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Advances and clinical
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Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
In recent years, cell therapy has provided desirable properties for promising new

drugs. Mesenchymal stem cells are promising candidates for developing genetic

engineering and drug delivery strategies due to their inherent properties, including

immune regulation, homing ability and tumor tropism. The therapeutic potential of

mesenchymal stem cells is being investigated for cancer therapy, inflammatory

and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular

carriers for synthetic nanoparticles for drug delivery due to their inherent homing

ability. In this review, we comprehensively discuss the various genetic and non-

genetic strategies of mesenchymal stem cells and their derivatives in drug delivery,

tumor therapy, immune regulation, tissue regeneration and other fields. In

addition, we discuss the current limitations of stem cell therapy and the

challenges in clinical translation, aiming to identify important development areas

and potential future directions.
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1 Introduction

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate

into mesenchymal cell lines. Compared with embryonic stem cells and induced pluripotent

stem cells, MSCs have no ethical issues and no risk of teratoma formation, and have gained

more and more clinical appeal in recent years (1). Drug-loaded and genetically modified

mesenchymal stem cells and their derivatives have been shown to deliver drugs and

therapeutic cytokines to the site of injury (2, 3). MSCs have been reported to be used in

neural differentiation, inflammation reduction and various tumor models, such as melanoma

(4), colon cancer (5), pancreatic cancer (6), breast cancer (7)and hepatocellular carcinoma (8).
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Chimeric antigen receptors (CAR) are widely used on T cells,

natural killer cells, dendritic cells and macrophages (9). Despite

their efficacy, CAR-related therapies face challenges such as poor

persistence of CAR-carrying cells, cytokine release syndrome, and

cell dysfunction. Recent studies have shown that MSCs can enhance

the function of CAR-based therapies and help overcome these

drawbacks, improving the overall effectiveness of cell therapy.

Sirpilla et al. used an E-cadherin-targeted chimeric antigen

receptor to construct CAR-MSCs to enhance immunosuppressive

potency at sites of inflammation while maintaining their stem cell

phenotype and safety in an animal model (10, 11). Aliperta et al.

used MSCs as autonomous cellular machines for the continuous

production of the most humanized anti-CD33-anti-CD3 bsAb,

enabling it to redirect human T cells against CD33-expressing

leukemic cells (12). This study suggests that MSC-modified CAR

has greater lethality while regulating the proliferation of other

immune cells such as T cells. CAR-MSCs are a therapeutic

technology that can be widely used to enhance immunosuppression.

In recent years, the research on biomimetic membranes has

gradually increased. The cell membrane of stem cells and stem cell-

derived extracellular vesicles are considered to be effective natural

carriers. Since the cell membrane of stem cells and the extracellular

vesicles derived from stem cells preserve membrane proteins related

to intercellular communication and immune regulation, the

prepared biomimetic materials not only have their unique

biological properties, but also preserve the physical and chemical

properties of the source cells (13). The drug delivery system based

on the membrane and extracellular vesicles of MSCs not only

enhances the biocompatibility, but also maximizes the therapeutic

effect of biomaterials by simulating the targeting ability of MSCs

(14). These characteristics have gradually attracted the attention of

researchers and have been applied to the treatment of diseases. In

this review, we provide a comprehensive overview of the research

progress of MSCs and their derivatives in various diseases. In

addition, we analyzed and discussed the challenges of MSCs and

their derivatives in clinical applications.
2 The origin and mechanism of MSCs

2.1 Culture and differentiation

In the 1970s, Friedenstein et al. first identified mesenchymal

stem cells as spindle-shaped, adherent non-hematopoietic stem cells

in bone marrow (15, 16). MSCs have been obtained from bone

marrow, cord blood, placenta, heart, adipose tissue, synovial tissue

and other tissues (17, 18) (Figure 1). Currently, the markers of

MSCs lack absolute specificity and there are no clear phenotypic

markers. According to the International Society for Cell & Gene

Therapy (ISCT), when mesenchymal stem cells were detected by

flow cytometry, the expression rates of CD105, CD90, CD73 were

found to be over 95%, and the expression rate of CD45, CD34 was

less than 5%, while meeting the standard culture conditions for

plastic adhesion and demonstrating differentiation potential into

osteoblasts, adipocytes, and chondroblasts, the obtained samples

can be considered as mesenchymal stem cells (19–21). Sakaguchi
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et al. isolated mesenchymal stem cells from different tissues

and compared their colony forming capacity and differentiation

under defined conditions, and found that bone marrow,

synovial and periosteum-derived mesenchymal stem cells had

the highest alizarin red positive rate in osteogenesis, and

synovial mesenchymal stem cells had the greatest ability for

chondrogenesis (22). These results showed that MSCs derived

from different tissues differ in their differentiation capacity even

when cultured under the same culture conditions. The number of

bone marrow derived-MSCs decreases dramatically with age, and

fetal MSCs have a higher proliferative capacity (23). Baxter and Liu

et al. found that even minimal expansion induced a rapid aging of

MSCs and that telomerase activity in MSCs is required not only for

self-replication but also for differentiation (24, 25). MSCs often lack

major histocompatibility complex (MHC)‐II and co-stimulatory

molecules (17, 26, 27). Numerous studies have demonstrated that

MSCs can avoid allogeneic rejection in humans and different animal

models, which opens up broader prospects for the clinical

application of MSCs, rather than only using autologous cell

sources (28). MSCs may also have the ability to regulate the

differentiation, maturation and function of dendritic cells. some

studies have shown that MSCs can induce differentiation of mDC

into DCregs, along with reduce expreesion of MHCII, CD11C,

CD80, CD86 and CD40 (26, 29, 30). a et al. showed that the

expression of CD83 in mature DCs treated with MSCs was

significantly reduced, suggesting that DCs were tilted toward the

immature state, and MSCs could inhibit monocyte differentiation

into DCs (26).

