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The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and

transcription factor found throughout the body, responding to a wide range of

small molecules originating from the environment, our diets, host microbiomes,

and internal metabolic processes. Increasing evidence highlights AhR’s role as a

critical regulator of numerous biological functions, such as cellular

differentiation, immune response, metabolism, and even tumor formation.

Typically located in the cytoplasm, AhR moves to the nucleus upon activation

by an agonist where it partners with either the aryl hydrocarbon receptor nuclear

translocator (ARNT) or hypoxia-inducible factor 1b (HIF-1b). This complex then

interacts with xenobiotic response elements (XREs) to control the expression of

key genes. AhR is notably present in various crucial immune cells, and recent

research underscores its significant impact on both innate and adaptive

immunity. This review delves into the latest insights on AhR’s structure,

activating ligands, and its multifaceted roles. We explore the sophisticated

molecular pathways through which AhR influences immune and lymphoid

cells, emphasizing its emerging importance in managing inflammatory

diseases. Furthermore, we discuss the exciting potential of developing targeted

therapies that modulate AhR activity, opening new avenues for medical

intervention in immune-related conditions.
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Introduction

The Aryl hydrocarbon receptor (AhR) is a ubiquitously-

expressed, ligand-activated transcription factor that belongs to the

basic helix-loop-helix/per-arnt-sim (bHLH/PAS) superfamily of the

sensors of foreign and endogenous signals or ligands and it was

initially identified for its involvement in metabolizing xenobiotics,

particularly those containing aromatic hydrocarbons (1). In 1976,

Poland et al. demonstrated the strong binding of 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD - a contaminant that belongs

to chemical herbicide Agent Orange) to a cellular component in

mouse liver cells, a significant finding that shed light on how the

liver absorbs this compound (2). Further investigation has revealed

that AhR plays essential roles in maintaining homeostasis, with its

domain structures and functions being conserved across evolution

and commonly observed in nearly all multicellular organisms (3, 4).

Upon ligand binding to AhR in the cytoplasm, it translocates to the

nucleus and forms a complex with AhR nuclear translocator

(ARNT) (5). This complex acts as a transcription factor, binding

to xenobiotic responsive elements (XRE) and regulating the

expression of many prototypic genes belonging to the cytochrome

P450 family, including CYP1A1, CYP1A2, and CYP1B1 (6). As

opposed to other bHLH/PAS proteins, AhR is the only member of

this superfamily that is known to bind naturally occurring

xenobiotics (3). Mutations in the AhR gene or near AhR target

genes are associated with human diseases, primarily through

mechanisms involving altered xenobiotic metabolism, disrupted

gene regulation, and impaired immune function (7–14).

Recent research studies spanning over the past two decades have

identified numerous endogenous ligands of AhR, revealing various

pathophysiological functions of the receptor beyond its initially-

investigated toxicological aspects (15). Moreover, numerous in vivo

studies have underscored the importance of AhR in normal

development, linking AhR deficiency to conditions such as cardiac

hypertrophy, epidermal hyperplasia, and other abnormalities (16,

17). This focused review aims to outline significant advancements in

understanding how AhR regulates physiological functions, with

emphasis on its roles in the immune system.
Structure of AhR

AhR has three different domains, namely an N-terminal bHLH

domain, Per-ARNT-Sim (PAS) domains (A and B), and a C-
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terminal transactivation domain (TAD), as shown in Figure 1

(18). While the three-dimensional structure of AhR remains

elusive, the crystal structure of the AhR-ARNT-XRE complex has

been elucidated (19). Analysis of this AhR-ARNT-XRE complex

suggests that the stability of AhR-ARNT heterodimerization and

the interaction of AhR interdomains are basically regulated by the

bHLH and PAS domains (20). The AhR activation pathway

includes ligand binding, nuclear translocation, and finally binding

to the canonical XRE of target genes (21). The PAS-B domain

containing a conserved ligand-binding pocket detects the

xenobiotic signals (22). Mutation studies have led to the

identification of key residues in mice, such as Ala375, His285,

and Gln377, that play crucial roles in ligand binding (23). Contrary

to PAS-B, the PAS-A domain mainly regulates the specificity and

stability of heterodimerization with ARNT. Further studies reveal

that the N-terminal a-helical structure forms an integral dimer

interface together with hydrophobic interactions with residues in

the partnering PAS-A domain to ensure stability between AhR and

ARNT (24). The bHLH domain is particularly involved in the

identification of the XRE consensus sequence, TTGCGTG, via the

two N-terminal a-helices and a flexible connector (19, 25).
AhR activation and crosstalk with key
signaling pathways

AhR activation

As a member of the PAS (Per-ARNT-Sim) family, AhR operates

as a transcription factor, with its PAS protein domain characterized

by a fundamental spiral ring helix structure, enabling diverse

responses to various environmental pollutants and cellular

metabolites (19). In an inactive state, AhR resides in the

cytoplasm and forms a complex with stabilizing chaperones. This

cytoplasmic AhR complex consists of several components including

(A) a dimer of heat shock protein 90 (HSP90) which helps maintain

AhR in a conformation essential for the optimum ligand affinity

(26), (B) AhR-interacting protein (AIP) which potentiates stability

of the AhR-HSP90 complex (27), (C) a 23-kDa glycoprotein (p23)

which acts as a co-chaperone and shields the AhR from ubiquitin-

mediated degradation, as does the AIP, and ensures the cytoplasmic

localization (28), and (D) c-Src which participates in the early stages

of AhR activation following binding with ligand, contributing to

non-genomic (non-canonical) aspects of AhR-mediated signaling
FIGURE 1

Schematic representation of the human AhR structure: The three different domains include the N-terminal bHLH domain, Per-ARNT-Sim (PAS)
domains (PAS A and PAS B), and a C-terminal transactivation domain. The numbers in red represent the amino acids spanning each domain. This
illustration was created with Biorender.com.
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(29). In the AhR genomic (canonical) pathway, after ligand binding

with the AhR complex in the cytoplasm, a conformational change

occurs, leading to the dissociation of the complex and nuclear

translocation. Within the nucleus, its binding partner ARNT, also

called hypoxia-inducible factor 1b (HIF-1b), orchestrates the gene
transcription after binding with dioxin response elements (DREs) at

the AhR-ARNT binding sites (30, 31). The activation pathways of

the AhR are illustrated in Figure 2.

A negative feedback mechanism regulates the AhR activation by

degrading AhR ligands through cytochrome P450 (CYP1) enzymes

such as CYP1A1 and CYP1A2. Additionally, the AhR repressor

(AhRR) and the AhR ligand complex compete each other for

forming a heterodimer with ARNT, thereby repressing AhR-

dependent transcription (32). Notably, AhRR is structurally similar

to the AhR, however, it cannot bind with ligands due to lacking its N-

terminal PAS B domain (33). Similarly, HIF-1a also competes ARNT

for interaction with AhR, a process that influences the degradation of

HIF-1a and mediates the differentiation of type 1 regulatory T (Tr1)

cells (34). AhR governs diverse biological responses by interacting

with exogenous and endogenous ligands, leading to increased

transcription of phase I xenobiotic metabolizing enzymes, such as

CYP1A1, CYP1B1, tryptophan 2,3-dioxygenase (TDO2), and

indoleamine 2,3‐dioxygenase 1 (IDO1). AhR is involved in the

transcriptional regulation of diverse genes, from cytokines

including IL-10, IL-17, and IL-22, to ectonucleotidases such as

CD39 and CD73, as well as the ATP-binding cassette (ABC) family
Frontiers in Immunology 03
of drug transporters (35). AhR expression in Th17 cells promotes the

production of IL-17A,F and IL-22 (36, 37). The dynamics between

ILC3 cells and IL-22 expression require the AhR involvement, and it

was found that the absence of AhR leads to a reduction in IL-22-

producing ILC3 cells (38). Notably, CD39 (also known as

ectonucleoside triphosphate diphosphohydrolase-1 or ENTPD1)

contributes to immunosuppression mainly via its role in the

adenosinergic signaling pathway (39). Briefly, the extracellular

ATP/ADP molecules released by damaged or stressed cells may act

as proinflammatory signals, are hydrolyzed into AMP by CD39

ectonucleotidase. Another ectoenzyme called CD73 (ecto-5’-

nucleotidase) converts the AMP into adenosine which is a potent

immunosuppressive molecule and can bind to its receptors on

important immune effector cells such as T-cells, macrophages,

natural killer (NK) cells, and dendritic cells (DCs). During T-cell

priming, CD39 inhibits the costimulatory ATP signals and promotes

the adenosine-mediated immunosuppression (40). Adenosine

binding to its A2A receptor on T-cells can lead to (1): inhibition

of T-cell activation and proliferation (2); suppression of

proinflammatory cytokines’ production (3); induction of

anti-inflammatory cytokines (4); inhibition of NK cell cytotoxicity;

and (5) induction of immunosuppressive regulatory T-cells

(Tregs) (41). Thus, CD39 contributes to adenosine-mediated

immunosuppression via the CD39-CD73-adenosine-A2AR

pathway (42). Recent investigations indicate that AhR binding to

the endogenous ligand unconjugated bilirubin (UCB) leads to CD39
FIGURE 2

The activation pathways of AhR: In the genomic (canonical) pathway, an inactive form of the AhR is cytoplasmic and complexed with HSP90, AIP
and SRC. Upon ligand binding, the AhR complex translocates to the nucleus, where the AhR forms a complex with ARNT and binds to xenobiotic
response element, inducing AhR-target gene expression. The AhR non-canonical pathway also induce transcription of genes involved in
inflammation, immune response and/or development. AHRR competes with the AhR for binding with ARNT and forms the inactive heterodimer
AHRR-ARNT. The dissociation of the AhR transcriptional complex leads to translocation of the AhR to the cytoplasm, where it is degraded via the
proteasomal pathway. AhR, aryl hydrocarbon receptor; AHRR, AhR repressor; ARNT, AhR nuclear translocator; AIP, AhR-interacting protein and Ub,
ubiquitin. This illustration was created with Biorender.com.
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upregulation in Th17 cells, conferring upon Th17 cells substantive

immunosuppressive properties (43). Conversely, under hypoxia

from protracted inflammation, the AhR ligation by UCB in

pathogenic Th17 cells from Crohn’s disease patients results in

HIF-1a-dependent CD39 downregulation and defective

immunosuppression in response to UCB due to resistance of Th17

cells to AhR signaling and induction of ATP-binding cassette (ABC)

transporters () (35). Tregs are a specialized subset of CD4+ T cells

that are crucial for maintaining immune homeostasis and self-

tolerance. Treg cells produce immunosuppressive cytokines such as

IL-10, TGF-b, and IL-35 (44). These cytokines inhibit the

proliferation and function of effector T cells, dampening the

immune response and reducing inflammation resulting in

preventing excessive immune responses that could lead to

autoimmune diseases. Treg cells are integral to the adaptive

immune system, characterized by its ability to recognize specific

antigens and generate a tailored immune response (45). Moreover,

Tregs cells express CTLA-4 (Cytotoxic T-Lymphocyte Antigen 4),

which binds to CD80/CD86 on antigen-presenting cells (APCs) (46).

