1 in hypersensitivity reactions

and conclude current therapeutic avenues that target SIRT1 to

alleviate these reactions.

When allergens and harmful microorganisms enter the body,

epithelial cells respond by producing and releasing cytokines such

as IL-25, IL-33, and thymic stromal lymphopoietin (TSLP). These

cytokines activate type II innate lymphoid cells (ILC2) and

contribute to the development and maturation of Th2 cells, while,

dendritic cells (DCs) activate Th2 cells in the lymph nodes in a

specific manner, resulting in the production of various type II

cytokines, including IL-4, IL-5, and IL-13 (16–18). Upon cytokine

stimulation, plasma cells secrete IgE, initiating a cascade of events

within the immune system (19). IgE and the high-affinity receptor

FceRI on the surface of mast cells and basophils put the body in a

sensitized state. Upon re-exposure to an allergen, mast cells and

basophils undergo activation and degranulation, thereby releasing

type II cytokines that contribute to the process of allergic

inflammation (20, 21). Some recent studies have observed that

SIRT1 is involved in the progression of allergic inflammatory

diseases. SIRT1 deacetylates transcription factors, affecting

signaling pathways like AMPK, MAPK, and NF-kB, reducing
inflammatory factor secretion, thereby alleviating inflammation.

Targeting SIRT1 may improve clinical symptoms and tissue

damage caused by allergic inflammation.
Airway allergic inflammation

Airway Allergic Inflammation (AAI) is a chronic inflammatory

disease of the airways characterized by systemic IgE elevation,

eosinophil, and lymphocyte infiltration, and increased mucus

secretion and airway hyperresponsiveness (AHR) (22). Eosinophil-

derived pro-inflammatory mediators are a major contributor to

asthma-related inflammation, which can lead to damage of airway

epithelial cells, airway dysfunction, and an excess of mucus secretion

(23). The aforementioned event triggers a sequence of inflammatory

responses that culminate in ischemia, hemorrhage, edema, and tissue

injury. Moreover, the stimulation of antigens leads to the infiltration

of effector T cells into the affected tissue, thereby inducing an

inflammatory reaction that can exacerbate the tissue damage.

Research has found that patients who suffer from allergic airway

inflammation (AAI) may have reduced levels of SIRT1 in their

lungs but high levels of SIRT1 in their peripheral blood. This

correlation is positively linked to IgE levels and negatively linked

to lung function (24). Therefore, measuring the level of SIRT1 in the

serum could potentially assist in the diagnosis of AAI, and

increasing the level of SIRT1 in the lungs may be a way to treat

AAI. However, further research is needed to fully understand the

connection between SIRT1 and AAI inflammation. Recent studies

have shown that individuals with asthma often have increased levels

of pAMPK and SIRT1 and that AMPK/SIRT1/PGC1a plays a
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critical role in metabolic regulation and energy expenditure

during the development of AAI (25). As a result of this discovery,

it has been found that the AMPK/SIRT1/Nrf2/HO-1 signaling

pathway can mitigate oxidative stress in human bronchial

epithelial cells and alleviate AAI (26). Additionally, researchers

have noted elevated levels of IL-6 and reduced levels of SIRT1 in

bronchial epithelial cells. Further studies have shown that SIRT1

inhibits Akt-dependent expression of IL-6. Consistent with this, the

use of SIRT1 agonists has been found to reduce IL-6 expression and

alleviate AAI (27).

AAI is an airway inflammation in which numerous

immune cells are involved in disease progression. Insufficient

CD4+CD25+ Tregs were found in AAI patients with impaired

function, which was positively correlated with Foxo1 and SIRT1.

Therefore, targeting SIRT1 may ameliorate the deficiency of Treg

quantity and function and alleviate the inflammatory response

(28–30). In addition, the occurrence of AAI is associated with

type 3 innate lymphocyte activation, which leads to macrophage

activation and the production of neutrophil chemokines. It has

been found that the expression of chemokine ligand 2(CXCL2),

interleukin-1b(IL-b), and tumor necrosis factor-a(TNF-a) are
reduced in myeloid-specific SIRT1 deficient macrophages

(BMDM). SIRT1 inhibits the ERK/p38 MAPK pathway in

BMDM.SIRT1 inhibited AAI by decreasing BMDM cytokine

secretion and activation of MAPK signaling pathway (31).