The differentiation of MSCs is a two-step process, the process

from MSCs to progenitor cells with lineage specificity and the

process from progenitor cells to specific cell types (18). Studies in

recent decades have shown that many signaling pathways are

involved in the regulation of mesenchymal stem cell lineage

differentiation, including transforming growth factor-beta (TGF-

b)/bone morphogenic protein (BMP) signaling, fibroblast growth

factors (FGFs), Notch signaling and Hedgehogs signaling, etc (16,

31). TGF/BMPs signaling has been generally recognized to play a

role in both adipogenesis and osteogenesis differentiation of MSCs.

BMP4 can promote the adipogenic differentiation of MSCs, while

high dose of BMP2 can promote the osteogenic and chondrogenic

differentiation of C3H10T1/2 (32, 33). Several studies have shown

that the FGF receptor signaling cascade involves ERK1/2,

p38MAPK, SAPK/JNK, PCK and PI3K pathways, all of which

have been shown to play important roles in regulating osteogenic

and adipogenic differentiation of MSCs (34, 35). The activation of

Wnt signaling promotes osteogenic differentiation and inhibits

adipogenic differentiation of MSCs. Bennett et al. demonstrated

that activation of Wnt signaling by overexpression of Wnt10b

increased the thickness of trabecular bone, lack of Wnt10b

resulted in decreased bone density, they also suggested that the

reduction of Wnt10b was associated with an increase in aging-

associated adipocytes (36). Colter et al. found that culturing MSCs

at low densities (1.5 or 3.0 cells/cm2) led to more rapid proliferation,

the MSCs entered a phase of rapid exponential growth after

approximately 5 days and maintained their multipotentiality (37,

38). Besides, Gregory et al. found that MSCs secreted large amounts
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of Dickkopf-1, an inhibitor of the Wnt signaling pathway, when it

left the lag phase. Subsequently, Gregory added recombinant

Dickkopf-1 after the end of the lag period to increase cell

proliferation, suggesting that high levels of Dickkopf-1 allowed

cells to re-enter the cell cycle by inhibiting the Wnt/b-catenin
signaling pathway (39). Recently, it has been shown that blocking

Notch signaling pathway can promote autophagy-mediated

adipogenic differentiation of MSCs via PTEN-PI3K/AKT/mTOR

pathway (40). Notch signaling can also interact with BMP2

signaling to promote osteogenic differentiation (41). Hedgehog

signaling can promote osteogenic and adipogenic differentiation,

and the mutual interference between Hedgehog pathway and BMP

signal can regulate Smad signaling to promote osteogenic
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differentiation (42). These signaling pathways can be activated

simultaneously by stimuli from specific microenvironments. In

addition, a variety of microRNAs, transcription factors, biological

factors, chemical factors and physical factors play important roles in

the differentiation of MSCs (18). These factors eventually converge

in a tightly controlled cascade of events that affect the balance

between adipogenic and osteogenic differentiation of MSCs.
2.2 Homing

A key advantage ofMSC-based therapy is its ability to preferentially

homing to damaged tissues. Homing of MSCs is thought to be
A

B

FIGURE 1

Origin and mechanism of mesenchymal stem cells. (A) Mesenchymal stem cells come from bone marrow, adipose tissue, umbilical cord, muscle
and other tissues, and can differentiate into different cell types. (B) Schematic diagram of homing mechanism of mesenchymal stem cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1421854
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mei et al. 10.3389/fimmu.2024.1421854
important in tissue regeneration, which reflects the ability of stem and

progenitor cells to recruit and homing to damaged tissues in need of

repair (37). Different from the process of leukocyte migration to

inflammatory sites, MSCs homing is divided into non-systemic

homing and systemic homing (43). Unsystematic homing refers to

the local transplantation ofmesenchymal stem cells to the damaged site,

while systematic homing refers to the migration of MSCs to the target

tissue through vascular endothelial cells under the guidance of homing

promoting factors released by the damaged tissue (44). This process is

divided into five steps (Figure 1) (1): Rolling, Ruster et al. found that

MSCs bind to endothelial cells in a P-selectin dependent manner,

however, MSCs do not express P-selectin ligands, indicating that other

ligands interact with P-selectin on the surface of MSCs (45). Studies

have shown that glycoproteins and galectin-1 expressed on bone

marrow MSCs have been identified as alternative P-selectin ligands

(27). CD44 receptor is also known as homing receptor, and studies have

shown that hyaluronic acid is a potential binding site of CD44 receptor-

mediated MSCs homing (46) (2). Activation, stromal cell-derived

factor-1 (SDF-1), a small chemokine in the C-X-C motif chemokine

family, plays a key role in MSCs transportation and homing (47). SDF-

1 expression in injured blood vessels and tissues upregulates SDF-1

binding to CXCR4 expressed by MSCs and induces MSCs to mobilize

and homing along the SDF-1 concentration gradient to the damaged

tissues and exert their effects (48). In addition, CXCR7 was also

identified as a receptor for SDF-1 and involved in MSCs homing

(43) (3). Firm adhesion: after entering the peripheral blood circulation,

mesenchymal stem cells continuously roll with vascular endothelial

cells (49). VLA4/VCAM1 plays a key role in the firm adhesion between

MSCs and endothelial cells (45). VLA4 expressed by MSCs is activated

by chemokines such as SDF-1 and binds to VCAM1 on endothelial

cells to activate the cell adhesion signaling pathway and promote the
Frontiers in Immunology 04
adhesion of MSCs to endothelial cells (49, 50) (4). Crawling, CCR2/

FROUNT/PI3K signaling pathway promotes the formation of actin

filaments and pseudopodia, thereby mediating cytoskeletal

reorganization and promoting MSCs to crawl and migrate in the

inner wall of blood vessels (51, 52) (5). Transendothelial migration.

