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The tumormicroenvironment (TME) contains cells that regulatemedication response

and cancer growth in a major way. Tumor immunology research has been

rejuvenated and cancer treatment has been changed by immunotherapy, a rapidly

developing therapeutic approach. The growth patterns of tumor cells in vivo and the

heterogeneity, complexity, and individuality of tumors produced from patients are

not reflected in traditional two-dimensional tumor cell profiles. On the other hand, an

in vitro three-dimensional (3D)model called the organoidmodel is gaining popularity.

It can replicate the physiological and pathological properties of the original tissues in

vivo. Tumor cells are the source of immune organoids. The TME characteristics can

be preserved while preserving the variety of tumors by cultivating epithelial tumor

cells with various stromal and immunological components. In addition to having

genetic and physical similarities to human diseases and the ability to partially

reconstruct the complex structure of tumors, these models are now widely used in

research fields including cancer, developmental biology, regenerative mechanisms,

drug development, disease modeling, and organ transplantation. This study reviews

the function of organoids in immunotherapy and the tumor immune milieu. We also

discuss current developments and suggest translational uses of tumor organoids in

immuno-oncology research, immunotherapy modeling, and precision medicine.
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Abbreviations: TME, tumor microenvironment; PRR, pattern recognition receptor; ILs, interleukins; ACT,

adoptive cell therapy; ICIs, immune checkpoint inhibitors; PMN-MDSCs, polymorphonuclear myeloid-

derived suppressor cells; CTLs, cytotoxic T lymphocytes; TILs, tumor-infiltrating lymphocytes; PDX, patient-

derived xenografts; DCs, dendritic cells; CRC, colorectal cancer; PDOs, patient-derived human tumor

biopsies; ALI, air–liquid interface; HA, hydroxyapatite; QuantICV, quantitative image-based cell viability;

NSCLC, non-small cell lung cancer; CFTR, cystic fibrosis transmembrane conductance regulator; CARs,

chimeric antigen receptors; CAR-T, chimeric antigen receptor T cells; HUB, Hubrecht Organoid Technology;

MCC, Merkel Cell Carcinoma; RCC, renal cell carcinoma; CAP, cold atmospheric plasma; GC, gastric cancer;

HCC, hepatocellular carcinoma; PDOTS, patient-derived organotypic tumor spheroids; HSV-1, herpes

simplex virus type 1; NHPs, nonhuman primates; PDAC, pancreatic ductal adenocarcinoma; BC, breast

cancer; UC, urothelial carcinoma; EpiOs, epidermal organoids; iPSCs, pluripotent stem cells; EVs,

extracellular vesicles; iCoC, Immunocompetent cancer-on-chip.
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GRAPHICAL ABSTRACT
Introduction

The TME is an intricate system. It comprises not only tumor cells

but also a variety of other cell types, such as blood vessels, activated

fibroblasts, invading immune cells, and the extracellular matrix, that

are involved in the growth of tumors (Figure 1). Understanding

carcinogenesis, tumor growth, and tumor metastasis depends on

understanding the TME, which is regulated by a range of cellular,

hormonal, and inflammatory responses. As a result, this topic has long

been a goal of cancer research and plays a significant role in the

prevention, diagnosis, and treatment of cancers. Research has

demonstrated that the TME can affect the course of tumors and how

well immunotherapy drugs work (1).

Coculturing two-dimensional tumor cells with foreign immune

cells has become a standard technique for preclinical trials of pertinent

immunotherapeutic medicines as well as fundamental tumor

immunology research. It has a large variety of assays and well-

established evaluation methodologies in addition to allowing

straightforward gene editing and medication intervention. Tumor cell

profiling, however, does not capture the in vivo growth pattern of tumor

cells. Traditional two-dimensional tumor cell cultures have significant

limitations; they fail to accurately represent the growth patterns,

heterogeneity, complexity, and individuality of patient-derived tumors

observed in vivo. The 2D culture model cannot accurately reflect the

three-dimensional growth patterns of tumor cells or the spatial and

temporal distribution characteristics and interaction modes between

tumor and immune cells in vivo. Additionally, 2D cultures cannot

realistically reproduce the tumor microenvironment, including

interactions with stromal and immune cells, often leading to a loss of

cellular heterogeneity. Long-term passaging culture may result in

genetic mutations and phenotypic variance in additional immune

cells, as they are unable to replicate the temporal and spatial

properties and interaction patterns of the TME (2).
Frontiers in Immunology 02
Inflammatory and immunodeficient conditions have historically

been linked to cancer susceptibility, indicating the central role of

immunity in carcinogenesis. Immunotherapy-based revolutionary

methods for cancer treatment have recently been shown to be

efficacious. Both medicines and cells are known to have

immunomodulatory effects. These immunotherapies have the ability

to locally modify the tumor’s immunological milieu while also

methodically enhancing the body’s immunity. Tumor antigen-

targeted monoclonal antibodies, vaccines, therapies targeting pattern

recognition receptors (PRRs), and other nonspecific small molecules,

such as interleukins (ILs), interferons, and colony-stimulating factors,

are among the immunotherapies that have been employed in clinical

settings (3, 4). Adoptive cell therapy (ACT) and immune checkpoint

inhibitors (ICIs) are two examples of immunotherapy that have altered

the conventional paradigm for treating tumors (5–8). However, the

number of patients available for participation in these studies is still

quite limited. The primary cause is that patients can be inherently

resistant to immunotherapy due to a variety of factors, including

genetic mutations, the presence of certain biomarkers, variations in

the tumor microenvironment, and differences in immune system

functioning. This inherent resistance is difficult to demonstrate using

conventional immunological research techniques, which do not

adequately capture the complex interactions between tumor cells. To

conduct basic and clinical translational research on tumor immunity, it

is therefore vital to design new preclinical models that accurately

replicate the human tumor immune milieu (9, 10).