This interaction reduces the APCs’ ability to provide the necessary

co-stimulatory signals for T effector cells activation. Treg cells can

directly interact with B cells, suppressing their proliferation and

differentiation into plasma cells, which are responsible for antibody

production (47). Their ability to suppress effector T cells and regulate

B cell responses highlights their crucial role in immune homeostasis.

While type 1 Tregs (Tr1 cells) are a subtype of regulatory T cells

which are pivotal in maintaining peripheral immunity by regulating

tolerance towards a wide range of antigens. Tr1 cells play a central

role in maintaining immune homeostasis and are highly instrumental

in preventing the T cell-mediated diseases including autoimmunity,

allograft rejection, allergies, Graft-versus-host disease (GvHD), and

chronic inflammatory diseases (48). The transcription biomarkers of

Tr1 cells include the AhR, interferon regulatory factor (IRF)-4,

repressor of GATA-3 (ROG), early growth response protein (Egr)-

2, and musculoaponeurotic fibrosarcoma (c-Maf; a cellular homolog

of a viral oncogene) (48). Tr1 cells express increased levels of IL-10

and lack in constitutive expression of the forkhead box P3 (Foxp3)

(49). Other cytokines expressed by Tr1 cells include the TGF-b, IFN-
g, and IL-5 but no IL-2, IL-4, and IL-17 (50). Tr1 cells act as key

regulators in immune network and mediated immune suppression

and tolerance through multiple mechanisms including cytokine

expression (especially, IL-10 and TGF-b), cell to cell contact (via

inhibitory receptors CTLA-4 and PD-1), metabolic disruption (by

expressing CD39 and CD 73 ectoenzymes that produce adenosine

and increase the intracellular cAMP levels), and cytolytic activity

(through expression of granzymes A/B and perforin) (51). AhR

regulates the expression of IL-10 and IL-21 in Tr1 cells (52, 53).

Interestingly, the suppression of CD39 expression was observed in

Tregs and Th17 cells from individuals with autoimmune hepatitis.

This dysfunction in immunosuppressive conditions was related to

dysregulated AhR signaling and interventions targeting the

dysregulated AhR pathway restored CD39 upregulation in Tregs

and Th17 cells (54). AhR has also been linked to the viral pathogenic

response. Specifically, ocular infection with herpes simplex virus can

lead to a chronic immune inflammatory reaction that may result in

blindness. However, in a murine model, a single dose of TCDD was
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found to alleviate herpes keratitis lesions, reduce viral load, and

decrease levels of pro-inflammatory cytokines. Of note, FICZ did not

exhibit the same efficacy, highlighting differences between these two

AhR ligands (55). Taken together, AhR is a ligand-activated

transcription factor that translocates to the nucleus upon formation

of a heterodimer complex with ARNT and subsequently binds to

XRE sequences, thereby regulating gene expression of multiple

biochemical pathways, each contributing to a wide range of

biological processes, as illustrated in Figure 3 (56).

In the absence of a ligand, AhR remains sequestered in the

cytoplasm together with chaperones and immunophilin-like

proteins, such as co-chaperone p23, c-Src tyrosine kinase, HSP90,

and AIP. Upon binding with an agonist, conformational changes

occur in AhR, prompting its translocation to the nucleus where it

engages with ARNT and the resultant heterodimer complex then

binds to a specific XRE and coregulators in the promoter region of

AhR target genes to regulate their transcription. AhR facilitates the

expression of CYP enzymes that degrade the AhR ligands. After its

export from the nucleus, AhR is rapidly eliminated by proteasomal

degradation in the cytoplasmic compartment, following its covalent

binding with ubiquitin, whereas, SUMOylation favors the AhR

stability by inhibiting ubiquitination (57). Besides, as a part of the

negative regulatory loop mechanism, AhR triggers the expression of

its own repressor AhRR, which precludes the formation of the AhR/

ARNT complex required for AhR-mediated signaling. Proteasomal

degradation of AhR and negative regulatory loop ensure a temporal

control of overstimulation by AhR agonists. In the following

section, we review the crosstalk between AhR/ARNT and other

signaling partners or pathways in inflammatory conditions.
Interaction between AhR and hypoxia
inducible factor-1 alpha

Hypoxia-inducible factor 1-alpha (HIF-1a) is a member of the

class I bHLH/PAS protein superfamily and it functions as a critical

oxygen sensor and transcriptional regulator of the balance or

oxygen homeostasis between metabolic demand and vascular

oxygen supply through the increased angiogenesis (58). Unlike

ARNT, which is ubiquitously expressed, the HIF-1a expression is

based on intracellular oxygen levels, and under normal oxygen

conditions, HIF-1a is rapidly targeted for ubiquitination and

proteasomal degradation (59). In hypoxic conditions, HIF-1a is

stabilized or protected from proteasomal degradation, allowing it to

translocate to the nucleus and form heterodimer complexes with

ARNT, orchestrating expression of a multitude of hypoxia-

responsive genes containing the hypoxia-response element or a

5′-G/ACGTG-3′ motif, such as carbonic anhydrase-IX (CAIX) and

vascular endothelial growth factor (VEGF) (60, 61). Given that

ARNT is a dimerization partner of both the HIF-1a and AhR,

crosstalk between these two signaling pathways is not unexpected.

Additionally, the binding of AhR to ARNT becomes indispensable

for an AhR-driven immune response, with HIF-1a intricately

regulating interference in AhR/ARNT transcriptional activity. Tr1

cells, identified as Foxp3– regulatory CD4+ T cells, pose challenges

in understanding their differentiation and metabolic control.
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Increasing evidence suggests that aerobic glycolysis plays a pivotal

role in enhancing Tr1 cell differentiation through metabolic

programs controlled by both HIF-1a and AhR (34, 62). It is

noteworthy that HIF-1a oversees early metabolic reprogramming

in Tr1 cells, and subsequently, AhR facilitates HIF-1a degradation,

regulating Tr1 cellular metabolism. Thus, the AhR and HIF-1a
mutually collaborate in sustaining Tr1 cellular metabolism, thereby

contributing to modulation of the immune response of Tr1 cells

(34). Norisoboldine (NOR), a recently-identified natural AhR

ligand, shows a great potential in reducing osteoclast

differentiation and inflammatory bone erosion (63). NOR

achieves this by activating AhR and subsequently inhibiting HIF-

1a signaling pathways. Mechanistically, NOR securely binds to

AhR, enhances AhR’s movement into the nucleus, increases

accumulation of the AhR-ARNT complex, and thus impedes

accumulation of the ARNT-HIF-1a complex in RAW 264.7 cells

(64). Furthermore, NOR facilitates the differentiation of Tregs in a

mouse colitis model under hypoxic conditions, thus alleviating the

onset of colitis (63). In Crohn’s disease, Th17 cells isolated from the

peripheral circulation were found to have reduced CD39

expression, which played a role in their non-responsiveness to

immunosuppressive effects of unconjugated bilirubin (UCB),

which is an endogenous AhR ligand (35). Thus, chronic

inflammation-induced hypoxia leads to an increase in ABC

transporters and HIF-1a expression which significantly impairs

the AhR/ARNT signaling due to diminished availability of AhR

ligands. Besides, the elevated ABC transporters activity causes efflux

of AhR ligands, such as UCB, from Th17 cells and further reduces

the AhR substrate availability. Not surprisingly, this defect in Th17

cell responsiveness to AhR stimulation by UCB was effectively
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restored when HIF-1a or ABC transporter activity was inhibited

(35). Altogether, the complex interaction between AhR/ARNT and

HIF-1a signaling axes leads to immune cell differentiation

reprogramming and aggravated pathogenesis of certain

autoimmune diseases.
Interaction between AhR and nuclear
factor-kB pathway

NF-kB, an important regulator of both the innate and adaptive

immune responses, is intricately linked to various signaling

pathways. The complex interplay between NF-kB and AhR in

different cell types and disease states is an attractive subject of

ongoing research (65). Emerging evidence supports the role of 3,3′-
Diindolylmethane (DIM), an active metabolite of cruciferous

indole-3-carbinol (I3C), in the regulation of the AhR-mediated

cellular immune responses. DIM was found to reverse epithelial-

mesenchymal transition (EMT) and prevent cancer cell metastasis

by modulating AhR signaling and suppressing the NF-kB pathway

(66). Indeed, kynurenine (KYN)-induced AhR signaling in gliomas

was found to affect macrophage polarization and phenotype and the

AhR depletion led to increased NF-kB activation in vitro.

Mechanistically, AhR null mice showed upregulated SOCS2

expression and degradation of Krüppel-like factor 4 (KLF4) (67).