MSCs secrete matrix metalloproteinases (e.g., MMP9, MT1-MMP) and

proteolytic enzymes (e.g., uPA) to disrupt the barrier of the endothelial

basement membrane and pericyte sheath to complete transepithelial

migration (53–55). Improving the homing efficiency of MSCs is one of

the challenges in MSCs therapy. At present, there are targeted drug

delivery, genetic engineering of stem cells, magnetic guidance and other

technologies, aiming to improve the systematic or non-systematic

homing ability of MSCs through various technologies (56, 57).
3 The role of MSCs as drug
delivery vehicles in diseases of
different systems

In recent years, mesenchymal stem cell therapy has emerged as a

prominent field in the domains of anti-tumor treatment and tissue

regeneration. Owing to their inherent capacity for autonomous

differentiation, facile isolation and propagation, as well as attenuation

of immune effector responses, numerous ongoing clinical trials are

underway (58). Their utilization has witnessed a steady rise in graft-

versus-host disease (GVHD) and autoimmune disorders such as lupus

and Crohn’s disease (59, 60). Furthermore, the clinical therapeutic

potential of MSCs has been extended to encompass myocardial

infarction, stroke, multiple sclerosis, liver cirrhosis, diabetes, lung

injury, and cancer (61–64) (Figure 2).
FIGURE 2

Mesenchymal stem cells and their derivatives are used for drug delivery. Mesenchymal stem cells and their derivatives can deliver a variety of drugs
to different tissues throughout the body, such as the heart, liver, and lung.
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3.1 Cancer

Cancer is a major public health problem worldwide, threatening

human health (65). Addressing tumor treatment has emerged as an

urgent medical imperative. Numerous investigations have

consistently demonstrated the involvement of mesenchymal stem

cells in cancer initiation, development, progression, and metastasis

(28, 49, 57). Furthermore, research has substantiated the

immunomodulatory properties of mesenchymal stem cells along

with their capacity to selectively migrate towards inflammatory and

neoplastic sites, rendering them promising vehicles for targeted

delivery of anti-tumor therapeutics (50, 66).

Allogeneic bone marrow or hematopoietic stem cell

transplantation is a crucial therapeutic approach for leukemia,

multiple myeloma, and lymphoma (67). Following hematopoietic

stem cell transplantation, GVHD frequently occurs in patients (68,

69). MSCs have been reported to possess immunosuppressive

properties that not only alleviate GVHD but also enhance

hematopoietic reconstitution post-transplantation (70). Although

some studies have suggested the pro-tumor function of MSCs, it is

generally accepted that MSCs can impede tumor growth through

various mechanisms such as disrupting tumor cell cycle and

inducing apoptosis (71). Secchiero and Ho et al. demonstrated

that MSCs can suppress tumor angiogenesis by downregulating the

platelet-derived growth factor/platelet-derived growth factor

receptor (PDGF/PDGFR) axis in glioma cells (72). By co-

culturating umbilical cord derived mesenchymal stem cells with

glioblastoma cancer stem cells, Bajetto et al. found that direct

interaction (cell-to-cell contact) would cause inhibitory reactions,

and the proliferation of both types of cells would be slowed down,

while indirect interaction (via the release of soluble factors) would

cause irritant reactions (73). Meanwhile, Sarmadi et al. showed that

MSCs hinder the progression of lymphoid hematopoietic tumor

cells by arresting them at the G0/G1 phase through intercellular

contact (74). Despite reports on the regulatory role of MSCs in Wnt

signaling within tumors, there remains controversy regarding

whether this regulation suppresses or enhances tumor

development. On one hand, studies have indicated that b-catenin
—an essential signaling molecule in the Wnt pathway—enhances

telomerase reverse transcriptase (TERT) expression and prevents

telomere loss in cancer stem cells (75). Conversely, MSCs secrete

Dickkopf-1 to modulate Wnt signaling and attenuate leukemia

tumor cell proliferation (76).

As carriers of anti-tumor drugs, MSCs can be genetically

engineered to express or secrete a variety of therapeutic agents

that inhibit cancer growth and progression. These agents

encompass therapeutic proteins, suicide genes, and oncolytic

viruses (4). Cytokines and growth factors have been identified as

crucial regulatory factors in tumor development, therefore,

therapeutic proteins based on cytokines and growth factors that

impede tumor growth or act as inhibitors of pro-tumor factors

have emerged as potential anti-tumor drugs (77). MSCs are

considered an ideal vehicle for delivering these therapeutic
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proteins. Wong et al. demonstrated the anti-proliferative and

apoptotic effects of gene-edited MSCs capable of producing

IFN-b on tumor cells (78). Several studies have shown that the

expression of the pro-apoptotic protein tumor necrosis factor-

related apoptosis-inducing ligand (TRAIL) in MSCs can induce

the apoptosis of tumor cells in various tumors, including breast

cancer, lung cancer, colorectal cancer, and cervical cancer (79–81).