Immune organoids are three-dimensional culture systems derived

from immune cells or containing immune cell components. They are

designed to mimic the structure and function of the immune system or

its specific parts. Organoid culture systems have become important

resources for researching the interactions between cancer cells and

other elements of the tumor immunological microenvironment and for

simulating the TME (11). For instance, polymorphonuclear myeloid-
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derived suppressor cells (PMN-MDSCs) have been demonstrated to

increase tumor growth and limit the proliferation of cytotoxic T

lymphocytes (CTLs), hence reducing the efficiency of checkpoint

inhibition in murine and human-derived autologous organoid/

immune cell cocultures (12). To mimic tumor-specific immune

responses and prevent alloreactivity, autologous tumor-infiltrating

lymphocytes (TILs) have been added to 3D organoid cultures

obtained from patient-derived xenografts (PDXs) (13). Knowing how

dendritic cells (DCs) and colorectal cancer (CRC) cells interact in the

immunosuppressive TME may help researchers discover important

pathways involved in tumor growth and dissemination for treatment

(14). Organoid technologies for mimicking cancer have advanced

significantly. One option is to use forward genetic techniques, which

involve modifying induced pluripotent stem cells (iPSCs) or cells

produced from wild-type tissues to have oncogenic or cancer-

suppressive mutations (15, 16). However, the strong dispersion of

patient-derived human tumor biopsies (PDOs) is now made possible

via organoid techniques. The widespread use of 3D-PDO cultures has

significantly influenced the field of in vitro cancer biology, resulting in

the establishment of extensive tumor libraries that encompass the

genetic and histological diversity of human malignancies. This paper

reviews the function of organoids in immunotherapy and the tumor

immune microenvironment.
Organoid research in reconstructing
the tumor immune microenvironment

In organoids, the tumor immune microenvironment can be

affected by two different methods (Figure 2). In reconstituted models,

organoids containing exclusively tumor cells, often from physically and

enzymatically separated tissues, are cultivated in extracellular matrix
Frontiers in Immunology 03
domes (e.g., Matrigel or BME-2) and submerged in tissue culture

media. After being separated, exogenous immune cells—such as those

from autologous peripheral blood or tumors—are cocultured with

developed organoids. Without reconstitution, the intrinsic

immunological milieu of tumor specimens is retained in holistic

native TME models in addition to the tumor cells themselves. It is

possible to combine collagen and tumor spheroids from digested tumor

tissues for injection into microfluidic culture apparatuses. As an

alternative, collagen gels are implanted in inner transwell dishes

containing minced primary tissue pieces comprising both tumor cells

and immunological components in air–liquid interface (ALI) culture.

Because the top of the collagen gel is open to the air, cells can obtain

enough oxygen to function. The effects of different culture models on

the function and phenotype of various immune cell populations are

shown in Table 1.

3D bioprinting is also an advanced biocultural technology that

uses layers of biomaterials to construct complex tissue and

organ structures.
Coculture of tumor organoids with
immune components

Organoid technology has progressed recently, offering more

precise models to examine medication response, the TME, and

tumor growth, revolutionizing research on cancer. In examining

interactions between cells and between cancer cells within the TME,

organoid models have proven to be especially useful (17). To

investigate tumor-immune interactions and prospective

therapeutic approaches for cancer treatment, coculture systems

that include immune components and cancer organoids have

become attractive.
FIGURE 1

Tumor Microenvironment. The complex TME, which includes tumor cells, blood vessels, immune cells, and stromal components, is critical for tumor
development and treatment response.
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By adding different elements, such as immune cells, cancer-

associated fibroblasts, tumor vasculature, and other biological or

chemical components, these organoid models seek to replicate the

TME. Exogenous immune cells based on Matrigel deep culture

must be added to immune organoid culture to model TMEs. The

first method involves mixing organoids with the matrix and adding

exogenous immune cells to the medium, which promotes indirect

interactions. The second method is to first establish tumor

organoids and, after a period of cultivation, dissociate the tumor
Frontiers in Immunology 04
organoids into single cells. At the same time, add lymphocytes

extracted from peripheral blood to the dissociated tumor organoids,

resuspend them in Matrigel, and re-embed them. The third method

is to directly mix organoids and immune cells in the matrix and

culture them in a dish (Figure 3). Additionally, the co-culture

conditions need to be adjusted based on different tumor tissues

and the added immune components (18). Table 2 provides a

detailed comparison of the three methods for establishing tumor

organoids with immune components, highlighting their respective
FIGURE 2

Different approaches to tumor immune microenvironment generation. In the reconstructed model, organoids containing tumor cells are cocultured
with exogenous immune cells. In the nonreconstructed model, preservation of the inherent immune environment of the tumor specimen by
injection or implantation of a collagen gel containing tumor cells and immune components.
TABLE 1 Effects of different culture models on the function and phenotype of various immune cell populations.