Notably, the regulatory role of NF-kB extends to the expression of

KYN pathway genes and AhR, which is an endogenous KYN

receptor, in triple-negative breast cancer (TNBC), suggesting that

NF-kB activity positively regulates the expression of key genes

related to tryptophan catabolism, making inhibitors of tryptophan
FIGURE 3

Aryl hydrocarbon receptor (AhR) regulates gene expression in response to environmental and endogenous stimuli. The activation of the AhR can
modulate several signaling pathways, each contributing to diverse biological functions such as HIF-1a, NF-kB, Nrf2, MAPK, EGFR, JAK/STAT and
ubiquitin-proteasome (Ub) pathways. This illustration was created with Biorender.com.
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2,3-dioxygenase (TDO2) an attractive therapy for treating TNBC

(68). In conclusion, the AhR and NF-kB signaling pathways

regulate each other, resulting in cell type- and stimulus-specific

inflammatory responses.
Interaction between AhR and nuclear
factor-erythroid factor 2-related factor
2 pathway

As a regulator responding to planar aryl hydrocarbons, AhR

signaling plays a key role in xenometabolism. Similarly, the Kelch-

like ECH-associated protein 1 (KEAP1)-Nrf2 system, a crucial anti-

oxidant defense mechanism in living systems, also plays key role in

xenobiotic metabolism. KEAP1 is a sensor protein detecting

contaminants to activate the transcription factor Nrf2 which

regulates expression of anti-oxidant response element (ARE)-

containing enzymes that orchestrate anti-oxidant defense, such as

catalase (CAT), superoxide dismutase (SOD), glutathione reductase

(GR), glutathione peroxidase (GPx), heme oxygenase 1 (HO-1), and

peroxiredoxin (PRX), etc. (69). Nrf2 also promotes the expression

of enzymes that are involved in detoxification or protection from

immune toxicity including the nicotinamide adenine dinucleotide

phosphate (NADPH) dehydrogenase (quinone 1/NQO1), phase III

transporters, and glutathione-S-transferase (GST), among others

(70). There is a link between the AhR and the glutathione cycle.

AhR is known to regulate the expression of detoxification pathways

enzymes involved in phase I (cytochromes P450 enzymes) and

phase II (conjugation enzymes such as glutathione S-transferases).

Glutathione (GSH) plays a pivotal role in cellular anti-oxidant

defense and detoxification of xenobiotics and endogenous

compounds. AhR activation enhances the expression of enzymes

involved in glutathione synthesis and utilization (71). Thus, the

AhR pathway connects with the glutathione cycle by regulating

enzymes that are involved in glutathione metabolism, resulting in

the increased detoxification of xenobiotics, and improved cellular

antioxidant defense. The interplay between AhR and Nrf2, AhR can

induce Nrf2 via several mechanisms. AhR activation can lead to

upregulation of Nrf2-dependent genes that are involved in

antioxidant defense and detoxification pathways (72). Notably,

the Nrf2 gene promoter contains at least one functional

xenobiotic response element (73). The AhR gene promoter also

has several anti-oxidant response elements (AREs) (74). Nrf2 was

found to regulate the expression of AhR and modulate several

downstream events of the AHR signaling cascade including (1):

transcriptional regulation of the xenobiotic metabolism genes

(Cyp1a1 & Cyp1b1) and (2) adipogenesis inhibition in mouse

embryonic fibroblasts (MEFs) (75). Thus, Nrf2 directly modulates

AhR signaling, highlighting the bidirectional interactions of these

pathways of cellular stress and metabolism (75). The crosstalk

studies between AhR and Nrf2 mainly focused on their regulatory

roles in xenobiotic metabolizing enzymes. In one such study, Ma

et al. showed that Nrf2 was involved in the induction of NQO1 by

TCDD, providing a new insight into the mechanism that deciphers

how Nrf2 regulates phase II enzymes’ induction through the AhR

ligands and phenolic antioxidants (76). It is known that skin
Frontiers in Immunology 06
exposure to ultraviolet B (UVB) may lead to damage through

mechanisms involving oxidant stress, DNA damage, and

apoptosis. Gao et al. demonstrated that activation of keratinocyte

growth factor (KGF)-2 had a photoprotective effect against UVB

exposure-mediated skin damage by ameliorating oxidative stress,

DNA damage, mitochondrial dysfunction, and apoptosis as well as

AhR/Nrf2 signaling, while this protective effect was significantly

blocked by the AhR antagonist GNF351. This suggests that by

promoting AhR/Nrf2 signaling, KGF-2 plays the role of an

antioxidant, following UVB irradiation (77). Urolithins, such as

UroA and UroB, are the natural polyphenol ellagic acid metabolites

produced by gut microbiota and are known to have anti-

inflammatory and anti-cancer effects (78). In a study unraveling

dual beneficial effects of the microbial metabolite urolithin A

(UroA) and its synthetic analog (UAS03) in colonic disorders,

Singh et al. demonstrated that activation of the AhR/Nrf2

signaling cascade exerted anti-inflammatory effects and improved

the intestinal barrier function by promoting expression of tight

junction (TJ) proteins (79). The indispensability of AhR/Nrf2

signaling was further validated, showing that UroA/UAS03

activation did not induce expression of gut epithelial tight

junction proteins and protect from experimentally-induced colitis

in AhR- and Nrf2-KO mice (80). An in vitro study using HT-29 cell

model also corroborated that xanthones, such as garcinone D,

inhibited reactive oxygen species (ROS) production and improved

epithelial barrier function and TJ expression by promoting the

AhR/Nrf2 mediated signaling (81). Further, in context of mucosal

immunity and inflammation, Th17 cells-derived cytokines

including IL-17A and IL-22 are known to play central roles and it

was shown that Nrf2 activator CDDO-Im promoted the expression

of IL-17A and IL-22 in CD4+T cells via the AhR-dependent

mechanism which was abrogated by AhR antagonist (CH-

223191) as well as in CD4-specific Ahr KO mice (82). Together,

these studies underscore the antioxidant, anti-inflammatory, and

immune modulatory effects of AhR signaling, directly regulating

Nrf2 transcription, with potential therapeutic implications for

inflammatory diseases using AhR agonists and inhibitors. The

interaction between AhR and Nrf2 is illustrated in Figure 4.
Interaction between AhR and mitogen-
activated protein kinase pathway

MAPKs are serine/threonine protein kinases which

coordinately regulate diverse cellular functions by transducing

extracellular signals to intracellular responses, such as gene

expression, metabolism, motility, mitosis, differentiation,

proliferation, survival, and apoptosis. MAPKs such as p38

kinases, c-Jun N-terminal kinase/stress-activated protein kinase

(JNK/SAPK), and the extracellular signal-regulated kinase 1/2

(ERK1/2) are the critical mediators of intracellular signal

transduction. In general, the p38 kinases are involved in cell

cycle, inflammation, and apoptosis; JNK/SAPK play roles in

cellular signaling, stress-associated and immune responses,

apoptosis, and in pathogenesis of metabolic disorders; while the

ERK1/2 isoforms are implicated in regulation of developmental and
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mitogenic processes (83). Despite evidence of a cross-talk and

signaling switches existing between the MAPK and AhR

pathways, specific interactions between these two critical

regulatory cascades remain unclear. A connection between the

AhR pathway and MAPK signaling was revealed in the nervous

system as the TCDD-mediated AhR stimulation of rat

pheochromocytoma PC12 cells enhanced the NGF-induced

neurofilament light (NFL) expression as well as ERK1/2 and p38

phosphorylation. Inhibition of MAPK led to the suppression of

NFL whereas the AhR inhibitor downregulated expression of NFL

and reduced phosphorylation of ERK1/2 and p38 (84). However,

another study reported that MAPK activation was an alternative

mechanism through which TCDD regulated the AhR function,

supporting the diversity of TCDD toxicity in a gene- and cell-

specific manner (85). Notably, Tan et al. showed that MAPK

activation by TCDD could also occur in AhR-negative CV-1 cells

as well as in AhR KO mouse embryonic fibroblasts (86). Besides

TCDD, another AhR ligand 3-methylcholanthrene was shown to

alter the epithelial cell plasticity by a mechanism that involved JNK

activation (87). Additionally, in the process of osteoblast formation,

indoxyl sulfate (IS) inhibited the ERK and p38 MAPK pathways

downstream of AhR. Conversely, resveratrol counteracted the anti-
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osteogenic effect of IS by inhibiting AhR and associated

downstream signaling (88). Moreover, macrophages from chronic

kidney disease (CKD) patients exposed to the uremic toxin IS

displayed inflammation through activation of the AhR/NF–kB/
MAPK cascade, in a process that induced the mature IL-1b
production without activating NLRP3 inflammasome (89).

Overall, accumulating evidence supports the notion that there is a

bi-directional crosstalk between MAPKs and AhR pathways and

that AhR ligands can activate one or more MAPKs, depending on

the ligand, cell, or tissue types, leading to the nuclear translocation

and DNA binding of AhR and target gene transactivation. The

interaction between AhR and MAPK pathway is depicted

in Figure 5.
Interaction between AhR and epidermal
growth factor receptor pathway

EGFR is a crucial receptor tyrosine kinase (RTK), a

transmembrane protein belonging to the ErbB family, and it plays

a role in embryonic development. Ligand binding leads to the

receptor autophosphorylation and formation of hetero- or
FIGURE 4

The interplay between AhR and Nrf2. Ligand-activation of AhR results in its nuclear translocation, where it dimerizes with ARNT and induces the
transcription of xenobiotic-responsive element (XRE)-regulated phase I and II detoxifying enzymes, and Nrf2. Phase I detoxifying enzymes convert
AhR ligands into reactive metabolites which again can lead to the formation of reactive oxygen species (ROS). ROS can trigger the dissociation of
the cytosolic Nrf2-KEAP1 complex resulting in the nuclear translocation of Nrf2. This results in the expression of antioxidative response elements
(ARE)-controlled phase II detoxifying enzymes, as well as the AhR. Furthermore, there is some overlap between the AhR and Nrf2 target gene
batteries; for example, both routes regulate the expression of the genes NQO1 and SOD1. This illustration was created with Biorender.com.
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homodimers and the recruitment of signaling proteins.