IL-12 is regarded as an optimal anti-tumor factor due to its ability

to stimulate T cell and NK cell activation, Gao and Seo et al.’s

research reported that IL-12-expressing MSCs can suppress the

occurrence and progression of renal cell carcinoma and cervical

cancer in mice (66, 82).

In addition, MSCs are often engineered to secrete suicide genes,

converting non-toxic reagents into toxic anti-tumor drugs (83). By

employing gene-directed enzyme prodrug therapy, the systemic

toxicity of 5-FU can be circumvented by harnessing the enzymatic

activity of bacterial and/or yeast cytosine deaminase (CD) to

convert the less toxic substrate 5-fluorocytosine (5-FC) into 5-FU

(84). Lucia et al. demonstrated the targeted migratory capacity of

CD-AT-MSCs towards tumor cells and their ability to inhibit tumor

growth in tissues through the generation of adipose tissue-derived

mesenchymal stem cells (AT-MSCs) expressing a fusion gene

consisting of yeast cytosine deaminase and uracil phosphate

riboside transferase (CD-AT-MSCs) (83). By targeting tumor cell

surface proteins, oncolytic viruses (OVs) can bind to tumor cells

and lead to oncolytic effect (85). The administration of OVs via

MSCs has been proven effective in treating lung metastasis in

glioblastoma, hepatocellular carcinoma, and breast cancer (86–

89). Zhang et al. discovered that oncolytic herpes simplex virus-1

modulates the tumor microenvironment by reducing macrophage

percentages while increasing tumor-infiltrating lymphocyte

numbers (90). Furthermore, combining oncolytic viruses with

immune checkpoint modulators significantly prolongs survival in

mice bearing tumors (91).
3.2 Immunomodulation

To date, mesenchymal stem cells have demonstrated

immunomodulatory effects through direct intercellular contact

and paracrine secretion of soluble factors, including modulation

of lymphocyte proliferation, inhibition of dendritic cell activation,

regulation of B cell proliferation and function, induction of

regulatory T cell proliferation, and suppression of natural killer

cell activation (28, 92–94). In vitro, MSCs have been shown to

inhibit naive and memory T cells from communicating with

antigen-presenting cells by upregulating intercellular adhesion

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1

(VCAM-1), while ICAM-1 is key to T cell activation and

leukocyte recruitment to inflammatory sites (77). In addition,

mesenchymal stem cells expressing Toll-like receptor 3 and Toll-

like receptor 4 have been shown to restore effective T cell responses

in the presence of infection (95). Francesa et al. reported that MSCs
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increase the survival of quiescent B cells through a contact-

dependent mechanism and promote B cell differentiation

independent of T cells (96). Furthermore, MSCs supported CD19

(+) B cell proliferation through a cell contact dependent

mechanism, promote AKT phosphorylation in B cells by

increasing vascular endothelial growth factor (VEGF)

production, and inhibit Caspase 3-mediated apoptosis (97).

Studies on the co-culture of MSCs with different types of NK cell

lines (KHYG-1 and NK-92) showed that MSCs inhibited the

cytotoxic activity of KHYG-1 in both direct and indirect co-

culture, and inhibited the cytotoxic activity of NK-92 in indirect

co-culture, but direct contact had no effect on the cytotoxic activity

of NK-92 (98). Further studies indicated that MSC-mediated

cytotoxic activity depended on the differential crosstalk between

the two types of cells (98). In the innate immune system, MSCs

interact with NK cells by inhibiting IL-2-induced proliferation of

NK cells and inducing cytotoxic activity or cytokine production

through secretion of IDO (Indoleamine-2,3-Dioxygenase) and

PGE-2 (Prostaglandin E2) (92, 99). Additionally, IL-6 secreted by

MSCs can prevent monocytes from differentiating into IL-10-

producing phenotypes, while MSC-derived PGE2 enables

inhibition of monocyte differentiation into mature dendritic cells

(DCs) (100, 101). Furthermore, miR-21–5p, which enriched in

extracellular vesicles derived from MSCs, has been shown to affect

the maturation and function of DCs (102). Preconditioning MSCs

with hypoxia and immunomodulatory factors has also been

demonstrated to increase their potential for survival and efficacy

through increased paracrine effects and antioxidant activity as well

as observed angiogenic factor secretion in acute kidney injury and

bleomycin-induced pulmonary fibrosis (103–105). Moreover,

membrane particles (MPs) derived from IFN-g stimulated MSCs

have been found to increase mRNA expression of Programmed

Cell Death Ligand 1 (PD-L1) in monocytes as well as the

percentage of anti-inflammatory PDL-1 and CD90-positive

monocytes suggesting potential use for MP-based cell-free

therapy for immune diseases (106). Finally, transforming MSCs

to express specific immunomodulators such as IFN-g or

interleukin can enhance their inherent ability to temporarily

escape the immune response while increasing their pluripotency

leading to tumor growth reduction through polarization towards

pro-inflammatory M1 phenotype (107, 108). It has been shown

that mesenchymal stem cells have intrinsic immunosuppressive

abilities that can reduce inflammation and immune responses.