PPAR-g plays an important role in the inflammatory response,

inducing the oxidative metabolism of macrophages by

upregulating the oxidation of fatty acids and mitochondrial

biosynthesis (32). PPAR-g increased the expression of SIRT1

in macrophages and upregulated SIRT1 increased the secretion

of IL-10, thus playing an anti-inflammatory role (33).

GATA3 and STAT6 transcription factors help Th2 cells

produce type II cytokines, which can exacerbate inflammation.

Low acetylation levels of GATA 3 are associated with reduced

Th2 function, and SIRT1 has been reported to mediate the immune

response of Th2 cells through deacetylation of GATA 3 (34–36). In

autoimmune diseases and chronic inflammation, Th17 cells and

their effector cytokine IL-17 are known to promote inflammation.

Patients with asthma have been found to have increased Th17 cells

and elevated IL-17 expression. In asthmatic mice, significant

increases in eosinophils and mucus secretion were observed in

their alveolar lavage fluid (BLAF). The cytokines secreted by

Th2 and Th17 cells can alter the structure of bronchial epithelial

cells and airway smooth muscle cells, leading to severe goblet

hyperplasia and increased mucin production. NF-kB is a

vital transcription factor that governs the production of pro-

inflammatory cytokines and the recruitment of inflammatory

cells. Additionally, it regulates the expression of several genes that

are critical in the inflammatory response. In a mouse model of AAI,

NF-kB has a significant impact on Th2 cell-related cytokine

production and inflammatory cell recruitment. If we can reduce

the phosphorylation of the classical NF-kB pathway p65 in BLAF,

we may be able to decrease the production of Th2 and Th17-

associated pro-inflammatory factors. This could ultimately lead to

an improvement in AAI (37, 38). It is plausible to mitigate AAI by

reducing the phosphorylation levels of p52 and RelB in the
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nonclassical pathway of NF-kB, alongside ERK1/2 and p38 in the

MAPK signaling pathway (Figure 1). This approach can potentially

lead to the reduction of Th9 cell infiltration and an elevation in the

proportion of Treg (39–41). To further investigate the specific

mechanisms affecting the NF-kB signaling pathway and identify

therapeutic targets for the treatment of allergic asthma, the study

shows that SIRT1 can inhibit the NF-kB signaling pathway and

reduce the secretion of inflammatory factors, thereby controlling

the inflammatory response of AAI (42–45).

The protein SIRT1 is a vital component in reducing

hypersensitivity reactions by deacetylating multiple targets.

Signaling pathways involved in SIRT1 hypersensitivity in different

diseases. It achieves this by suppressing inflammatory factors

through its ability to inhibit the NF-kB and MAPK signaling

pathways. Additionally, SIRT1 activates the AMPK pathway while

inhibiting mast cell activation, which works to relieve inflammation

by reducing the production of inflammatory factors. SIRT1 also

regulates HIF-1a activity, leading to a decrease in the proportion of

Th9 cells that cause an inflammatory response. Furthermore,

it regulates PPAR-g-associated histones to enhance the

immunosuppressive function of M2-like monocytes. Lastly, SIRT1

promotes the Nrf2/HO-1 signaling pathway, which supports the

body’s oxidative stress response by boosting ROS production.

HIF-1a plays a vital role in the inflammatory response, and

HIF-1a activation stimulates the promotion of angiogenesis,

vasodilation, and vascular permeability in inflamed tissues. SIRT1

can mediate acetylation modification of HIF-1a to decrease its

activity (46). SIRT1 interacts with HIF-1a to regulate immune cells.

mTOR is an evolutionarily conserved serine/threonine kinase

involved in cell transcription, growth, proliferation, and survival

and controls cellular autophagy (47). Studies have reported that

mTOR signaling mediates epithelial cell proliferation, migration,
Frontiers in Immunology 03
and autophagy involved in the regulation of AAI (48–50). In allergic