Downstream signaling pathways involve the MAPK, RAS-RAF-

MEK1/2- ERK1/2, AKT-PI3K-mTOR, PKC, STAT, SRC, and NF-

kB (90). EGFR is associated with various cancers, often due to

mutations that cause continuous activation. The AhR-EGFR

interaction was first observed in 1982, suggesting that polycyclic

aromatic hydrocarbons (PAHs) not only activated AhR but also

inhibited the EGFR binding to its ligand EGF (91). Subsequent

reports indicated that exposure to AhR agonists disrupted the

binding of radiolabeled EGF to the plasma membrane. The

underlying mechanism involved the AhR ligand-mediated

enhancement of EGFR internalization and c-Src-mediated

phosphorylation or inhibition of the EGFR extracellular domain

binding to cognate ligand (92, 93). Unlike the transient effects of

PAH, TCDD reduced the EGF-binding capacity of cognate

receptors in human keratinocytes rat liver for 4 and 40 days,

respectively (94, 95). The study by Vogeley et al. provides in-

depth insights into the complex dynamism between AhR ligands

and EGFR internalization, by showing that PAHs exposure of

human keratinocytes led to a dual-phase increase in EGFR

phosphorylation and downstream MEK/ERK signal transduction

(92). Notably, dioxin-like compounds like PCB126 and 2,3,7,8-

tetrachlorodibenzo-p-dioxin demonstrated similar AhR-dependent

and c-Src-driven signaling events, leading to the release of EGFR

ligands. These studies establish that dioxin-like compounds bind
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directly to the extracellular domain of EGFR, thereby hindering

receptor tyrosine kinase activation by growth factors (92, 96).

Notably, the AhR-driven modulation of EGFR function has

been investigated in various cancers. In this regard, TCDD-induced

EGFR expression changes in breast cancer cells were associated with

downstream signaling activation and apoptosis inhibition, whereas

this effect was reversed by an AhR antagonist, indicating a tumor-

promoting effect of EGFR-mediated AhR signaling (97). The EGFR-

AhR interaction has also been linked to cellular response to UVB

stress and the development of skin tumors through the mechanism

involving UVB-induced formation of the natural AhR ligand 6-

formylindolo[3,2-b]carbazole (FICZ) in the skin which leads to c-

Src-dependent EGFR internalization and ERK activation (98). This

UVB-induced AhR signaling activation and skin tumor formation

was associated with the expression of cyclooxygenase-2 (COX-2)

and the consequent DNA damage (99). Involvement of the AhR-

regulated MMP-1/EGFR signaling in colorectal cancer pathogenesis

was indicated as the suppression of MMP-1, a gene induced by

AhR, led to the improvement of colorectal cancer by inhibiting

EGFR-downstream PI3K/AKT signaling (100). Evidence of the

AhR-EGFR pathway involvement was provided by an asthma

mouse model study, showing that Benzo(a)pyrene (BaP)-induced

AhR activation and ROS elevation led to the increased epithelial

TGF-a production and MUC5AC expression, and activation of

EGFR/MAPK signaling, thus causing airway obstruction and
FIGURE 5

The interplay between AhR and MAPKs. AhR activation has bi-directional crosstalk between MAPKs and AhR pathways. It enhances the expression and
phosphorylation of ERK1/2, P38 and MKK4/7. AhR ligands can activate one or more MAPKs, depending on the ligands and different cells leading to target
gene transactivation such as enhance production of CYP1A1, CYP1A2, CYP1B1, JUN and COX-2. This illustration was created with Biorender.com.
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asthmatic distress (101). Consistent with the role of AhR in lung

morbidities, Liu et al. demonstrated that IFN-AhR signaling in

COVID-19 patients promoted mucins and the alveolar mucus

contributed to hypoxia and inflammation; while inhibiting the

AhR signaling resulted in improved lung function in a SARS-

CoV-2 mouse model (102). The intricate interplay between AhR

and EGFR holds significant implications for therapies directed at

the EGFR and associated signaling pathways. Presently, the EGFR

targeting monoclonal antibodies or inhibitors are presenting with

skin toxicity side effects, necessitating their withdrawal. The

dynamic interactions between EGFR and AhR signaling cascades

suggest that when formulating EGFR-directed therapies, it may be

desirable to also consider AhR as a potential target or co-target. This

consideration is vital to reduce the undesired side effects and

improve the effectiveness of the treatment. The interaction

between AhR and EGFR is illustrated in Figure 6.
Interaction between AhR and JAK/
STAT pathway

The JAK/STAT pathway is a critical cascade that transduces

signals from the cell surface to the nucleus and is involved in

processes such as cell division, cell death, immunity, and tumor
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formation (103). Dysregulated JAK/STAT signaling is implicated in

multiple disease pathogenesis including autoimmunity, chronic

inflammatory conditions, and cancer (104, 105). Mechanistically,

members of the JAK family bind to intracellular domains of

transmembrane cytokines and interferon receptors or receptor

tyrosine kinases, such as EGFR. Upon ligand activation, these

receptors dimerize or multimerize, initiating JAK-mediated

phosphorylation of specific tyrosine residues in the intracellular

domains of these receptors. These phosphorylated residues act as

docking sites for the Src-homology 2 (SH2) domain of signal

transducer and activator of transcription (STAT) proteins.

Following JAKs binding to phosphorylated cytokines’ receptors,

C-terminal tyrosine residues in STAT proteins are phosphorylated,

and this newly-generated SH2-binding motif is then recognized by

two STAT proteins, forming a STAT dimer which translocates to

the nucleus where it acts as a transcription factor by binding to

specific DNA motifs in the enhancer regions of target genes (103).

In support of a crosstalk between AhR activation and STAT

signaling, the study by Nukaya et al. showed that treating C57BL/

6 mice with an AhR agonist 3-methylcholanthrene led to the AhR-

dependent suppression of JAK2 expression in the liver, which

associated with impaired DNA-binding activity of STAT5 and

disruption of the growth hormone signaling pathway (106).

Similarly, Takanage et al. reported that the AhR agonist
FIGURE 6

The ligand-activated AhR activates EGFR and downstream signaling. The ligand-driven dissociation of the AhR complex leads to the release of c-Src,
which can (I) directly activate the epidermal growth factor receptor (EGFR) by phosphorylating its intracellular domain, and (II) sequentially activate
protein kinase C (PKC) and sheddases resulting in ectodomain shedding of cell surface-bound EGFR ligands. In addition, nuclear AhR transactivates
genes encoding EGFR ligands, such as amphiregulin (AREG) and epiregulin (EREG) (III). Independently from its mode of activation, i.e. ligand-binding
or intracellular phosphorylation, the EGFR monomer changes its conformation from tethered to untethered and forms a hetero- or homodimer
leading to activation of downstream signaling pathways like MAPK or JAK/STAT. This illustration was created with Biorender.com.
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b-naphthoflavone impaired cAMP-induced astrocyt ic

differentiation of C6 glioma cells by inhibiting IL-6 gene

expression and suppressing STAT3 activation (107). These

findings corroborate that AhR-mediated signaling modulates the

JAK/STAT activity by regulating the expression of cytokines and

other pathway components. In this regard, AhR-mediated signaling

following ligand binding regulates the expression of various JAK/

STAT-stimulating cytokines including IL-2, IL-10, IL-21, IL-22 and

others, through different pathways. AhR cooperates with NF-kB
subunit RelA/p65 at the IL-6 promoter (108); however, AhR-

mediated regulation of cytokines can be context-dependent,

resulting in cytokine induction or inhibition, as reported for IL-6

and IL-33 (109–111).

Further in this regard, Rothhammer et al. deciphered the

regulatory role of AhR signaling in type I IFN-mediated astrocyte

activity and central nervous system inflammation via the

mechanism involving IFN-b-associated JAK1 and tyrosine kinase

2 activation and formation of a macromolecular complex including

STAT1/2, and IRF-9 (112). In B cells, IL-4 induced AhR expression

in a STAT6-dependent manner, albeit the precise molecular

mechanism regulating IL4-mediated induction of AhR remains to

be fully elucidated (112, 113). It was suggested that at the

transcriptional level, STAT proteins played a role in AhR

activation by influencing tryptophan metabolism (113). Consistent

with this, another study showed that interferon-gamma (IFN-g)
induced IDO1 in human chronic lymphocytic leukemia cells which

depended on the JAK/STAT1 signaling. Tryptophan is oxidized by

IDO1 to N-formylkynurenine, which is further converted by aryl

formamidase into KYN. KYN and its metabolites (kynurenic acid

and xanthurenic acid) act as low-affinity AhR agonists. KYN

activation of AhR has been associated with the induction of

immunosuppressive Tregs, simulating TCDD effects in mice (114,

115). In lung cancer, an autocrine signaling loop mechanism was

deciphered, which involved KYN activation of AhR, followed

sequentially AhR-mediated IL-6 upregulation, STAT3 stimulation,

and KYN-producing IDO1 induction (116). A similar mechanism

in the tumor microenvironment induced CD8+ T cell exhaustion

via IL-2-mediated STAT5 activation and tryptophan hydroxylase-1

expression, leading to AhR activation. This resulted in the

upregulation of inhibitory receptors CD39 and PD-1, and

downregulation of IFN-g and tumor necrosis factor (TNF)-a,
causing CD8+ T cell dysfunction (117). The KYN-mediated

AhR activation was found to induce immunosuppression and

alleviation of symptoms in idiopathic pneumonia syndrome (118).

The interaction between AhR and JAK/STAT is illustrated

in Figure 7.

In summary, dynamic interactions dictate the crosstalk between

AhR and STAT family transcription factors at levels of

transcriptional regulation, induction of signaling mediators, and

protein-protein interactions. Depending on cell types and the STAT

signaling mediators involved, the AhR activation may lead to pro-

or anti-inflammatory outcomes. Notably, the crosstalk between

AhR and JAK/STAT signaling cascades blunts anti-tumor

immune responses and promotes malignancies such as lung

cancer, melanoma, glioblastoma, and oral squamous cell

carcinoma (116, 119, 120). On the contrary, AhR-JAK/STAT
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crosstalk might have anti-inflammatory consequences, as in

inflammatory bowel disease and central nervous system

inflammation and neurodegeneration (121). Further research is

warranted to unravel the intricacies of AhR-JAK/STAT interplay,

providing valuable insights for the development of targeted

therapeutic interventions.
AhR ligands

Exogenous and endogenous AhR ligands

AhR ligands vary with regard to affinity and reactivity.