Because mesenchymal stem cell-derived EVs have similar

biological functions as MSCs and are more stable and less

immunogenic, MSCs-EVs can be an excellent alternative to

MSCs (109). Fan et al. used MSC-EVs to treat diabetic mice, and

the results showed that MSC-EVs treatment reduced M1

macrophage phenotype markers and increased M2 macrophage

phenotype markers, and MSC-EVs alleviated neurovascular

dysfunction in diabetic peripheral neuropathy mice by

inhibiting pro-inflammatory genes (110). Mathew et al.

reported that injecting MSCs-EVs into the vitreous body can

significantly improve retinal functional recovery and reduce

neuroinflammation and apoptosis (111).
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3.3 Fibrotic diseases

One of the reasons for organ fibrosis is the plasticity of

fibroblasts. Research has demonstrated that adipocytes and

adipose-like cells transform into collagen-secreting myofibroblasts

during the development of fibrosis in the lung, liver, and skin (27).

Myofibroblasts are the primary cells involved in fibrosis, and their

activation can be triggered by various mechanisms, including

paracrine signals from macrophages and lymphocytes or autocrine

signals derived from myofibroblasts themselves (112). Schermulty

et al. genetically engineered myofibroblasts formed during the

development of fibrosis to regenerate into adipose-like cells and fat

cells in the lung (113). Given the multiline differentiation potential of

MSCS, studying the fate of MSC-derived myofibroblasts may

provide valuable hints for future anti-fibrotic therapies (114).

Exogenous mesenchymal stem cells possess anti-fibrotic properties

(115). TGF-b is considered as a key regulator of fibrosis, exerting its

effects through two signaling pathways: the classical pathway

dependent on Smad2/3 and the non-classical pathway

independent of Smad signaling (116). In a mouse model of CCL4-

induced liver cirrhosis, infusion of bone marrow-derived MSCs can

reduce liver fibrosis area by decreasing TGF-b levels while enhancing
BMP7 levels (117). Jiang et al. demonstrated that bone marrow-

derived mesenchymal stem cells inhibit thioacetamide-induced liver

fibrosis progression by suppressing the TGF-b/Smad signaling

pathway or directly inhibiting hepatic stellate cell proliferation

through upregulation of Notch1 expression and downregulation of

PI3K/AKT or Wnt/b-catenin pathways, thereby reducing liver

fibrosis (26). Tonsil-derived mesenchymal stem cells exert their

anti-fibrotic effects in liver fibrosis by downregulating the

expression of collagen I and TGF-b through an autophagy-

dependent mechanism (118). Pulmonary fibrosis is characterized

by excessive deposition of extracellular matrix (ECM), destruction of

lung parenchyma and epithelial barrier, as well as progressive

proliferation of fibroblasts and myofibroblasts (116). Adipose

tissue-derived MSCs mitigate bleomycin-induced pulmonary

fibrosis in rats by modulating IL-17-mediated immune responses

induced by ECM (119). Bone marrow-derived MSCs possess anti-

fibrotic properties attributed to their ability to release IL-1 receptor

antagonists, leading to a reduction in the expression and activity of

IL-1 and TNF-a (120). Bone marrow-derived MSCs alleviate renal

interstitial fibrosis in a model of unilateral ureteral obstruction by

inhibiting capillary dysfunction around renal tubules, promoting

parenchymal cell proliferation, and suppressing myofibroblast

activation and differentiation (121). Yong et al.’s study revealed

that hepatocyte growth factor (HGF) present in conditioned

medium from adipose-derived MSCs hinders cardiac fibroblast

differentiation into myofibroblasts via inhibition of angiotensin II

type 1 receptor signaling pathway while upregulating inhibitory

Smad7 (28, 122). TGF-b binding receptor activates sphingosine

kinase 1/1-sphingosine phosphate/mammalian target of rapamycin

(SPHK1/S1P/mTOR) pathway and accelerates the production of

pro-fibrosis molecules, ultimately leading to the occurrence of

intestinal fibrosis (123). Kang and Wang et al. reported that MSCs

release miR-148b-5p, which suppresses the expression of 15-lox-1 in
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1421854
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mei et al. 10.3389/fimmu.2024.1421854
macrophages, thereby attenuating inflammatory bowel disease by

inhibiting ERK phosphorylation in neutrophils (124, 125). A study

demonstrated that both intravenous infusion and injection of MSCs

after anal sphincter injury in rats significantly reduced fibrosis and

scar tissue compared to the PBS treatment group (126). Intestinal

fibrosis is a common complication of anal fistula. Injecting

autologous adipose tissue-derived mesenchymal stem cells

completely cured 57% of fistula patients and reduced secretion in

some remaining patients (127). Autologous and allogeneic adipose

tissue-derived mesenchymal stem cells have shown favorable results

with high safety in long-term clinical trials for fistula treatment (128,

129). In various fibrotic diseases, MSC-mediated anti-fibrotic

activity appears to involve the TGF-b/Wnt/Smad signaling

pathway as a common mechanism. Enhancing the homing ability

of mesenchymal stem cells is crucial for improving their therapeutic

efficacy. Liao et al. utilized microbial orthogonal reaction to modify

liver sinusoidal endothelial cell (LESC)-targeting peptide

RLTRKRGLK on adipose-derived mesenchymal stem cells, and

demonstrated that the modified MSCs had higher liver-targeting

delivery efficiency, significantly enhancing liver regeneration and

anti-inflammatory effects (130). Vittorio et al. injected MSCs loaded

with carbon nanotubes into the portal vein of rats to investigate the

effect of magnetic force exerted by carbon nanotubes on MSCs

homing, and the results showed that carbon nanotubes could guide

MSCs to migrate in vivo and in vitro, increasing their transplantation

and homing in liver tissue (131, 132).
4 MSCs and their derivatives are used
as drug delivery vehicles

Drug-loaded and genetically modified mesenchymal stem cells

can deliver drugs and therapeutic cytokines to sites of injury or

inflammation, thus having applications in regenerative and

antitumor therapies. From cell-derived peptide modification to

cell-based drug delivery systems, genetic engineering and

biomimetics provide a new strategy of nanoparticles, which are

attractive candidates for drug therapy. Here, we summarize some of

the studies on the use of MSCs and their derivatives in the treatment

of diseases (Table 1).
4.1 MSC-derived extracellular vesicles

Extracellular vesicle therapy based on mesenchymal stem cells

has been proven to be biosafe, highly stable and low immunogenic.