mice, lung levels of phosphorylated (p)-mTOR were reduced, and

mTOR signaling activation suppressed AAI by inhibiting

autophagy (49). It has been observed that EX-527, an inhibitor of

SIRT1, can enhance this phenomenon and is favorable for the

control of AAI (51). mTOR acts as an upstream signal of the HIF-

1a glycolysis pathway, regulating the glycolysis pathway in immune

cells (52). HIF-1a is a crucial transcription factor that regulates the

expression of glycolytic enzymes and plays a central role in

producing pro-inflammatory cytokines (53). HIF-1a deficiency

increases Treg cell production and blocks glycolysis to inhibit

Th17 cell differentiation (54, 55). Recent studies have shown that

SIRT1 in mouse tissue directly inactivates HIF-1a, with or without

hypoxia (56, 57). Consistent with the previous results, it was found

that SIRT1 deficiency-induced upregulation of HIF-1a decreased

the percentage of Treg cells and increased the rate of Th17 cells. In

this case, SIRT1 deficiency induced mTOR upregulation and

promoted HIF-1a expression. In addition, HIF-1a not only

promotes IL-9 production by regulating the glycolytic pathway in

CD4+ T cells but also directly binds to the IL-9 gene promoter to

drive IL-9 transcription (Figure 1). In Th9 cells, SIRT1 suppressed

IL-9 transcription by inhibiting the mTOR/HIF-1a pathway,

thereby alleviating AAI (58, 59).

In summary, many studies have shown that SIRT1 plays a

protective role in allergic airway inflammation. Activation of SIRT1

can cause a variety of signaling pathways to promote the activation

of various transcription factors, resulting in the reduction of pro-

inflammatory cytokines and chemokines associated with

inflammatory cells, and finally preventing or alleviating AAI.

Inconsistent with the foregoing, SIRT1 has been shown to play a

pro-inflammatory role in OVA-induced mouse models of airway

inflammation (60, 61). This may involve SIRT1 inhibiting PPAR-g
FIGURE 1

The target of SIRT1 in hypersensitivity reaction.
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in DC cells and promoting the differentiation of DC cells into Th2-

like cells (62). Similarly, remission of airway inflammation was

observed with pharmacological inhibitors of SIRT1 (60). The

current understanding of the role of SIRT1 in AAI has been

challenged by recent research findings, indicating a bidirectional

effect. However, the specific mechanism underlying this

phenomenon has yet to be fully elucidated. Further investigations

are therefore warranted to clarify the reasons why SIRT1 appears to

play a bidirectional role in airway inflammation.
Allergic rhinitis

Allergic rhinitis (AR) manifests as sneezing, nasal congestion,

nasal itchiness, and rhinorrhea (nasal discharge) due to IgE-mediated

reactions to inhaled allergens. Rhinitis symptoms arise from

inflammation in the nasal mucosa and/or sinuses. Research has

shown that there is a decrease in SIRT1 expression in cases of AR.

It is believed that SIRT1 controls the production of Th2 cell-related

pro-inflammatory factors, which can be suppressed by proteins

linked to the HMGB1/TLR4 pathway, ultimately reducing the

severity of AR (63). In a study involving ovalbumin (OVA)-

induced allergic rhinitis mice, researchers administered the SIRT1

agonist resveratrol (RSV). The results indicated a reduction in the

expression of HMGB1 and TLR4 in the nasal mucosa following RSV

treatment. Furthermore, SIRT1 expression was enhanced, leading to a

mitigation of allergic rhinitis symptoms (64, 65).

Hypoxia-inducible factor 1a (HIF-1a) plays a crucial role in the

progression of AR. Research indicates that inhibiting HIF-1a
results in a notable decrease in eosinophils in BLAF, reduced

levels of nasal mucosa and systemic Th2-related cytokines, and an

improvement in AR symptoms (66, 67). Another important factor

in AR is dendritic cells, which regulate T cell proliferation and

differentiation through signaling (68, 69). Interaction between T-

cell immunoglobulin and mucin domain 4(TIM4) and TIM1

increases PI3K/Akt phosphorylation in CD4+ T cells and

enhances SIRT1 expression. Additionally, SIRT1 promotes Th2

CD4+ T cell proliferation by inhibiting Fas ligand and caspase-3

expression (70). Further exploration of how HIF-1a influences AR

has revealed that HIF-1a-deficient dendritic cells utilize the SIRT1/
NF-kB pathway to mitigate the inflammatory response, thus

alleviating AR (71).