Currently, most high-affinity AhR ligands are synthetic, including

environmental contaminants such as polycyclic aromatic

hydrocarbons (PAH) and halogenated aromatic hydrocarbons

(HAH) (122, 123). Compared to PAHs, HAHs are metabolically

more stable and bind to AhR with increased affinity. Notably,

TCDD is a type of HAH that leads to toxicity in the host by

activating AhR. In addition, several low-affinity synthetic AhR

ligands have also been identified, as described in Table 1.

Interestingly, a multitude of naturally occurring compounds

from dietary sources have been found to directly influence the AhR

signaling pathway. Accumulating evidence supports that extracts

from vegetables or vegetable-derived materials can stimulate

CYP1A1 activity (154, 155). Cruciferous vegetables, including

broccoli, cabbage, turnips, cauliflower, kale, and Brussels sprouts,

contain the compound glucobrassicin, which is converted into I3C

and indole-3-acetonitrile (I3AC) during digestion, which acts as

activating AhR ligands (154, 156, 157). Dietary compounds from

plant sources including carotenoids, curcumin, and tryptophan,

have been found to bind to AhR and trigger target gene expression

(123, 153, 158). Flavonoids, present in tea and various fruits, are

naturally occurring dietary AhR ligands, with most functioning as

AhR antagonists. However, certain flavonoids, such as quercetin,

diosmin, tangeritin, tamarixetin, taxifolin, and robinetin are the

flavonoids capable of activating AhR (159–161). Importantly, as

though these plant-derived AhR ligands are found in micromolar

plasma concentrations, they still act as potent AhR signaling

modulators (162, 163). Tryptophan metabolism within the

gastrointestinal tract involves the following three major pathways

(164). In the first pathway, the gut microbiota directly transforms

tryptophan to yield various AhR-activating ligands, such as indole,

tryptamine, indole acrylic acid, indole-3-acetamide, indole-3-

aldehyde, indole-3-acetic acid, indole-3-propionic acid, indole-3-

lactic acid (ILA), and indole-3-pyruvate. Indole further metabolizes

into biologically-active compounds like dioxindole, indoxyl-3-

sulfate, and indole-3-propionic acid (165). Thus, the intestinal

commensal microflora is a continual source of potential AhR-

activating ligands, underscoring the role of AhR as a sensor of the

gut microbiota communities and as a regulator of host-microbe

homeostasis (134). In the second pathway called the KYN pathway

(KP), commonly operative in immune and epithelial cells, IDO1

activity generates KYN (109, 166), which is a precursor for potent

AhR ligands including kynurenic acid, xanthurenic acid, and

cinnabarinic acid, with effects on neurotransmission,
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inflammation, and immune responses (166). In the third pathway,

called the serotonin 5-hydroxytryptamine (5-HT) production

pathway, tryptophan hydroxylase 1 generates the AhR activating

ligands (167). Butyrate supplements improved arthritis in mice by

altering microbiota and favoring the production of 5-

hydroxyindole-3-acetic acid (5-HIAA), a serotonin-derived

metabolite that reduces the severity of arthritis (168). In addition

to biliverdin, unconjugated bilirubin (UCB) also acted as an AhR

agonist and induced target gene expression (169, 170), while

bilirubin activated AhR in Th17 cells and stimulated the

production of CD39 and exerted an immunosuppressive effect to

alleviate inflammation in an experimental model of colitis in

mice (43).
Role of AhR in immune regulation

Immune regulation is critical in ensuring that the immune

system responds appropriately to threats without causing excessive

inflammation or autoimmunity. The following key immune effector
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cells modulate the activity of the immune response, maintain

homeostasis and prevent the pathological conditions: (A)

Macrophages are crucial in various physiological functions,

including development, tissue repair, immunity and maintaining

internal environment stability (171). (B) Certain subsets of DCs also

contribute to immune regulation. Regulatory dendritic cells

(regDCs) can induce Tregs and produce anti-inflammatory

cytokines (172, 173). (C) Another key player in immune

regulation is the myeloid-derived suppressor cells (MDSCs).

These cells are a heterogeneous population of immune cells that

expand during cancer, infection, and inflammation, where they

suppress T- cell activation and promote tumor progression or

chronic infection persistence (174). (D) NK cells, known for their

cytotoxic capabilities, are the innate immune lymphoid cells that

orchestrate host defense against pathogens and a range of cancers

(175). (E) Innate lymphoid cells (ILCs) are the innate counterparts

of CD4+ Th lymphocytes, regulating immune responses and

maintaining immune homeostasis, particularly in the mucosal

linings of the intestine and lung. (F) Tregs play a role in

suppressing immune responses, thereby preventing autoimmune
FIGURE 7

The ligand-activated AhR interacts with JAK/STAT pathway. (A) AhR ligand bound to AhR receptor, will translocate AhR into the nucleus and forms a
heterodimer to drive transcription of AhR target genes such as CYP enzymes and regulates the expression of different JAK/STAT-stimulating
cytokines including IL-2, IL-10, IL-21, IL-22. In addition, both AhR ligand called 3-methylcholanthrene and b-naphthoflavone led to the AhR-
dependent suppression of STAT 5 and STAT3 activation expression, respectively. (B) Cytokines and growth factors bind to their receptors, leading to
receptor dimerization and recruitment of related JAKs. JAK activation leads to phosphorylation of the receptors and formation of docking sites for
STAT. Then, STATs dissociate from the receptor to form homodimers or heterodimers. These STAT dimers enter the nucleus, bind to DNA, and
regulate transcription to release IDO1 in human chronic lymphocytic leukemia cells. Furthermore, tryptophan is oxidized by IDO1 to N-
formylkynurenine, which is further converted by aryl formamidase into KYN. KYN and its metabolites act as AhR agonists that induce
immunosuppressive Tregs and simulate TCDD effects. This illustration was created with Biorender.com.
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diseases and maintaining tolerance to self-antigens. (G) B-

lymphocytes play a key role in the adaptive immune response

through the secretion of immunoglobulins (176).
AhR-mediated regulation in macrophages

Macrophages play pivotal roles in a wide array of physiological

functions including development, tissue repair, immunity, and

maintenance of internal environment stability (171). After injury,

macrophages undergo activation and colonization at the site of

injury, and orchestrate diverse functions including inflammation,

wound healing, fibrosis, decomposition and regeneration, as well as

anti-inflammatory and anti-fibrotic activities (177). Based on the

production of nitric oxide synthase and arginase, macrophages are

classified into pro-inflammatory M1 and anti-inflammatory M2

phenotypes (178). AhR, in concert with macrophage-dependent

cellular pathways, regulates macrophage polarization into pro-

inflammatory or anti-inflammatory phenotypes (179).

Additionally, monocytes’ differentiation into macrophages and

the interactions between macrophages and other immune cells are

also modulated by AhR signaling (140).

Substantial evidence supports existence of a functional 5-HT/5-

HT2B/AhR axis in human macrophages (17, 180). Serotonin (5-HT)

promotes AhR activity and drives anti-inflammatory targets

expression in a 5-HT2B-dependent manner (180). Agonist ligands

such as PCB126 and FICZ promote proinflammatory M1

macrophage polarization (140). However, another study showed

that FICZ induced AhR activation and transcriptional regulation of

miR-142a, leading to HIF-1a inhibition, thus suppressing M1

macrophage polarization (181). These findings underscore the

role of AhR in immune regulation, as a transcription factor and

also through non-genomic signaling pathways. Together, these

mechanisms regulate macrophage polarization into anti-

inflammatory or pro-inflammatory phenotypes, with implications

for disease outcomes.
AhR-mediated regulation in dendritic cells

DCs are professional antigen presenting cells and play pivotal

roles in the innate and adaptive immune responses. DCs

constitutively express AhR, and its activation leads to their

differentiation from monocytic precursors, through the mechanism

favoring Blimp1 expression (172, 173). AhR regulation diminishes

pro-inflammatory T cell polarization and promotes differentiation of

anti-inflammatory regulatory Tregs. It was shown that AhR agonists

stimulated the expression of IDO1 and IDO2 in DCs, leading to KYN

production and Foxp3+ Treg differentiation (182). Likewise, another
TABLE 1 The common AhR ligands.

Type Ligand Ref.

Endogenous
ligands

Bilirubin (124)

Biliverdin (125)

Lipoxin A4 (122)

Cinnabarinic acid(CA) (126)

Heme metabolites (127)

Indole acrylic acid (IA) (128)

Indole-3-acetic acid (IAA) (129)

Indole-3-propionic acid (IPA) (126)

Indole-3-lactic acid (ILA) (130)

Indole-3-aldehyde (IAld) (131)

Indole-3-acetaldehyde (IAAld) (132)

Indole-3-carboxaldehyde (3-IAld) (133)

Indoxyl-3-sulfate (I3S) (134)

Tryptamine (135)

Skatole (3-Methylindole) (136,
137)

Kynurenine (KYN) (138)

Kynurenic acid (KA) (114)

2-(10H-indole-30-carbonyl)-thiazole- 4 carboxylic
acid methyl ester (ITE)

(139)

6-Formyl indolo (3,2-b) carbazole (FICZ) (127,
139)

Xanthurenic acid (109)

Synthetic
Exogenous
ligands

Benzo[a]pyrene (BaP) (140,
141)

Benz(a)anthracene (BA) (142)

Polychlorinated biphenyls (PCBs) (143)

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)

4-(3-Chloro-phenyl) pyrimidin-2-yl)-(4-
trifluoromethylphenyl)-amine (VAF347)

(144)

Natural
Exogenous
ligands

Berberine (145)

Carotenoids (146)

Flavonoids (147)

Indolo[3,2-b] carbazole (ICZ) (148)

Indole-3-carbinol (149)

Indole-3-acetonitrile (134)

Resveratrol (150)

2-(indole-3-methane)-3, 3’-diindolylmethane

3, 3-diindolylmethane (DIM) (151)

(Continued)
TABLE 1 Continued

Type Ligand Ref.