Studies have shown that bone marrow mesenchymal stem cells can

regulate the fate of tumor cells in a paracrine manner (149). MSC-

derived extracellular vesicles (EVs) have a strong ability to migrate

to tumor sites, so MSC-derived EVs are the main contributors to

paracrine. MSC-derived EVs are widely used as safe and versatile

drug delivery platforms.

Naseri et al. loaded anti-miR-142–3p LNA into EVs derived

from mouse BMMSCs by electroporation (133). Small interfering
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TABLE 1 Application of MSCs and its derivatives in the treatment
of diseases.

Form
of drug

Applications Interventions Reference

Engineered
MSC

Breast cancer, lung
cancer, colorectal
cancer, and
cervical cancer

TRAIL-
expressing MSCs

(79–81)

Renal cell
carcinoma and
cervical cancer

IL-12-
expressing MSCs

(66, 82)

Disseminated
neuroblastoma

MSCs
loaded drugs

(83)

Liver injury Targeting peptide-
expressing MSCs

(130)

Liver fibrosis MSCs loaded
carbon nanotubes

(131, 132)

MSC-derived
extracellular
vesicles

Breast
cancer,
osteoarthritis

MSCs-derived EVs
loaded miRNA

(133, 134)

Pancreatic cancer, MSCs-derived EVs
loaded siRNA

(135)

Cerebral ischemia-
reperfusion injury

MSCs-derived EVs
loaded mRNA

(136)

Colorectal cancer,
thyroid cancer,
inflammatory
diseases

MSCs-derived EVs
loaded drugs

(135, 137, 138)

MSC
with hydrogels

Bone defect Integrin-
specific hydrogels

(139)

Hindlimb Ischemia chitosan hydrogel (140)

Spinal cord injury 3D-exohydrogel
hybrid
microneedle
array patch

(141)

Diabetic Wound Pluronic
F127 Hydrogel

(142)

Peri-implantitis MSC-encapsulated
Adhesive
hydrogels

(143)

Calvarial defects MSC-encapsulated
HPCH + poly
(e-caprolactone)/
nano-
hydroxyapatite
(PCL/nHA)

(144)

MSC cell
membrane-
coated
nanoparticles

Orthotopic glioma PTX-PLGA-
loaded MSCs

(145)

Liver injury,
prostate tumor

SPIO@AuNPs-
loaded MSCs

(146, 147)

Heart Repair NA@MEV-
loaded MitoN

(148)

Immune diseases IFN-g-expressing
membrane
particles

(106–108)
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RNAs (siRNAs) and drugs can also be loaded into extracellular

vesicles by electroporation. Zhou et al. reported an exosome-based

dual delivery biological system, IEXO-OXA. By loading galectin-9

siRNA into exosomes and surface modification of exosomes with

oxaliplatin prodrug as an immunogenic death trigger, therapeutic

exosomes can improve tumor targeting and increase drug

accumulation at tumor sites (150). Bagheri et al. loaded

doxorubicin into exosomes derived from mouse BMMSCs by

electroporation and showed that tumor volume was reduced and

survival was prolonged in tumor-bearing mice (135). Bliss et al.

used ultrasonically treated hADMSC-derived EVs loaded with

tyrosine kinase inhibitors and found a significant decrease in

iodine affinity of iodine-resistant thyroid cancer cells (137).

Currently, MSC-derived EVs have been used in clinical trials, and

17 patients recovered after treatment with mesenchymal stem cells

derived exosomes (MSC-EXOs) in 24 patients with COVID-19

disease (149). A clinical trial (NCT01547091) conducted at the PLA

Air Force Hospital showed that MSC combined with low-dose

antirheumatic drugs had a long-term beneficial effect in patients

with rheumatoid arthritis, which was better than that in patients

treated with antirheumatic drugs alone (138). Wang et al. co-

cultured TGF-b1-MSC- EXOs with rat chondrocytes and found

that the expression of specific protein 1 (SP1) in chondrocytes was

decreased and the proliferation activity of chondrocytes was

enhanced (134).

MSC-derived EVs also have therapeutic limitations. The most

suitable MSC source may need to be screened for the production of

EVs, and the long-term safety and therapeutic efficacy of MSC-

derived EVs need to be further verified. In addition, MSC-derived

EVs require a larger dose but have a lower yield. Future advances

in nanotechnology still require attention and issues such as

breakthrough yield and stability.
4.2 MSC with hydrogels

Hydrogels are hydrophilic, three-dimensional and cross-linked

polymer networks that are highly adjustable materials (151).

Currently, hydrogel systems have been designed to promote

MSCs proliferation and maintain stem cell dryness during in vitro

expansion, or to improve MSCs survival, retention, and

implantation in vivo (152). The researchers influenced the fate

and secretion of MSCs by altering the properties of the hydrogel,

such as stiffness, viscoelasticity, porosity, and degradability (139,

153, 154).