Recent studies have shown that beyond Th1 and Th2, Th9,

Th17, and Treg play significant roles in the progression of AR (72,

73). Tregs interact directly with immune cells, releasing anti-

inflammatory cytokines to maintain immune tolerance in the

body. In AR, Tregs inhibit Th2 differentiation and restrict airway

inflammation (74). Modulating SIRT1 levels can enhance Foxp3

expression, thereby boosting Treg function and differentiation (75,

76). Furthermore, SOCS1 modulates T cell activation, development,

and differentiation by negatively impacting the Janus kinase (JAK)/

STAT signaling pathway (77). Based on the research as mentioned

above results, some researchers have stated that it has been observed

in the progression of AR disease that inhibition of the SOCS1/

SIRT1 pathway in CD4+ T cells promotes the proliferation of Treg,

thereby inhibiting the proliferation of Th2 and alleviating AR (78).
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In contrast, some researchers reported that loss of Sirt1 impairs

Treg survival, leading to antigen-induced T cell proliferation and

inflammation (79). This difference may be caused by different

disease models and research backgrounds, and the specific

mechanism remains to be studied in depth.

IL-13 secreted by Th2 cells is considered to be a central

mediator of allergic inflammation, stimulating mucin synthesis

and secretion (80). Studies have shown that IL-13 can induce

inflammatory responses and mucus secretion in human nasal

epithelial cells (hNEC), and the severity of AR can be determined

based on the expression of IL-13 (81). Nrf2 and Kelch-like ECH

associated protein (Keap 1) combine as dimers in the cytoplasm.

When stimulated, Nrf 2 dissociates from Keap 1 and translocate

into the nucleus, inducing the expression of HO-1 (82). In addition,

results show that activating the Nrf2/HO-1 pathway can inhibit the

progression of AR (83, 84). Here, some researchers found that

Formononetin relies on activation of the SIRT1/Nrf2 pathway to

reduce the secretion of inflammatory factors and mucus formation

caused by IL-13 (85). Consistent with this, SIRT1 mediates

acetylation modification of NF-kB p65, inactivating the NF-kB
pathway (86). Interfering with HDAC4 can restore the expression

of SIRT1 and reduce the inflammatory response caused by IL-13 by

activating the SIRT1/NF-kB pathway (81).

In conclusion, the expression of SIRT1 in nasal epithelial cells

showed a protective effect on AR, and high expression of SIRT1

could reduce the inflammatory response of nasal epithelial cells and

the production of mucus. In addition, during the progression of AR,

the expression of SIRT1 in immune cells such as Tregs also showed

protective effects on inflammation, mainly by promoting the

proliferation of anti-inflammatory cells Tregs. Consistent with

reports related to AAI, in AR, it is now found that SIRT1 has

different effects on different immune cells, and in DCs, SIRT1

expression has been reported to show pro-inflammatory effects.

SIRT1 shows different effects in different cells in the pathogenesis of

AR, and the specific reasons for this are still unclear and need to

be studied.
Urticaria

Urticaria is a type of immune response that results in localized

inflammation and swelling. It is caused by the widening and

increased permeability of small blood vessels in the skin and

mucous membranes. This condition can present as either rubella,

angioedema, or a combination of both (87, 88). The sensitization of

mast cells initiates the development of urticaria through IgE, which

leads to the release of inflammatory mediators like histamine and

other pro-inflammatory factors (87). The progression of urticaria

can also be influenced by an imbalance in immune cells, particularly

CD4+ helper T cells. This heightened sensitivity can contribute to

the development of urticaria (89, 90). During the inflammatory

response, JNK is activated by MEK kinase 2 (MEKK2) under the

influence of inflammation and stress. Subsequently, JNK

participates in the activation of mast cells triggered by antigens,

which leads to the expression of TNF-a and IL-6 (91, 92).

Moreover, research suggests that the level of phosphorylation of
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ERK is closely related to the expression of TNF-a (93). When the

endogenous signal is recognized by the TLR4 receptor, IkB in the

NF-kB signaling pathway phosphorylates and regulates the nuclear

translocation of downstream NF-kB p65, thereby promoting the

transcription of NLRP3 and IL-1b (94). It is well known that the

NLRP3 inflammasome is a crucial factor in regulating apoptosis

(95). NF-kB and MAPK signaling pathways can activate NLRP3

(96). According to recent reports, there is a strong correlation

between NLRP3 and the onset of urticaria (97). To effectively treat

this condition, it’s crucial to regulate the TLR4/NF-kB/MAPK/

NLRP3 inflammasome cascade. Moreover, SIRT1 can inhibit

NLRP3 activation by boosting the LKB1/AMPK pathway (98).