Tryptanthrin (152)

Curcumin (153)
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study demonstrated that indole-3-propionic acid (IPA)-mediated

AhR activation led to reduced IFN-g production by DCs and

promoted IL-10 producing T-cell differentiation in inflammatory

bowel disease (IBD) in mice. Increased numbers of CD103+CD11b−

anti-inflammatory DCs found in the mesenteric lymph nodes

explained the reduced severity of colitis in the mice (132). Overall,

these studies highlight the anti-inflammatory effects of AhR in DCs.

AhR signaling was also shown to influence the function of DCs,

by promoting their activation and antigen presentation, and the

mechanism was AhR-dependent as such effects were absent in AhR-

deficient DCs (183). At a functional level, the AhR loss in DCs

resulted in a more aggressive experimentally-induced colitis,

showing that AhR signaling played a role in the regulation of a

functional intestinal epithelial barrier and mucosal immunity (184).

It is also notable that AhR-mediated regulatory signaling was

shown to have paradoxical effects. Quintana et al. showed that AhR

activation by its endogenous ligand 2- (1′H-in-dole-3′-carbonyl)-
thiazole-4-carboxylic acid methyl ester (ITE) led to decreased

expression of major histocompatibility complex (MHC) class II

and co-stimulatory molecules on splenic DCs and T cells, thus

promoting the induction of tolerogenic DCs and FoxP3+ Tregs that

suppressed experimental autoimmune encephalomyelitis (185).

While, another study indicated that AhR-deficient (AhR−/−) DCs

expressed increased levels of MHC class II and co-stimulatory

CD86 molecules, and hence the AhR loss was associated with

increased Th2 cell activation and severe pro-inflammatory allergic

responses (186). A negatively regulatory role of AhR in DC

immunogenesis was suggested as in the presence of CpG or LPS,

AhR−/− DCs induced reduced KYN and IL-10 expression (187). It is

reasonably speculated that different AhR ligand types might

differentially impact the DCs phenotypes and function.

Interestingly, a recent study showed that three different AhR

ligands including FICZ, indoxyl 3-sulfate (I3S), and BaP had

different modulatory effects on DC biology and unlike FICZ or

I3S, the BaP induced a tolerogenic response in LPS-primed DCs

(188). Taken together, these findings suggest an immunoregulatory

role of AhR activation in DCs and the impact on their

functional responses.
AhR-mediated regulation in myeloid-
derived suppressor cells

MDSCs, generated during pathological conditions (189), exert

immunosuppressive functions. Recent investigations have revealed

that TCDD-induced activation of AhR within the peritoneal cavity

triggers the mobilization of MDSCs with immunosuppressive

capabilities (174). Treatment of mice with an AhR antagonist

(CH223191) or CXCR2 receptor antagonist (Sch527123)

significantly reduced the TCDD-induced MDSCs, underscoring the

dependence of TCDD-mediated immunosuppression on AhR

signaling in MDSCs (174). Furthermore, TCDD-induced AhR-

mediated mobilization of MDSCs relied on the CXCR2 expression

as the blockade of CXCR2 diminished the TCDD-mediated MDSCs

induction (190). A recent study showed that the defective AhR

activation led to impaired regulation of polymorphonuclear (PMN)
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MDSCs in a mouse model of experimental Sjögren’s syndrome (ESS)

(191). Dietary supplementation with indole-3-propionic acid (IPA), a

tryptophan metabolite that activates AhR, promoted the PMN

MDSCs differentiation and CD4+ T-cell inhibition, indicating that

IPA-induced AhR activation restored PMN MDSCs function in ESS

(191) The AhR-associated mechanisms that drive MDSCs regulation

and suppressor functions in Sjögren’s syndrome have been discussed

in a recent review (192).
AhR-mediated regulation in NK cells

NK cells are cytotoxic innate immune lymphoid cells that

orchestrate host defense against pathogens and several types of

cancers. By engaging in reciprocal interactions with macrophages,

T-lymphocytes, DCs, and endothelial cells, NK cells act as key players

in immune regulation (175). Emerging evidence now supports that

NK cells can also manifest adaptive modulations such as antigen-

driven clonal expansion and induction of long-lived memory and

thus play regulatory roles in both innate and adaptive immunity

(193). Notably, AhR signaling is critical to shaping innate and

adaptive immunity and plays a key role in the development of NK

cell precursors. The underlyingmolecular mechanisms by which AhR

affects NK cell differentiation and function remain largely elusive. The

circulatory mature NK cells typically lack in AhR expression, and this

inhibition is induced by STAT3 signaling during IL-21-driven NK

cell activation and proliferation, in parallel with the upregulation of

CD56 expression. In NK cells, AhR regulates genes that are associated

with a wide variety of signaling and metabolic pathways, including

the oxidative stress responses (194).

Notably, the peripheral human NK cells show differential

susceptibility to AhR modulation. In this regard, CD56bright NK

cells were found to highly express AhR mRNA and had increased

sensitivity to AhR ligands (195). Conversely, AhR mRNA

expression gradually declines as NK cells exhibit a more mature

phenotype, characterized by the CD56dim phenotype. Additionally,

AhR ligands play a role in modulating CD56bright NK cell surface

receptors and cytokine secretion (195). AhR emerges as a critical

regulator of NK cell migration, and NK cells deficient in AhR

expression exhibit diminished capacity for in vivo migration.

Importantly, Shin et al. showed that AhR bound with the ASB2

gene promoter and the interaction with the agonist FICZ induced

ASB2-dependent degradation of filamin A in NK cells which led to

promoted migration of primary NK cells (196).
AhR-mediated regulation in the ILCs

ILCs are the innate counterpart of CD4+ Th-lymphocytes that

regulate immune responses and maintain immune homeostasis,

especially in the mucosal linings of the intestine and lung (197).

Based on transcriptional circuitry and effector functions, ILCs are

classified into three main groups (198), including (i) Group 1 ILCs

(ILC1 cells) which resemble Th1 cells (199); (ii) Group 2 ILCs (ILC2

cells) which are characterized by the expression of GATA3

transcription factor – a master regulator of Th2 cells involved in
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production of IL-5 and IL-13 by this Th-lymphocyte subset (200);

and (iii) Group 3 ILCs (ILC3 cells) which mimic Th17 cells and

express RORgt transcription factor and produce cytokines including
IL-17 (201).

AhR signaling plays a critical role in regulating ILC function

and AhR is highly expression in the gut ILC2 subset (202). AhR

signaling inhibits the expression of IL-33R, IL-5, IL-13, and the

transcription factor GFI1. While activation of AhR suppresses the

function of ILC2 subset, it ensures the maintenance of ILC3 subset.

Thus, the AhR pathway maintains the balance between intestinal

ILC2 and ILC3 effector populations, contributing to a protective

immune response against local pathogens (202). It is noteworthy

that the AhR pathway controlled the phenotypic changes in ILCs

populations found in the inflamed terminal ileum of individuals

with celiac disease, as indicated by the ILC3 to ILC1 shift and a

downregulation of AhR expression in the intestinal ILCs (203).

The role of AhR in the intestinal ILC3s has been thoroughly

studied, with the following key findings reported. Firstly, AhR is

critical to the survival of ILC3s (204). The underlying mechanisms

that promoted the survival and maintenance of ILC3s included the

expression of IL-7/IL-7R pathway and anti-apoptotic genes (205).

Interestingly, AhR-deficient ILC3s exhibit reduced Ki67 expression

and diminished proliferation (206). Secondly, AhR acts as a potential

regulator of ILC3s development (206). Mechanistically, AhR

induction by Runx3 and its downstream target RORgt led to

promote the development of ILC3s (207), while the C2H2 zinc

finger transcription factor Ikaros negatively regulated gut ILC3s

and inhibited their expansion by suppressing AhR expression

(208). Other mechanisms of AhR-mediated regulation of ILCs

involved the increased transcription of Notch 1/2 and stabilization

of c-Kit expression (209, 210); however, AhR also regulated ILCs

through the Notch-independent mechanisms (210). Lastly, AhR

signaling also modulated IL-22 production by ILC3s (211). In

AhR-deficient mice, ILC3 levels were significantly reduced, leading

to cryptic cap dysplasia, isolated lymphatic follicles, and inadequate

intestinal IL-22 production (209). It was suggested that tryptophan

metabolites derived from the gut microbiome acted as activating AhR

ligands and promoted intestinal homeostasis via increased IL-22

production by ILC3s (212). Additionally, microbiome-derived

short-chain fatty acids (SCFAs) can also upregulate AhR expression

and enhance IL-22 production. Notably, Yang et al. showed that a

dietary supplementation with SCFAs boosted the IL-22 production

and protected mice from intestinal inflammation, following infection

by Citrobacter rodentium (213). Moreover, individuals with alcoholic

hepatitis exhibited low fecal levels of intestinal microbiota-derived

tryptophan catabolite and an AhR ligand, indole-3-acetic acid (IAA)

(214, 215). Supplementation with IAA activated AhR signaling,

increasing ILC3 populations and IL-22 production in the gut,

thereby shielding mice from alcohol-induced steatohepatitis (216).
AhR-mediated regulation in lymphocytes

Immunoregulation in T-lymphocytes
Recent investigations support the pivotal role of AhR as a

master regulator of the adaptive immune responses, particularly
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in Tregs and Th17 cell differentiation in response to a diverse array

of endogenous, dietary, microbial, and environmental ligands (217).