Since integrin ab heterodimers of the cellular ECM adhesion

receptor family regulate cell anchoring, migration, and survival,

Amy et al. prolonged the survival, implantation, and secretion and

repair activities of MSC in tissues by presenting a specific peptide

targeting a2b1 integrin in the hydrogel (139). Zhang et al. loaded

MSC- EXOs into chitosan hydrogel, which not only improved the

stability of proteins and miRNAs in MSC-EXOs, but also prolonged

their retention time in vivo (140). Traditional two-dimensional

culture inevitably leads to the loss of stem cells, which limits the

therapeutic efficacy of MSC-EXOs. Han et al. proposed a controlled

3D-exohydrogel hybrid microneedle array patch to achieve
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constant in situ release of exosomes. The results showed that 3D-

cultured MSCs could maintain their stemness. The obtained

exosomes can effectively reduce the inflammation and glial scar

formation induced by spinal cord injury treatment, and realize the

repair of spinal cord injury in situ (141). Human umbilical cord

MSC-derived exosomes encapsulated in thermosensitive PF-127

hydrogel can significantly accelerate wound healing rate, promote

granulation tissue regeneration, up-regulate the expression of

VEGF and TGFb-1, and increase wound healing growth factor

(142). Currently, cell-containing hydrogels have been widely used in

tissue engineering and regenerative medicine, the moist and highly

dynamic environment of the mouth makes the application of

hydrogels in the local treatment of oral diseases a challenge (151,

155). Based on this, Mohammad et al. designed a hydrogel material

with adjustable mechanical properties and biodegradability that can

effectively provide patient-derived dental derived MSCs to promote

the regeneration of craniofacial bone tissue in rats (143). One

disadvantage of biodegradable hydrogels is that they are too weak

to hold their shape, so designing hydrogels with both high cellular

compatibility and good mechanical properties will enhance their

application value. Ji et al. combined 3D printed customized poly

(e-caprolactone) (PCL) and natural hydroxypropyl chitin hydrogel

(HPCH) to produce hydrogel not only has good cell compatibility,

but also improves mechanical properties (144). Considering that

implanted biomaterials may induce inflammation and local tissue

damage by activating macrophages, Ji et al. also examined the

interaction between the hydrogel and the immune response,

showing that the hydrogel can regulate the transformation of

macrophages to M2, possibly enhancing bone healing (144).
4.3 MSC cell membrane-
coated nanoparticles

Over the past few decades, the application of biomedical

nanotechnology in the treatment of diseases has continued to

evolve. Inspired by the synthesis of liposomes, nanoparticles were

prepared by extrusion through a porous polycarbonate membrane

after separation of cell membranes by hypotonic, repeated freezing

and thawing, or ultrasonic fragmentation (156). Microfluidic and

electroporation techniques have also been applied to facilitate the

synthesis of cell membrane-coated magnetic nanoparticles (157).

Due to the asymmetric charge of the cell membrane, negatively

charged nanoparticles are better able to form a membrane cover

(158, 159). Drug-loaded nanoparticles can be taken up by cells

and released continuously in cells (160). Polylactic acid-glycolic

acid (PLGA) has been approved by the US Food and

Drug Administration due to its high biodegradability and

biocompatibility (13).

Pacioni et al. reported that chemotherapy drug Paclitaxel

(PTX)-PLGA-loaded MSCs had a tropism to orthotopic glioma,

and the release of the drug causes specific cytotoxic damage to

tumor cells and had a sustained release effect (145). In addition,

MSCs have been reported to uptake diagnostic nanoparticles to

specific targets. Superparamagnetic iron oxide (SPIO) can be used

to track labeled cells in cell therapy (161). Gold nanoparticles
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(AuNPs) are widely used as photothermal agents for tumor

photothermal therapy (162, 163). SPIO@AuNPs can be used as a

good diagnostic agent for magnetic resonance imaging (146).

Adipose tissue-derived MSCs carry more SPIO@AuNPs at sites of

liver injury or tumor and effectively kill surrounding cells in vivo

(146, 147). Wang et al. used MSCs as lung-targeting vectors loaded

with nanoparticles containing doxorubicin to verify the efficient

targeting of MSCs in three animal models, namely mice, rabbits and

monkeys, and the MSC/Nanoparticle (NP) delivery system

effectively inhibited the development of lung cancer with a lower

dose of anticancer drugs (3). Zhang et al. prepared macrophage

bionic and nitric oxide (NO)-driven MSC-EV nanomodels NA@

MEV that colonized damaged blood vessels, and a reactive oxygen

species (ROS) scavenger called MitoN was used to mimic

nicotinamide adenine dinucleotide (NADH) to attenuate ROS-

induced DNA damage and DNA damage response (DDR), reinitiated

myocardial proliferation, and triggered immunomodulation and

proangiogenesis (148).