Model Description Effects on T Cells
Effects on
Macrophages

Effects on
Dendritic Cells

Effects on NK Cells

Submerged
matrix gel
culture
method

Embedding organoids in a
matrix with exogenous
immune cells.

a. Supports T cell
infiltration and activation.
b. Enhances T cell-tumor
cell interactions.
c. Promotes
cytokine production.

a. Supports macrophage
infiltration and polarization.
b. Influences macrophage-
tumor cell interactions.

a. Enhances DC-tumor cell
interactions.
b. Supports DC maturation
and antigen presentation.

a. Promotes NK cell
infiltration and cytotoxic
activity.
b. Enhances NK cell-tumor
cell interactions.

Microfluidic
3D cell co-
culture
method

Utilizes microchannels for
precise manipulation of cell
positioning and
nutrient flow.

a. Allows detailed analysis
of T cell migration and
infiltration.
b. Enables study of T cell
dynamics under
flow conditions.

a. Enables study of
macrophage migration and
polarization under
controlled conditions.
b. Supports detailed
phenotype analysis.

a. Allows precise control of
DC positioning and
interactions.
b. Facilitates real-time
monitoring of DC behavior.

a. Enables detailed study of
NK cell migration and
cytotoxicity.
b. Supports phenotype
analysis under physiological
flow conditions.

Air–Liquid
interface
(ALI)
culture
method

Exposes organoids to air on
the upper surface and
provides nutrients from the
liquid medium below.

a. Maintains T cell-tumor
interactions over long-term.
b. Supports T cell activation
and memory formation.
c. Allows for studies of
immune infiltration.

a. Maintains macrophage-
tumor interactions.
b. Supports macrophage
polarization and function.
c. Preserves macrophage
diversity within TME.

a. Supports long-term DC-
tumor interactions.
b. Enhances antigen
presentation and immune
activation.
c. Preserves DC diversity
and function.

a. Maintains NK cell-tumor
interactions.
b. Supports NK cell
cytotoxicity and function.
c. Preserves complex
immune cell interactions
within TME.
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advantages, disadvantages, and effectiveness in immune

cell reconstruction.

The success of targeted therapeutics has been predicted using

autologous pancreatic cancer organoid/immune cell cocultures

produced from mice and humans, underscoring the importance

of including immune components in preclinical models (12).

Further insight into immunosuppression in cancer has come from

the addition of immune cells to organoid models. The

incorporation of immune cells and stromal components into

three-dimensional organoid models has made it possible to gain a

more thorough understanding of the TME and its function in

immunosuppression (19). The significance of immune cell contacts

in the progression of cancer has been highlighted by the

characterization of angiocrine crosstalk and the generation of an

inflammatory TME using coculture models of hepatocellular

carcinoma organoids with endothelial cells (20). Additionally, the

creation of coculture techniques utilizing immune cells and patient-

derived cholangiocarcinoma organoids has demonstrated potential

in simulating anticancer immunity in vitro (21). The significance of

these organoid-immune coculture models in furthering

oncoimmunology research is highlighted by their ability to clarify

tumor-specific immune interactions and direct customized

immunotherapies (22). To summary, the incorporation of

immune components into cancer organoid coculture models has

yielded significant insights into immunosuppressive mechanisms,
Frontiers in Immunology 05
tumor-immune interactions, and possible therapeutic approaches.

These models could increase our knowledge of the biology of cancer

and direct the creation of tailored immunotherapies to improve

patient outcomes (23).
Microfluidic 3D culture

Microfluidic or 3D materials, which are more adaptable for

imitating the TME, are placed into the channels and chambers of

the microfluidic culture system (24). Controlling fluid flow and

volume, as well as designing microchannels, can enhance the quality

of organoids. It facilitates the mass manufacture of organoids and

supports uniformity and controllability (25). Microfluidic chambers

make up the microfluidic core. Every microfluidic chamber features

a media conduit on both sides in addition to a center gel area. To

create microspheres comprising tumor cells, immune cells, and

stromal cells, fresh tumor tissue must first be chopped and beaten.

Subsequently, the tumor microspheres are doped into a hydrogel

made of collagen and injected into the center of the gel, strolling

through the middle channel. Using a microfluidic device, Ahn et al.

(26) created a bone-mimetic microenvironment to study the

interactions between tumor cells and hydroxyapatite (HA) in a

three-dimensional composite. The significance of building a three-

dimensional TME for researching cell-cell interactions is
B CA

FIGURE 3

Methods for coculturing tumor organoids and immune cells. (A) Mixing the organoid and matrix and adding exogenous immune cells to the medium
promoted indirect interactions. Matrix dilution facilitates immune cell infiltration and direct contact with tumor cells. (B) Isolated organoids were mixed with
suspended immune cells to study direct interactions. The use of ultralow adhesion culture plates or plates precoated with substrate prevents organ adhesion
and death. (C) Mixing organoids and immune cells directly in the matrix and culturing them in culture plates is a useful model for studying interactions.
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emphasized by this work. The transition from planar to 3D cell

culture on scaffolds, as well as the use of cell scaffolds in microfluidic

devices, was covered by Castiaux et al. (27). Microfluidic platforms

investigate a variety of scaffold types, including suspension culture,

hydrogel scaffolds, paper-based scaffolds, and fiber-based scaffolds.