The AMPK/SIRT1 pathway is also known to curb the activation

of NF-kB/NLRP3 (99, 100). In line with these findings, recent

studies have pointed out that Jingfang Granules (JFG) can increase

the expression of AMPK and SIRT1 by promoting the

phosphorylation of LKB1 and AMPK, thereby inhibiting the

activation of NLRP3, inhibiting OVA/aluminum hydroxide-

induced skin inflammation, and alleviating Urticaria disease

symptoms (94).

The role of SIRRT1 in urticaria is still less studied. Since SIRT1

is a key regulatory factor in the regulation of glucose metabolism

and insulin secretion, researchers have observed that SIRT1 can

participate in the disorder of glucose metabolism in the skin tissue

of urticaria mice, and up-regulation of SIRT1 can increase insulin

secretion. Promote aerobic oxidation, inhibit glycolysis, and reduce

the expression of pro-inflammatory factors, effectively relieve

urticaria. Whether SIRT1 is also involved in other cellular

processes in the pathogenesis of urticaria is unknown.
Atopic dermatitis

Atopic dermatitis (AD) is a chronic skin condition

characterized by persistent itching and eczema-like lesions. The

development of AD has been linked to mutations in the filaggrin

(FLG), as well as the presence of inflammatory factors like IL-4,IL-

5and IL-13 (101). These elements can damage the skin’s barrier and

trigger the migration of eosinophils (102, 103). Here, researchers
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investigate how SIRT1-mediated FLG or inflammatory immune

cells contribute to AD inflammatory response. Studies have shown

that SIRT1 levels are reduced in AD, which supports the finding

that SIRT1 can help maintain the skin barrier in mouse models of

AD (104, 105). Among them, FLG deficiency caused loricrin

deficiency and SIRT1 pathway was destroyed (106). Deficiencies

in FLG can result in a lack of loricrin and harm to the SIRT1

pathway, which is associated with inflammatory damage in AD. To

combat this, targeting SIRT1 presents a potential solution.

Resveratrol, an SIRT1 agonist, may serve as a therapeutic option

by blocking Akt, MAPK, NF-kB, and STAT3 signaling pathways,

reducing inflammatory factors, inhibiting oxidative stress and

angiogenesis, and potentially alleviating the condition (107–109).

While SIRT1 levels in keratinocytes and dermal fibroblasts are

upregulated, HDAC6 and CXCL13 levels are also upregulated to

aggravate the inflammatory response of specific dermatitis, which is

involved in the increased expression of Th1 and Th2 cytokines and

the downregulation of Foxp3 and IL-10. Inconsistently, studies have

suggested that SIRT1-deficient mice are sensitive to OVA’s

percutaneous attack, and SIRT1 expression has a protective effect

on the skin tissue of AD mice.

It has been observed that during anaphylactic shock, when

SIRT1 is specifically knocked out in mast cells, there is an increase

in AMPK-dependent FceRI signaling. This leads to an

enhancement in mast cell activation both in vitro and in vivo, as

confirmed by two separate studies (110, 111). At the same time,

SIRT1 also weakened the inhibition of AMPK pathway through

protein tyrosine phosphatase 1B (PTP1B), while also enhancing the

tyrosine kinase (Syk) pathway in the spleen. As a result, it effectively

inhibits allergic inflammation (111).
Treatment

Recent reports have explored treatment options for allergic

inflammation, including drugs that target SIRT1 to provide relief for

allergic diseases (Table 1). Among the drugs that have

demonstrated effectiveness in alleviating AAI are Allopurinol,

GW9962, Hylocereus undatus flower (HUF), Pterostilbene (Pts),
frontiersin.o
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TABLE 1 Drug therapy targeting SIRT1.