Although a large body of scientific literature on membrane-

coated nanoparticles has demonstrated convincing therapeutic

effects on different diseases, membrane coating technology still

faces several challenges (164). The coated and uncoated

nanoparticles are difficult to separate due to the limitation of the

preparation method. The physiological mechanisms at the cellular

level require a strong understanding, including membrane

properties, drug forms and membrane-coated nanoparticle-

environment interactions, drug release processes, and material

loss during manufacturing.
5 Challenges in the clinical translation
of MSCs

Mesenchymal stem cells have been widely studied as a kind of

cell therapy, which shows good application prospects in tissue

repair and regeneration, anti-tumor and so on. Unlike other cell

therapies, the therapeutic effect of MSCs is not only dependent on

cell-cell contact, but also the so-called hit-and-run mechanism may

exist (165). Cell-to-cell contact occurs by forming gap junctions or

tunneling nanotubes with adjacent or nearby cells, which allows for

the transfer of small molecules, peptides and organelles (165). Bahr

et al. examined autopsy materials from 18 patients who received

human leukocyte antigen mismatched mesenchymal stem cells and

found that long-term transplanted mesenchymal stem cells

appeared to have very low levels at best, due to rejection by the

recipient’s immune system, or failure to survive and transplant after

intravenous injection (166). They therefore proposed that MSCs

appear to regulate their function through a “hit and run”

mechanism, rather than through continuous implantation in

damaged tissues. While mesenchymal stem cells perform

therapeutic functions through a brief “hit and run” mechanism,

protecting mesenchymal stem cells from immune detection and

prolonging their persistence in vivo may improve clinical outcomes

and prevent patients from being allergic to donor antigens (167).

Therefore, MSCs secrete soluble cytokines, growth factors,

hormones and miRNAs in a paracrine manner. Moreover, studies
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have shown that MSC-derived EVs retain the biological

characteristics of parental MSCs and show similar therapeutic

effects in some animal models (148).

Up to now, dozens of MSCs therapies have been approved

globally. Alofisel is the first allogeneic stem cell therapy approved in

the European Union. Adult Crohn disease (CD) patients with

refractory, draining, and complex perianal fistulas who received a

single intralesion injection of 120 million allogenic AT-MSC

(Alofisel) showed marked remission, with a higher remission rate

at 52 weeks of follow-up than placebo (60). Despite the success of

some MSCs therapies, there are still some factors that may lead to

unsatisfactory clinical outcomes, such as MSCs product quality,

management, and host factors. Since MSC preparation involves

deep cryopreservation until thawing of MSCs at the bedside and

infusion into the patient. Studies have shown that cryopreserved

MSCs have decreased ability to suppress immunosuppression and

inhibit T cell proliferation (168). Different modes of administration

can produce different pharmacokinetics (169, 170). Hofmann et al.

reported that less than 5% of the injected cells remained at the

injection site several hours after local administration of MSCs

therapy (171). Therefore, in order to improve the therapeutic

effect, the retention and survival of MSC should be further

strengthened. To improve local delivery of MSCs, Hu et al. used

hypoxic preconditioning of MSCs, which showed increased

angiogenesis after transplantation into a myocardial infarction

(MI) model compared to normoxic MSCs, and hypoxic

preconditioning enhanced the ability of MSCs to repair infarcted

myocardium (172). Encapsulation of MSCs by biomaterials can

improve its retention and survival ability in vitro, but further studies

are needed to investigate its effect in vivo. Guiding the host to

establish a better microenvironment for MSCs therapy can improve

its therapeutic efficacy. For example, the water-soluble antioxidant

vitamin C can prevent oxidative stress and reduce damage to

transplanted cells (168).

MSCs therapy still faces great challenges, and continuing to

explore engineering approaches to meet these challenges can

improve its clinical indications and enhance its therapeutic

efficacy. Enhancing the potency of MSCs through engineering

strategies such as small molecule priming, membrane particles

engineering, and genetic modification provides a measurable

property that can be tested at all stages of preclinical and clinical

development, from well-defined potency assays to therapeutic

biomarkers in human clinical studies.
6 Conclusion

Despite the great advances in medicine over the past few

decades, organ transplantation still faces significant obstacles.

Alternative strategies for allogeneic organ transplantation are

currently being explored. MSCs from autologous and allogeneic

sources are used as a cell therapy to reduce the use of

immunosuppressive drugs in organ transplant recipients. 3D

bioprinting has been applied in tissue engineering and

regenerative medicine using 3D printing techniques to print

tissues or organs (173). MSCs isolated from various sources have
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the ability to differentiate into a variety of cells and anti-

inflammatory and immunomodulatory properties, which enable

them to be used as cell therapy for organ preservation and

transplantation, depending on the rapid advances in the fields of

tissue engineering and regenerative medicine (174). MSCs can

inhibit the activation of cells of the adaptive immune system and

innate immune system and convert them into regulatory cells,

thereby reducing the host response to the graft. In a corneal

transplant model, MSCs infusion protected against allograft

rejection by shifting macrophages toward the M2 phenotype

(175). Takebe et al. generated liver organoids by co-culturing

human pluripotent stem cells, mesenchymal stem cells and

human umbilical vein endothelial cells to form 3D liver bud like

structures (176). When transplanted into nude mice, the organoids

showed functional angiogenesis and drug metabolic activity.

Mesenchymal stem cells have a particular impact on aspects of

transplantation and regenerative medicine, and MSCs are emerging

as a powerful tool in the medical field by improving organ

preservation and immune tolerance.

In this review, we summarize the current status of mesenchymal

stem cell therapy and the challenges in translational application of

clinical therapy. Various biological, biochemical and biophysical

factors affect the survival and homing ability of MSCs through the

interplay between cells, extracellular matrix and bioactive factors in

vitro and in vivo (177). Therefore, by regulating the above factors to

reduce cell damage, improve the survival rate of MSCs, increase the

homing ability of MSCs and improve the efficiency of MSCs

implantation. For the large-scale clinical production and use of

MSCs, it is important to standardize and optimize the cell source

and culture price adjustment, formulate more detailed and accurate

identification criteria, clarify the biological mechanism, and

formulate a standardized plan for MSCs source and combined

biomaterials according to different types of diseases, so that MSCs

can be clinically transformed as soon as possible.
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