Mulas et al. (28) presented a technique that uses hydrogel bead

compartmentalization to encapsulate living cells in a 3D hydrogel

matrix. This method highlights the versatility of 3D cell

encapsulation in microfluidic devices by allowing retrieval for

molecular and functional tests as well as monitoring of cellular

dynamics. A quantitative image-based cell viability (QuantICV)

assay was proposed by Ong et al. (29) for microfluidic 3D tissue

culture applications. This assay method is a useful tool for drug

testing applications because it overcomes the difficulties associated

with conducting quantitative cell viability studies in microfluidic 3D

tissue cultures. Specifically, the QuantICV assay employs advanced

techniques such as high-throughput screening, which allows for the

simultaneous automation of multiple assays to obtain precise and

reliable data. It also utilizes fluorescent and luminescent dyes that

bind to live or dead cells, enabling sensitive detection and accurate

measurement of cell viability. Additionally, real-time monitoring

through live-cell imaging systems provides dynamic data by

tracking changes in cell viability over time. In summary,

combining 3D cell culture methods with microfluidic technology

is a viable strategy for examining cell behavior in a setting that is

more physiologically appropriate.
Air–liquid interface culture

The technique of physically splitting tumors into tissue fragments

and then growing them in a cell culture chamber coated with collagen

gel is known as ALI culture. This paradigm allows tumor cells to

proliferate properly and create tumors that mimic the original tumor,

preserving the pathological features and genetic alterations of the
Frontiers in Immunology 06
original tumor, in contrast to the limitations of the coculture model

in analyzing the TME. The top of the gel is open to the outside, and a

permeable cell culture chamber allows the medium from the outer dish

to permeate into the inner dish, forming an air-liquid interface that

helps the cells obtain enough oxygen. This strategy maintains the

intricate histological structure of the tumor parenchyma and

mesenchyme in the TME, together with a range of naturally

occurring immune cells, including functional TILs, and encourages

tumor growth in its native state (30).

Initially, ALI organoids established from normal tissues of different

sites, including the small intestine, colon, stomach, and pancreas,

included both epithelial and stromal components. Subsequently, the

ALI organoid method has been used to culture organoids from human

biopsy tissues, such as melanoma, renal cell carcinoma, and non-small

cell lung cancer (NSCLC), as well as syngeneic mouse tumor organoids

with immune reactivity (30). ALI PDOs not only retain the genetic

alterations of the original tumor but also preserve the complex cellular

composition and structure of the TME. Both the tumor parenchyma

and stroma are maintained, including fibroblasts and various

endogenous infiltrating immune cell populations.

Organoid air-liquid interface cultures are being increasingly used in

a variety of scientific fields. Ao et al. (31) created a microfluidic

technology that includes perforable culture chambers and an air-

liquid interface to simulate the effects of cannabis exposure during

pregnancy on the development of the human brain. This platform

enables the creation of many organoids without fusing or streamline

fabrication processes. To better understand the pathophysiology of

COVID-19, Lamers et al. (32) proposed a human 2D air-liquid

interface culture system for studying SARS-CoV-2 infection of

human alveolar type II-like cells. Sette et al. (33) investigated cystic

fibrosis in vitro using air-liquid interface cultures and organoid models

made from patient-derived nasal epithelial stem cells, and

demonstrated that these models are appropriate for pharmacological

testing of cystic fibrosis transmembrane conductance regulator

(CFTR). The significance of three-dimensional culture for kidney
TABLE 2 Comparison of methods for establishing tumor organoids with immune components: advantages, disadvantages, and immune
cell reconstruction.

Method Advantages Disadvantages
Comparison in Immune
Cell Reconstruction

Mixing organoids with matrix and adding
exogenous immune cells to the medium

a. Promotes indirect interactions
between immune cells and tumor
cells.
b. Facilitates immune cell
infiltration and closer contact
with tumor cells.

a. Complex interaction dynamics are
difficult to dissect and analyze.
b. Variability in immune cell penetration
can lead to inconsistent results.

Offers a model for studying paracrine
signaling and other indirect interactions,
but with variable immune cell infiltration.

Dissociating established tumor organoids
and adding lymphocytes extracted from
peripheral blood, then re-embedding
in Matrigel

a. Allows for direct study of
immune cell-tumor cell
interactions.
b. Prevents organoid adhesion
and subsequent cell death.

a. Dissociation and re-embedding may
damage cells.
b. Multi-step process increases complexity
and cost.

Provides clear insights into contact-
dependent mechanisms but may lack the
physiological relevance of the
tumor microenvironment.

Directly mixing organoids and immune
cells in the matrix

a. Provides a comprehensive
model for both direct and indirect
interactions.
b. Embedding immune cells
within the matrix enhances their
integration and interaction with
tumor cells.

a. The complexity of the matrix can make
it difficult to isolate specific interactions
or effects.
b. Technically challenging to optimize for
consistent results.

Offers a robust model for studying both
direct and indirect interactions within a
supportive matrix environment.
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organoids to better replicate in vivo conditions and adjust the

extracellular matrix composition was emphasized by Geuens et al.

(34). Using an air-liquid interface method, Cham et al. (35) reported

the creation of a highly biomimetic organoid culture system that

resembles native immature testis tissue, including the vasculature.