Intervention Pathways Effects

Allopurinol SIRT1/HMGB1; SIRT1/
Nrf2/ROS

Decreased PARP-1 activity enhances SIRT1 activity, which in turn leads to decreased acetylation of
HMGB1 and increased Nrf2 expression, ultimately leading to decreased reactive oxygen species (ROS)
content and reduced inflammation (112)

HUF SIRT1/p38MAPK/NF-kB/
caspase-1

The expression of p38MAPK, NF-kBp65 and caspase-1 was down-regulated while SIRT1 was up-
regulated, thus inhibiting oxidative stress and inflammation (113)

Pts AMPK/SIRT1/Nrf2/HO-
1 pathways

Activation of p-AMPK/SIRT1 and Nrf2/HO-1 signaling pathways and inhibition of LPS-induced ROS
increase in 16HBE cells (26)

sirtinol SIRT1/HIF-1a An increase in sirtuin 1 activates HIF-1a to increase VEGF expression, which promotes airway
inflammation (60)

Gentiopicroside SIRT1/NF-kBp65 Up-regulated SIRT1 and down-regulated NF-kB inhibited the recruitment of inflammatory cells and
secretion of inflammatory factors in BALF, thus alleviating AAI (43)

(Continued
rg
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Gentiopicroside (GPS), and EX-527 (26, 33, 43, 51, 112, 113).

Studies have found that SIRT1 expression in immune cells can

help relieve allergic rhinitis, and the use of SIRT1 agonist resveratrol

has shown promise in treating AR (64, 71). Similarly, the use of

resveratrol can also alleviate AD (109). However, in nasal epithelial

cells, the inhibition of SIRT1, such as with Formononetin, has been

found to reduce AR, and further study is needed to understand the

specific mechanism behind this (85). Studies have revealed that

Jingfang granules exhibit promising outcomes in treating urticaria

cases as they significantly reduce OVA/alumina-induced

inflammation and lesions in mice (94).
Conclusion

SIRT1 is a lysine deacetylase that relies on NAD+ to function. Its

impact on the secretion of inflammatory cytokines and regulation of

immune cell differentiation is mediated through the deacetylation

modification of transcription factors. In recent years, the role of

SIRT1 in hypersensitivity has garnered significant attention, with the

exact mechanism of hypersensitivity confirmed. Consequently, we shall

delve into the relationship between SIRT1 and various hypersensitivity

mechanisms. SIRT1 is recognized for its anti-inflammatory properties,

which have been validated in multiple hypersensitivity reactions. In

mouse models, certain SIRT1-targeting drugs have exhibited potential

in mitigating diseases linked to hypersensitivity reactions. This presents

a promising new therapeutic avenue for treating hypersensitivity

inflammatory reactions. Nonetheless, the exact correlation between

SIRT1 expression and the mechanism of hypersensitivity reaction

remains the subject of ongoing research. Additionally, the suitability

of SIRT1-targeting drugs for clinical treatment necessitates

further confirmation.
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TABLE 1 Continued

Intervention Pathways Effects

Bergenin SIRT1/NF-kBp65 Enhanced SIRT1 activity blocked NF signaling pathway and inhibited TNF-a-induced asthma-related
AAI (45)

EX-527 SIRT1/mTOR/autophagy
axis

Inhibition of SIRT1 activity enhanced the activation of mTOR, and then inhibited autophagy in allergic
mice and inhibited AAI (51)

SIRT1 SIRT1/HMGB1/TLR4 SIRT1 inhibits the expression of HMGB1/TLR4 signaling pathway related proteins, reduces the
production of inflammatory factors, and alleviates AR (63)

Formononetin SIRT1/Nrf2 Activate the SIRT1/Nrf2 signaling pathway, thereby inhibiting IL-13 secretion, thereby reducing mucus
and inflammation formation, and alleviating AR (85)

Resveratrol SIRT1/HMGB1/TLR4 It inhibited the expression of HMGB1 and TLR4, promoted the expression of SIRT1, reduced histamine
release, inflammatory cell infiltration, and weakened OVA-induced AR (64)

SIRT1/Akt Activation of SIRT1 reduces phosphorylation of Akt, leading to apoptosis and alleviating AD (109)

Jingfang granules SIRT1/LKB1/AMPK Activate the LKB1/AMPK/SIRT1 signaling pathway, inhibit the expression of inflammation-related
proteins thereby alleviating skin lesions and inflammation in urticaria mice (94)

Tan IIA SIRT1/LKB1/AMPK The activation of SIRT1/LKB1/AMPK signaling pathway inhibits the activation of FceRі-mediated mast
cells, thereby alleviating anaphylaxis (110)
HUF, Hylocereus undatus flower; Pts, Pterostilbene; Tan IIA, Tanshinone IIA.
rg
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