Tregs, characterized by the expression of Foxp3 transcription factor,

are vital in preserving immunological balance and maintaining

peripheral self-tolerance (218). Common AhR ligands such as

TCDD, KYN, PB502, ITE, and FIZC have been identified to

induce Foxp3+ Tregs expansion by activating AhR-mediated

signaling (17, 217, 219, 220). Interestingly, it was shown that

TCDD-mediated AhR activation in the presence of TGFb1
induced SMAD1 and stabilized Foxp3 expression in human Tregs

(53). AhR activation by its ligand has been reported to regulate the

Treg and Th17 cell development (37). In murine Th17 cells, AhR

signaling countered STAT1 activation and positively regulated

Th17 cell differentiation and development (221). The tissue

specific effects and differential contribution of AhR agonists

associated with commensal flora can modulate AhR-mediated

immune regulation in Tregs. Additionally, other AhR ligands

such as Baicalein, NOR, Alpine, and Laquimod metabolites were

also found to directly influence Treg differentiation of Tregs,

offering potential alleviation of colitis through AhR pathway

activation (36, 37, 118, 222, 223). Of note, AhR activation was

shown to directly modulate Foxp3 transcriptional regulation by

binding to its promoter or indirectly by regulating downstream

signaling through TGF-b (37). Xiong et al. demonstrated that AhR

signaling directly upregulated Foxp3 transcription and promoted

the Tregs activity by influencing CD4+ T-cell intestinal homing

through G protein-coupled receptor (GPR)-15, under steady-state

and inflammatory conditions (224). Besides influencing the

intestinal homing, AhR signaling also modulated function of

Tregs by suppressing pro-inflammatory cytokines’ production by

Tregs in vivo (225). It is plausible that different sub-populations of

Tregs could have differential levels of AhR expression and hence

show the variable sensitivity to immune regulation by AhR ligands.

In line with this argument, Foxp3+ Tregs expressing the co-

inhibitory molecule TIGIT were found to be more susceptible to

modulation by AhR agonists than other Treg subsets (226). Overall,

these findings suggest an AhR-driven regulation in functional

Tregs, as shown by protective effects of AhR activation in morbid

conditions including colitis (227), diabetes (228), and experimental

autoimmune encephalomyelitis (185).

In addition to Foxp3+ Tregs, another well-characterized

regulatory T-lymphocyte subset is known as type-1 regulatory T

(Tr1) cells which are Foxp3− CD4+ T lymphocytes that produce IL-

10 and play non-redundant roles in controlling inflammation

(49, 229). Tr1 cells also produce IL-21 which has an autocrine

effect to support Tr1 cell stabilization and differentiation (230, 231).

IL-27 also promotes Tr1 cell differentiation (232, 233). Importantly,

AhR was identified as a metabolic regulator of Tr1 cell

differentiation (34), and it synergized with cMaf to regulate the

production of IL-10 and IL-21 in Tr1 cells (52, 53).

Additionally, the AhR-STAT3 cooperativity leads to increased

expression of CD39 which controls the suppressive activity of Tr1

cells (234). Similarly, the AhR-HIF1a interaction regulated glucose

metabolism in Tr1 cells (34), and it is speculated that such

interactions could also contribute to the key role of these

transcription factors in the differentiation of other T-cell subsets,
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such as Th17 cells (235). Th17 cells are marked by the expression of

IL-17A cytokine and RORgt transcription factor (236). IL-1b, IL-6,
and IL-23 induce the expression of both IL-17A and RORgt in Th17

cells (237). AhR exhibits high expression in CD4+ RORgt+ Foxp3−

Th17 cells; however, the precise mechanisms that drive the

activation of AhR and resulting ‘regulation of Th17 differentiation

and function remain unclear. Several studies have shown that Th17

cell differentiation is initiated by combined stimulation with TGF-b
and IL-6 or with TGF-b and IL-21 (238, 239); while TGF-b
promotes the expression of IL-22 by Th17 cells (240, 241). A

recent study by Minns et al. unveiled that a broad immune

modulator, vinblastine, triggered the Smad2/3 and STAT3

phosphorylation which depended on AhR-mediated signaling.

Combined with TGF-b1, vinblastine suppressed IL-2/T-bet

expression, favoring a Th17 over Th1 phenotype (242).

The dietary indole derivative I3C was found to elevate the CD4+

RORgt+ Foxp3− Th17 cell numbers in the intraepithelial layer,

lamina propria, and Peyer’s patches of the small intestine,

improving the progression of type 1 diabetes (T1D) in non-obese

diabetic (NOD) mice (243).

In addition to CD4+ T-cells, AhR signaling also modulated CD8

+ T-cell responses. To this effect, TCDD suppressed CD8+ T cell

differentiation and proliferation in influenza infection, While the

precise molecular mechanisms largely remained elusive (244).

Liu et al. reported that sustained IL-2 elevation in tumor

microenvironment led to STAT5 activation in CD8+ T- cells, and

the resulting increased levels of tryptophan metabolite

5-hydroxytryptophan (5-HTP) caused activation and nuclear

translocation of AhR. These IL2-driven immunomodulatory

changes upregulated CD8+ T-cells inhibitory receptors and caused

T-cell exhaustion in murine and human tumors (117). Interestingly,

several studies corroborated that the transport of AhR agonist KYN

to CD8+ T-cells by a common neutral amino acid transporter called

solute carrier family 7 member 8 (SLC7A8) and proton-dependent

amino acid transporter 4 (PAT4) activated AhR and upregulated the

expression of programmed cell death-1 (PD-1), thereby causing

CD8+ T cell exhaustion and dysfunction (245, 246).

AhR activation also plays a critical role in immunotoxicity

including the age-related thymic involution by regulating

development and differentiation of T cells within the thymus and

influencing the balance between thymic T-cells and Tregs (1, 247,

248). In addition to the T cell-Treg imbalance, increased AhR

activation with advancing age also suppresses the thymic epithelial

cells (TECs) that support the T-cell development, leading to

reduced T-cell maturation and selection (1). AhR activation leads

to the increased apoptosis of thymocytes and TECs. In addition to

aging, chronic exposures to environmental pollutants such as BaP/

PAHs (249) and TCDD/dioxins (250–253) can also promote the

AhR-mediated thymic involution through diverse mechanisms

involving premature emigration of T-cell progenitor, thymocyte

proliferation arrest, and thymocyte loss. It was also reported that

CD11c+ DCs played a crucial role in TCDD-induced thymic

involution and disruption of T-cell development and

differentiation within the thymus (254). On the contrary, AhR

activation in murine TECs was found to support the thymus
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regeneration whereby AhR signaling enhanced the expression of

IL-22RA1 at transcriptional level, resulting in thymus regeneration

and improvement of chronic GvHD in the mouse model (255).

As opposed to its deleterious effects, the AhR activation in CD8+

T cells was also found to have host-beneficial effects. Genome-wide

analyses revealed that AhR signaling suppressed the circulatory but

promoted the resident memory core gene programs (256). Notably,

AhR is highly expressed in human intestinal intraepithelial CD8+ T

lymphocytes (IELs), and thus the AhR activation leads to increased

differentiation and granzyme B production, boosting the IELs-

mediated immunity (256). Similarly, AhR is also highly expressed

in tissue-resident memory CD8+ T cells (TRMs) and the skin TRMs

play a dynamic role in host defense against microbial pathogens (257,

258). Indeed, AhR activation by its agonists ILA or TCDDwas shown

to induce CD4+ CD8a a+ double positive IELs which fortified

tolerance to the dietary antigens (259).

Like in ab T cells, AhR is also expressed in all innate immune gd
T cells (260), which are enriched in most peripheral tissues

including the lungs, intestines, and skin, and regulate the first line

of immune defense and homeostasis at epithelial surfaces (261).

Numerous studies show that AhR activity is critical to the

functioning of gd T cells and the AhR deficiency led to a dramatic

reduction in the intestinal Vg5 and the cutaneous Vg3 gd T cells

(260), as well as suppressed the production of IL-17 and IL-22

(262–264).

Immunoregulation in B lymphocytes

B lymphocytes play a key role in the adaptive immune response

through the secretion of immunoglobulins (176). While the precise

mechanisms governing the regulation of B-cell responses by the

environmental sensor AhR remain incompletely understood,

previous studies have shed light on its immunoregulatory role in B-

cells (265). Of note, Vaidyanathan et al. showed that following B-cell

receptor cross-linking, AhR was highly induced in B cells and played

a critical regulatory role in activation-induced cell fate outcomes, such

as plasma cell differentiation and negatively regulating class switch

recombination by decreasing expression of PR domain zinc finger

protein 1 (Prdm1), B-lymphocyte induced maturation protein 1

(Blimp1), and activation-induced cytidine deaminase (Aicda),

respectively (266). It indicated that AhR acted as a molecular

rheostat for cell fate decisions in B lymphocytes, controlling effector

responses to facilitate the optimal recall responses (266). AhR

activation positively regulated gut migration markers on mouse B

cells (267). Activation of AhR also negatively regulated differentiation

and maturation of B cells in the murine model (268). Ligand-induced

AhR activation repressed B-cell differentiation and transcription of

lineage-related genes which impeded the transition of mature B cells

into antibody-producing plasma cells (266). Specifically, TCDD-

mediated AhR activation inhibited the generation of early B-cells

and pre-B-cells, through the AhR-mediated transcriptional regulation

of early B-cell factor 1 (EBF1) and paired box gene 5 (PAX5) (269).

Mature B cells are highly sensitive targets for TCDD-mediated AhR

activation, resulting in their compromised ability to secrete

immunoglobulin M (IgM) and immunoglobulin G (IgG) (270). An

interesting study by Rosser et al. found that dietary supplementation

with SCFA butyrate suppressed arthritis in mice through elevated
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production of 5-hydroxyindole-3-acetic acid (5-HIAA), an

endogenous AhR agonist, which activated the AhR-dependent gene

transcription and regulatory B cells (Breg) function to ameliorate

experimental arthritis (168).

In essence, AhR activation orchestrates both positive and

negative regulatory effects in various immune cell types. In

macrophages, AhR activation and nuclear translocation leads to

both pro- and anti-inflammatory responses by modulating

macrophage-dependent pathways and influencing the M1/M2

macrophage polarization from naïve precursors. AhR activation

drives monocyte differentiation into DCs, leading to DC activation,

co-stimulation, and proficient antigen presentation in response to

various AhR ligands. In MDSCs, AhR activation leads to CXCR2-

dependent activation and immune suppression. Regarding CD4+ T

cells, AhR activation promotes the differentiation of Tregs and Th17

cells by directly increasing Foxp3 transcription and homing in

Tregs as well as expression of IL-17A and IL-22 in Th17 cells. In

CD8+ T cells, AhR plays a dual role, acting as both a promoter of T-

cell exhaustion and as a critical factor in the maintenance of TRMs.