Additionally, Boecking et al. (36) created human airway epithelial

organoids with apical membranes oriented externally. These organoids

and air-liquid interface cultures displayed identical gene expression

profiles associated with bronchial development and ion transport. A

different technique for growing airway organoids formed from nasal

brushing from a 2D air-liquid interface culture was published by

Amatngalim et al. (37), which made it possible to consistently detect

CFTR modulator responses in patients with cystic fibrosis. Overall,

research and treatment development can benefit greatly from the

literature’s depiction of the adaptability and usefulness of organoid

air-liquid interface culture in simulating a range of biological processes,

illnesses, and pharmacological reactions.
3D bioprinting

The structuring of droplets on a surface coated with cells is the

basis for the 3D tissue reconstruction technique known as bioprinting.

A matrix of extracellular and tumor cells is present in these droplets.

This concept has the advantage that the tissue can be fully rebuilt and

that the droplets can be mechanically or chemically treated to acquire

the appropriate tissue characteristics. As a result, bioprinting enables

extremely accurate tissue and cell implantation. To enhance the

printing of brain tumor organoids, Clark et al. (38) developed a

bioprinting technique that includes monitoring the behavior of the

supporting fluid. Frankowski et al. (39) addressed problems pertaining

to the establishment of biological connections and the comprehension

of tissue structure and discussed the use of 3D bioprinting to create

human tissues and organoids for preclinical pharmacological

investigations. The state of the art in organoid bioprinting was

discussed by Cabral et al. (40), along with its possible applications in

regenerative medicine, drug discovery, and tissue engineering.

Ultimately, Shrestha et al. (41) developed a novel microarray 3D

bioprinting technique intended to generate human liver organoids

in a repeatable way, resolving the technical drawbacks of

conventional culture techniques and enabling a thorough

assessment of the cumulative effects of hepatotoxicity. The body

of research on organoid 3D bioprinting indicates notable

advancements in printing technology, biolinking, and applications

across a range of biological domains.
Organoid research in
tumor immunotherapy

The microenvironment around tumor cells functions as a unit.

The microenvironment engages in interactions and coevolution

with tumor cells, exerting a significant influence on various aspects

of carcinogenesis and development. As a result, research on the

interactions between tumors and their microenvironment provides

theoretical groundwork for the development of novel therapeutic
Frontiers in Immunology 07
targets and novel strategies for tumor immunotherapy and aids in

our understanding of the biological behavior of tumors (Figure 4).
Immunotherapy assessment

Numerous promising therapeutic outcomes of immunotherapy

have been identified thus far due to intrinsic and acquired

resistance, and it is evident that certain tumor tissues are immune

checkpoint resistant. Organoids may be used as viable substitutes

for in vivo techniques, enhancing the efficacy of already available

immunotherapies and increasing the viability of novel strategies.

Preclinical testing of immunotherapy medications for lung

cancer and other cancer types can be carried out by researchers

by imitating immunotherapy responses using organoid culture

platforms (42). Organoid models produced from patients have

been especially useful in the evaluation of immunotherapies for

melanoma (43). These models allow immune cells within the

organoids or new tumor samples to be assessed, which offers

important insights into how the immune system reacts to

therapy. Furthermore, organoids have been effectively developed

for the treatment of breast cancer and are used as in vitromodels to

assess immunological responses and medication sensitivity (44).

Moreover, models of organoid culture have been created to facilitate

the repetitive assessment of immune cell interactions and tests for

killing in vitro (45). Organoid models have been used in the setting

of lymphoma to replicate the death of cancer cells by T cells upon

treatment with bispecific immunotherapies (46). Comparably, a

tumor organoid platform that engages T cells has been created for

pancreatic cancer immunotherapy, enabling monitoring of the

immune profile and assessment of the effectiveness of the

treatment (47). In conclusion, organoids produced from patients

have proven to be useful inst ruments for assess ing

immunotherapies in different kinds of cancer.
Immunotherapy of engineered cells

Adoptive cell immunotherapy typically involves isolating

immune cells from tumor patients, expanding and functionally

characterizing them ex vivo, and then reinfusing them into the

patient. Through genetic engineering, T cells can be combined with

chimeric antigen receptors (CARs), and engineered chimeric

antigen receptor T (CAR-T) cells can recognize tumor antigens,

thereby achieving the goal of directly killing tumor cells or

stimulating the body’s immune response to eliminate tumor cells.

Innovative organoid-T-cell coculture systems that offer a

physiologic depiction of the interactions within the TME have

been developed by Hubrecht Organoid Technology (HUB) (48).

These HUB organoids, derived from both healthy and sick tissues,

provide an excellent and repeatable platform that replicates the

intricate features of the original parental tissue, such as functional

properties and molecular heterogeneity. By evaluating T-cell

cytotoxicity against tumor organoids and viewing and quantifying

T-cell-tumor interactions, HUB’s organoid-T-cell coculture method

facilitates the evaluation of novel therapeutics. This platform has
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promise as a robust instrument for the advancement and

verification of cancer immunotherapy, encompassing immune

checkpoint inhibition and bispecific antibody administration.

Furthermore, TILs and CAR-engineered T cells may be able to

function in cancer organoid-T-cell culture systems, providing

prospects for preclinical development and customized therapeutic

approaches. By offering a customized method for researching

immune cell types and adoptive therapy, these organoid models

may increase the effectiveness of immunotherapy treatments (49).