Regarding ILCs, AhR activating signaling drives the phenotypic
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modulation to ensure the survival of ILC3s and promote the IL-22,

contributing to immune homeostasis and response modulation. In

B cells, AhR activation counteracts mouse B-cell differentiation and

development, suppressing the generation of early B-cells and pro-B

cells as well as preventing the development of plasma cells from

mature B cells. However, in Bregs, AhR activation enhances

immunosuppressive functions. The AhR-dependent regulation in

various immune effector cell populations is illustrated in Figure 8.
AhR as a therapeutic target

The discovery of AhR ligands with well-documented health

benefits and potential pharmaceutical properties has spurred

research into developing new therapeutic strategies, targeting AhR-

mediated modulation for various diseases, including specific tumors,

immune disorders, autoimmune, and inflammatory conditions.

Additionally, AhR modulation is being explored to enhance

hematopoietic stem cell production. The development of AhR-

targeting drugs includes selective AhR modulators (SAhRMs) or
FIGURE 8

AhR-activation orchestrates both positive and negative regulatory effects on immune cells. AhR-mediated response to exogenous or endogenous
ligands influences the activity of adaptive and innate immune responses. AhR signaling affects the polarization of macrophages, suppressing the function
of NK cells. Moreover, AhR signaling inhibits the expression of IL-5, IL-13 and enhances the production of IL-22 by ILC3. AhR signaling also effects T cell
and B cell differentiation. AhR activation impairs regulation of myeloid derived suppressor cells (MDSCs) and influences the activation of dendritic cell
functions. These effects of AhR ultimately imbalance the M1/M2 polarization and Th17/Treg balance. This illustration was created with Biorender.com.
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ligands that exhibit tissue-specific AhR agonistic or antagonistic

activity (271). Tissue-specific variations in agonistic or antagonistic

activity stem from ligand-induced conformational changes in the

receptor, along with subsequent interactions with essential co-

activators and co-repressors involved in target genes’ regulation.

Given the ‘widespread AhR expression in tumors, it emerges as

a promising drug target that can be effectively regulated in a cell

type-specific manner. ‘Molecules with antagonistic AhR activity are

being investigated as potential candidates for treatment of various

cancers. Notable antagonists including alpha-naphthoflavone (272)

and the high-affinity AhR antagonist StemRegenin 1 (SR1) have

shown promise in enhancing the proliferation of human

hematopoietic stem cells in vitro (273).

Other AhR ligands, like bilirubin and ITE, have demonstrated

potent effects on the immune system with potential therapeutic

implications. Bilirubin treatment in mice has been found to

suppress the development of autoimmune diseases, highlighting

its immunomodulatory properties (274). ITE, a synthetic potent

agonistic ligand of AhR, has shown efficacy in reducing OCT4

levels, inducing the differentiation of stem-like cancer cells, and

attenuating their tumorigenic potential in xenograft tumor models

(275). In ovarian cancer, ITE has been observed to regulate cancer

cell proliferation and migration via AhR, suggesting its potential for

optimizing ovarian cancer therapy (276).

Several human dietary components including flavonoids,

quercetin, kaempferol/campherol, and apigenin have been shown to

have either agonistic or antagonistic effects on AhR in different tissues

and thus the AhR provides a vital link between dietary components and

maintenance of intestinal immunity (277). Ito et al. demonstrated that

certain tryptophan derivatives, such as I3C, specific to cruciferous

vegetables were converted into high-affinity AhR ligands and triggered

the AhR signaling (156). Notably, Li et al. showed that a dietary switch

from a vegetable origin to a synthetic feed in mice led to a dramatic

reduction in IEL numbers with increased Bacteroides colonization and

a higher susceptibility to epithelial damage and the detrimental changes

were rescued by replenishing I3C in the diet (260). Pre-clinical studies

using I3C as a chemo-preventive agent have yielded promising

outcomes (278, 279). I3C has also been successfully investigated in

phase I clinical trial for its tolerability and efficacy as a dietary

supplement in women (280).

Human gut and cutaneousmicrobiota generate metabolites such as

indirubin and indole-3 aldehyde which promote AhR signaling, with

improvement in barrier functions (281, 282). A cutaneous microbiota-

derived metabolite quinolinic acid was found to negatively regulate

activation of the AhR-NLRP3 inflammasome signaling in psoriasis

(283). Furthermore, AhR-based manipulations offer reprogramming

advantages in various immune effector populations. Notably, AhR

stimulatory signaling regulates the cellular differentiation and

immunosuppressive functions of polymorphonuclear MDSCs and

Bregs, impacts the differentiation of Tregs and Th17 cells, and it also

contributes to the maintenance of TRMs and survival of ILCs,

especially the IL-22-producing ILC3s. AhR activation in the gut has

led to the improvement of permeability, gut immunity, and

inflammation (284). AhR modulation by 3,3'-diindolylmethane

generated neuroprotective responses against LPS-induced
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inflammation and neuronal hypoxia using in vitro and in vivo

models of Parkinson’s disease (285). The KYN-AhR pathway

emerges as a key player in brain neuronal damage and represents a

therapeutic target in stroke (286). These diverse roles highlight AhR’s

dynamic impact on immune regulation and underscore its great

potential as a therapeutic target for neuro-immune disorders.
TABLE 2 The role of AhR activation in immune diseases and pathways.

Disease AhR ligands Role pathways Ref.

LPS-induced
septic shock

3-MC,
TCDD,
FICZ, KYN

IDO/TDO activation;
TRP metabolism

(287–
289)

Listeria
Monocytogenes

TCCD,
FICZ

ROS formation and
cytokine expression

(290)

Herpes-
simplex virus-
induced
ocular
Infection

TCDD Unclear but decreased numbers of
inflammatory IFN-g+ secreting CD4
+ T cells (Th1) and Th17 cells

(55)

Multiple
Sclerosis

TCDD, I3C,
DIM, FICZ

FOXP3 expression, Treg expansion,
Th17 expansion

(112,
234,
291–
294)

Inflammatory
Bowel Disease

TCDD,
NOR, FICZ

Pro-inflammatory cytokine
expression, Th17 differentiation,
Treg differentiation, NLRP3
inflammasome expression

(63,
293,
295–
297)

Rheumatoid
Arthritis

TCDD,
FICZ

Pro-inflammatory cytokine
expression, NF-kb

(298–
300)

Psoriasis FICZ,
tapinarof

Pro-inflammatory cytokine
expression, keratinocyte interaction
with adaptive immune system

(301–
304)

Atherosclerosis TCDD, BaP Pro-inflammatory cytokine
expression, reactive oxygen species,
TCF21 interactions

(305–
309)

Type 1
diabetes
mellitus

TCDD Th17 expansion, Foxp3 expression
and Tregs (type 1 regulatory
T cells)

(310)

Systemic
Lupus
Erythematosus

KYN, FIZC,
PAHs,
dioxins,
and TCDD

T cell differentiation and activation,
suppress DNA methyltransferase 1
activity in CD4+ T cells of SLE
patients and induce CD4+ T cells
methylation-sensitive gene
hypomethylation, affect the
differentiation of Th17 and Treg
in vitro

(311)

Asthma TCDD, BaP,
I3S,
Kynurenine,
FICZ,
lipoxin

Mitochondrial dysfunction and
reactive oxygen species generation,
Th2 differentiation, production of
interleukin (IL)-4 and IL-13 that
activates B cells to differentiate into
plasma cells producing allergen-
specific IgE, promotes Th17
differentiation, Foxp3 expression

(312,
313)
frontier
3-MC, 3-methylcholanthrene; TCDD, 2,3,7,8-tetraclorodibenzo-p-dioxina; FICZ, 6-
formylindolo[3,2-b]carbazole; KYN, kynurenine; I3C, indole-3-carbino; DIM,
diindolylmethane; NOR, norisoboldine; BaP, benzo[a]pyrene, PAHs: polycyclic
aromatic hydrocarbons.
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Conclusions and perspectives

While initially recognized for its involvement in cellular

responses to foreign substances, AhR has emerged as a pivotal

player in human physiology, impacting development, organ

function, and immune metabolic equilibrium. AhR deficiency or

dysregulated activity has been implicated in compromised intestinal

permeability and integrity. Emerging evidence shows that AhR

plays significant roles in cytokine expression and the

differentiation and functioning of immune effector cells across a

broad spectrum, with an impact on both innate and adaptive

immune responses. Several lines of research suggest that the AhR

pathway plays a key modulatory role in the immune response.

Notably, M1/M2 macrophage polarization, maintaining the Th1/

Th2 balance and CD4+ CD25+ Foxp3+ Tregs, ILCs, NK cells, and

DCs are among the immune effector cells that are mainly impacted

by the AhR activation by dioxins and other ligands. Since the AhR

interacts with a variety of exogenous ligands, it serves as a potential

target for small molecule-based therapies. Nonetheless, most AhR

agonists and antagonists are not tissue-specific and require further

development to gain optimal effects of such therapeutic

interventions. Table 2 summarizes the role of AhR activation in

immune diseases and pathways implicated. Specifically, the clinical

applications of AhR-related therapies need more attention. It is

notable that the ubiquitous expression of AhR in a wide variety of

tissues and cell types can be challenging in targeting AhR signaling

pathway for a desirable therapeutic outcome. Given that, cell-

specific ligand delivery might be required to target AhR pathway.

In this regard, nanoparticles might be used for delivering AhR

modulators to targets in specific tissues and cell types (314). More

importantly, it is noteworthy that many functional investigations

have essentially relied on using rodent models, and the physio-

metabolic differences between species may constrain the direct

application of the findings to human perspectives. Thus, further

research is warranted to uncover additional roles of the AhR, more

relevant to human pathophysiology. Indeed, AhR emerges as a key

regulator of the immune responses, and it also represents a

promising target for novel immunotherapeutic modulations.
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