Additionally, organoid models have been used to investigate

adoptive cell immunotherapy and immune reconstitution,

demonstrating their potential to advance cancer treatment

approaches (50). In summary, organoid adoptive cellular

immunotherapy is a potentially useful way to address the

difficulties involved in converting preclinical research into viable

cancer treatments.
Immune checkpoint inhibitor response

A group of molecules known as immune checkpoint molecules

controls the immune system and suppresses immune cells. They are

crucial for immune system induction, self-tolerance maintenance,

and the prevention of autoimmune disorders. Nevertheless,

malignant tissues can use these spots to bypass the immune

system, meaning that immune checkpoint protein molecules are
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ineffective in assisting the body’s defense against cancer. ICIs, often

referred to as immune system counterpoint inhibitors, are

medications that inhibit the immune system with the dual goals

of increasing a patient’s immunity against malignancies and

facilitating the immune system’s ability to escape from them.

Research has indicated that coculturing immune cells and cancer

organoids can improve our understanding of immune checkpoint

blockade treatments. For example, coculturing immune cells treated

with bispecific anti-PD-1/PD-L1 antibodies with high-grade serous

ovarian cancer organoids showed improved efficacy compared with

coculturing immune cells treated with monospecific antibodies (51).

However, because each patient has a unique resistance mechanism,

not every patient responds to this medication. Research has

concentrated on understanding the molecular correlates and

genetic context of the immune checkpoint inhibitor response in

various cancer types. A study conducted on Merkel cell carcinoma

(MCC) sought to determine clinical genomic indicators linked to the

immune checkpoint inhibitor response as well as to define the

molecular landscape (52). Furthermore, changes in PBRM1 have

been confirmed to be a reliable indicator of the immune checkpoint

inhibitor response in renal cell carcinoma (RCC) (53). One important

element determining the response to ICIs and targeted therapy is the

TME. To optimize checkpoint inhibitor-TKI combinations in RCC,

an ex vivo 3D tumor organoid model has been used, which has shown

differences in T-cell activation and tumor cell killing efficacy among

patient samples (54). Additionally, research has investigated the use
FIGURE 4

Exploration of common technologies and applications of organoid systems in tumor immunotherapy research. Tumor immunotherapy research
using organoid systems expand the frontiers of personalized therapy and provides an important experimental platform for exploring
novel immunotherapies.
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of cutting-edge strategies to strengthen the immune response to ICIs.

To enhance anticancer immunity, for example, a transdermal

administration of ICIs mediated by cold atmospheric plasma

(CAP) and microneedles has been devised (55). Research has

concentrated on identifying biomarkers and possible treatment

targets to enhance the immune checkpoint inhibitor response, in

addition to investigating the TME and innovative delivery strategies.

By targeting sialoglycans that prevent immune cell activation,

targeted glycan degradation has been suggested to enhance the

anticancer immune response (56). Additionally, to surmount

genetic heterogeneity and immune evasion that restrict the

therapeutic response to ICIs, an organoid-based screen has been

employed to find epigenetic inhibitors that enhance antigen

presentation and amplify T-cell-mediated cytotoxicity in breast

cancer (57). Overall, the creation of immune organoids as

preclinical models has provided researchers with a platform to

investigate the TME and direct precision oncology treatment

approaches. Researchers intend to increase the effectiveness of ICIs

and broaden their use in the treatment of cancer by comprehending

the processes underlying resistance to ICIs and investigating cutting-

edge tactics to boost the immune response (58).
Precision medicine and immunotherapy
response prediction

Regarding immunotherapy response prediction, precision

medicine is a rapidly developing discipline with enormous

potential for tailored cancer treatment. The process of developing

and implementing personalized immunotherapies is illustrated in

Figure 5. Recent studies have highlighted the importance of

biomarkers for predicting the efficacy of ICIs in cancer

immunotherapy. One biomarker that has been proposed to be

potentially significant in predicting the response to ICIs is the

fecal microbiota (59). In individuals with recurrent or refractory

classical Hodgkin lymphoma, circulating tumor DNA has also been

found to be a predictive factor for therapeutic response (60).Finding

predictive and prognostic biomarkers in the field of gastric cancer

(GC) is now crucial for developing precision treatment plans (61).

Given that GC is now understood to be a diverse disease,

biomarkers are essential for determining which therapeutic

strategy would work best for each patient.

Similarly, biomarkers have proven crucial in facilitating precise

diagnosis and customized treatment regimens in allergic disorders

and asthma (62). By offering insights into active tumor driving

signal transduction pathways, developments in RNA-based

diagnostic assays have also aided in the development of precision

oncology techniques (63). These tests assist oncologists in selecting

the most successful tailored therapy for patients by monitoring the

activity of pertinent signaling pathways in tissue samples and

circulating tumor cells. Using an in vitro system to culture

numerous tumor tissues obtained from patients, Voabil et al. (64)

introduced PD-1 antibodies to the culture system and measured the

levels of four T-cell activation indicators, thirteen chemokines, and

thirteen cytokines before and after adding the medication. The

study revealed that the clinical responses of patients and cancer
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tissue response scores to therapy were quite similar, indicating that

the model may be able to predict the early efficacy of PD-

1 antibodies.

PDOs have become important instruments in precision

oncology, enabling patients with hepatocellular carcinoma (HCC)

to anticipate their response to treatment. Organoid-on-a-chip

systems that are micro-engineered have been created to replicate

the microenvironment of tumors and enable high-throughput drug

screening for customized treatment approaches (65). The

application of PDOs to predict patients’ individualized responses

to conventional treatments is a hot research topic. Due to the

difficulty in identifying biomarkers that can predict responses to

immunotherapy, selecting the appropriate patient cohort to

improve clinical response rates to ICIs remains challenging.

However, comprehensive organoid culture systems, which include

the TME, may have potential special roles.

In the patient-derived organotypic tumor spheroids (PDOTS)

microfluidic culture containing tumor cells and autologous immune

components, a one-week evaluation of T-cell-mediated tumor cell

killing, and cytokine analysis showed that this model could predict

or assess patients’ responses to ICI therapy (66). ALI organoids can

also be used to assess T-cell function through flow cytometry,

fluorescence staining, and tumor killing assays, thereby simulating

responses to immune checkpoint inhibition. While the correlation

of these predictive methods with clinical outcomes still needs to be

validated, identifying cohorts with the best responses to

immunotherapy through this platform provides substantial

opportunities for clinical translation.
Oncolytic virus therapy

A particular type of virus known as an oncolytic virus is capable

of selectively infecting and killing cancer cells. They can propagate

viruses to neighboring cells, obliterate tumor cells directly, and

inhibit tumor-free host cells. This can stimulate the immune system

and cause the release of cytokines (67). Oncolytic measles virus

therapy has been shown by Packiriswamy et al. to boost T-cell

responses against tumor-associated antigens in multiple myeloma

patients (68). The use of oncolytic herpes simplex virus type 1

(HSV-1) for hematological malignancies was also investigated by

Ishino et al. (69), who successfully killed a variety of cell lines

generated from hematological malignancies. According to Elsedawy

et al. (70), developments in oncolytic viral therapy have resulted in

the creation of tailored picornaviruses that are designed as synthetic

infectious RNAs. Furthermore, Bots et al. (71) investigated the use

of adenoviruses derived from NHPs as possible oncolytic agents,

emphasizing the significance of comprehending the distinctions

and similarities between adenoviruses derived from NHPs and

humans for prospective therapeutic applications.

Additionally, as Sugawara et al. (72) have shown, the

combination of immune checkpoint inhibitors with oncolytic

viral therapy has shown encouraging results in increasing

antitumor responses. The use of a triple-mutated oncolytic herpes

virus to treat cancers that grow quickly and slowly was also studied

by Fukuhara et al. (73), emphasizing the significance of creating
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effective and safe oncolytic viruses for various tumor types. In

general, enhancing the effectiveness of oncolytic virus therapy in

treating different forms of cancer requires an understanding of the

mechanisms by which these viruses modulate the immune response

as well as the combination therapies they employ with ICIs.

Raimondi et al. (74) established normal pancreatic organoids and

pancreatic ductal adenocarcinoma (PDAC) tumor organoids to test

the feasibility of using organoids as a screening platform for

oncolytic adenovirus therapy. The results showed that the

oncolytic adenovirus exhibited good selectivity, replicating only in

PDAC organoids. This study also demonstrated the cytotoxicity of

the oncolytic adenovirus and the individual variability in its

synergistic effect with standard chemotherapy, indicating that

organoids can serve as an appropriate model for preclinical

responses to oncolytic virus therapy.

Moreover, in a study based on breast cancer (BC) organoids,

researchers tested the efficacy of the measles vaccine virus and

vaccinia virus for BC oncolytic therapy. The results suggested that

all oncolytic viruses significantly inhibited the survival of BC

organoids (75). The organoid platform can help in testing and

designing oncolytic virus treatment regimens. However, the current

research on oncolytic viruses mainly utilizes tumor organoid

platforms. Tumor organoids have shown great potential in

assessing the infectivity and cytotoxicity of oncolytic viruses, but

there is a lack of experimental studies on the immune response
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may bring new hope for oncolytic virotherapy.
Therapeutic application of organoids
in recent advanced treatment

Considered to be a breakthrough moment with great potential

for customized medicine and cancer biology as a preclinical human

tumor model, PDO technology has lately surged. Ma et al. (76)

demonstrated the potential of organoids in the treatment of disease

by creating an epithelial and mesenchymal organoid model

obtained from human induced pluripotent stem cells for

Localized Scleroderma (LoS) therapy. Similarly, Sahoo et al. (77)

highlighted the potential of organoids to predict patient-specific

responses to therapy by demonstrating the use of PDOs as an ex

vivo model for the treatment of urothelial carcinoma (UC).

Furthermore, Zhao et al. (78) demonstrated the promise of

organoids in developing drug delivery systems for cancer

treatment by proposing the use of nanotechnology and organoids

to create cancer nanomedicines. Furthermore, the development of

epidermal organoids (EpiOs) from iPSCs for skin regeneration was

described by Kwak et al. (79), highlighting the therapeutic potential

of extracellular vesicles (EVs) formed from organoids in

regenerative medicine. Future developments in technology may
FIGURE 5

Precision medicine and personalized treatment process for immunotherapies. The diagram shows the entire process from patient sample collection
and genome sequencing to personalized treatment plan formulation and implementation of different types of immunotherapies (such as CAR-T cell
therapy, checkpoint inhibitors, tumor vaccines, and monoclonal antibody therapy).
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lead to the widespread use of PDO models in cancer diagnosis and

treatment, and more patients may gain from the use of the

functional PDO assay in precision radiotherapy.
Discussion

Organoids are emerging as a new technology in the field of

antitumor immunology research, but they are still evolving.

Immunocompetent cancer-on-chip (iCoC) systems with

integrated immune components have surfaced in the last few

years. The parameters of the sophisticated iCoC model TME may

be precisely adjusted to more closely resemble the intricate

relationships and dynamics that exist between immune system

components and human tumor cells. The iCoC has been

effectively applied in numerous immunotherapy studies. ICoC has

been applied successfully in numerous immunotherapy studies (80).

Even while organoids show great promise for both clinical and

basic cancer research, there are still a few difficult obstacles that

need to be overcome. Initially, it is expensive to establish, maintain,

and age organoids. Secondly, the organoids generated from the

tissue samples are merely a tiny fraction of the whole tumor.

Because tumors vary widely, it is unclear how reliable it is to use

small portions of tumor tissue in place of the entire tumor.

Translational cancer research can be reliably facilitated, and

tumor heterogeneity better reflected by removing tissue from

multiple regions of the same tumor. Thirdly, the complexity of

immunological environments unique to each patient is difficult for

present organoid technology to mimic. While co-culture systems

containing immune and tumor-like cells have improved the

modeling of tumor-immune interactions and their effect on

therapy, several issues could prevent precise modeling and

prediction of immunotherapy responses. For example, the

immune components and cell counts of distinct tumor forms

vary, which influences the immune cell composition in the early

phases of tumor-like culture and the selection for preserving and

growing these immune cells. While some tumor types only have

immune cells in the surrounding stroma or do not have any

immune cells at all, other tumor types do have numerous

complicated types of immune cells.

There is no single model system that can perfectly replicate a tumor;

instead, the tumor immune microenvironment is a complex, highly

diverse, and dynamic system of numerous immune cells and stromal

cells. Similar to the organoid/immune cell coculture model, there is a

greater restriction on the kinds of immune cells that can be added

externally. Additionally, the condition of the extraimmune cells varies

greatly from that of the original TME and is not consistent with that of

the original cells in the immune microenvironment. Additionally,

immune cell survival and cellular activity may be hampered by the

inability of organoid media to maintain immune cell function at its

peak. On the other hand, inmodels of ALI or microfluidic culture, some

of the initial immune cells that infiltrate the tumor remain within the

organoid. These immune cell fractions are more likely to be lost during

passaging or freeze-thawing and are only preserved for a brief period of

time. As such, these techniques are limited to research that lasts a short

time. More significantly, circulating immune cells interact intricately
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with tumor and tumor-infiltrating immune cells, and the tumor

immunological microenvironment is constantly changing. These

models do not account for circulating immune cells; instead, they

consider only the local immunological profile of the TME. In

immune organoid research, modeling susceptibility and resistance to

immunotherapies—which include checkpoint inhibition and new

pathways—represents a significant translational hurdle. Organoids can

not only clarify possible resistance mechanisms but also support

therapeutic endeavors such as drug screening and optimization of in

vitro and cellular immunotherapies.

Multiple microenvironmental components could be integrated

into the same system in future studies. Ultimately, the goal of the

study should be to determine which modeling system is most

appropriate, and the benefits and drawbacks of each system

should be balanced. A greater technological investment should be

made in TME components such as vascular and neural populations.

Future improvements could be made to in vitro 3D models to

improve tumor immunology research and clinical translation by

more closely resembling the original tumor both physically

and functionally.
Summary and future perspectives

In addition to retaining the genomic and genetic characteristics,

heterogeneity, passage stability, and the ability to be massively

expanded in vitro, tumor organoids can also undergo gene editing

without ethical issues. Therefore, this platform has significant

advantages in evaluating combined immunotherapy strategies for

cancer patients, screening new immunotherapy methods, and

identifying biomarkers, making personalized precision treatment for

patients possible.

Furthermore, tumor organoids derived from liquid biopsies are

not limited by tumor location and can be dynamically observed at

different stages of tumor progression or before and after treatment.

Organoid technology enables the visualization of tumor

growth processes.

Combining organoid culture technology with organ-on-a-chip

technology allows for the integration of multiple components of the

TME, aiming to study the intercomponent communication within

this microfluidic system. This approach ensures controllable and

reproducible organoid cultures and, to some extent, achieves

organoid vascularization. Utilizing 4D imaging technology allows

for the dynamic monitoring of live cell interactions between

different cell subsets, which is particularly important for studying

immunodynamics in co-culture systems.

Immune organoids have great potential in simulating the effects of

immunotherapy, studying resistance mechanisms, and developing new

combination treatment strategies. With continuous optimization of

culture protocols, immune organoids are expected to drive the clinical

translation of tumor immunotherapy, ultimately achieving

personalized immunotherapy. Current and future organoid

methodologies will greatly advance basic science and clinical research

in immuno-oncology. It is anticipated that this approach will provide

significant therapeutic benefits for patients, paving the way for

promising breakthroughs in human tumor immunotherapy.
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