
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jochen Mattner,
University of Erlangen Nuremberg, Germany

REVIEWED BY

Benyamin Rosental,
Ben-Gurion University of the Negev, Israel

*CORRESPONDENCE

Xu Cao

xcao@sjtu.edu.cn

RECEIVED 21 April 2024

ACCEPTED 27 May 2024
PUBLISHED 07 June 2024

CITATION

Hu Z, Zhang Q, He Z, Jia X, Zhang W and
Cao X (2024) MHC1/LILRB1 axis as an innate
immune checkpoint for cancer therapy.
Front. Immunol. 15:1421092.
doi: 10.3389/fimmu.2024.1421092

COPYRIGHT

© 2024 Hu, Zhang, He, Jia, Zhang and Cao.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Mini Review

PUBLISHED 07 June 2024

DOI 10.3389/fimmu.2024.1421092
MHC1/LILRB1 axis as an innate
immune checkpoint for
cancer therapy
Ziyi Hu1, Qiaodong Zhang1, Zehua He1, Xiaojian Jia2,
Wencan Zhang3 and Xu Cao1*

1Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering
Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of
Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong
University, Shanghai, China, 2Department of Addiction Medicine, Shenzhen Clinical Research Center
for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center,
Shenzhen, China, 3Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and
Biology, Shanghai Jiao Tong University, Shanghai, China
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy

through unleashing anti-tumor adaptive immunity. Despite that, they are

usually effective only in a small subset of patients and relapse can occur in

patients who initially respond to the treatment. Recent breakthroughs in this field

have identified innate immune checkpoints harnessed by cancer cells to escape

immunosurveillance from innate immunity. MHC1 appears to be such amolecule

expressed on cancer cells which can transmit a negative signal to innate immune

cells through interaction with leukocyte immunoglobulin like receptor B1

(LILRB1). The review aims to summarize the current understanding of MHC1/

LILRB1 axis on mediating cancer immune evasion with an emphasis on the

therapeutic potential to block this axis for cancer therapy. Nevertheless, one

should note that this field is still in its infancy and more studies are warranted to

further verify the effectiveness and safety in clinical as well as the potential to

combine with existing immune checkpoints.
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1 Introduction

Immune checkpoint blockades (ICBs) are the most advanced methods for cancer

treatment (1, 2). Through harnessing adaptive immunity, ICBs lead to long-lasting anti-

tumor responses for certain types of cancers even at advanced stages (3, 4). Inspired by this

tremendous success, recent efforts in cancer immunology have also recognized immune

surveillance mediated by innate immune system. TheMHC1/LILRB1 axis represents such a

critical facet of the intricate interplay between cancer cells and the innate immune system,

offering a unique perspective in the field of cancer immunotherapy (5, 6).
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MHC1 molecules are expressed on the cell surface of all

nucleated cells and primarily present peptides derived from

intracellular proteins, including both self-proteins and viral

proteins (5). These peptides are typically 8 to 10 amino acids in

length and are bound within a peptide-binding groove formed by

the a1 and a2 domains of the MHC1 molecule (7). The binding

specificity of MHC1 molecules is influenced by the amino acid

residues within the peptide-binding groove, which interact with

specific amino acids of the presented peptide. This interaction

contributes to the stability of the peptide-MHC complex and

determines the recognition by cytotoxic T lymphocytes (CTLs),

leading to the mobilization of adaptive immunity (8). In the context

of cancer immunology, orchestrating immune recognition of

MHC1 molecules is responsible for presenting fragments of

tumor-specific proteins (antigens) to CTLs which serves as the

fundamental step for immune system to identify and eliminate

cancer cells (9, 10).

Leukocyte immunoglobulin like receptor B1 (LILRB1), also

known as ILT2 (Immunoglobulin-Like Transcript 2) or CD85j, is a

cell surface receptor that belongs to the immunoglobulin superfamily

(11, 12). It is primarily expressed on various innate immune cells,

including natural killer (NK) cells, monocytes, macrophages, and

dendritic cells (13). LILRB1 functions as an immune inhibitory

receptor and is involved in immune regulation and modulation of

immune responses (14). It interacts with specific ligands on target

cells, which can be either classical or non-classical MHC1 molecules

expressed on the cell surface. Through engaging MHC1, LILRB1

transmits inhibitory signals that dampen immune responses (6). As a

result, activation of LILRB1 can impact the clearance of pathogens

and/or tumor cells through inhibition of innate immune system.

Correspondingly, disrupting MHC1/LILRB1 has shown both

preclinical and clinical therapeutic activity against several types of

cancers, behaving like the established immune checkpoints such as

PD-1/PD-L1 and CD47/Sirpa which have been extensively reviewed

elsewhere (15, 16).
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This review focuses on this newly emerged immune checkpoint

and summarizes the current understanding of MHC1/LILRB1

axis on mediating cancer evasion from innate immune cells

and the therapeutic potential to block this axis for cancer

therapy. Additionally, it proposes that further studies are

warranted to verify the effectiveness and safety in clinical as well

as the synergistic potential to combine with existing immune

checkpoint blockades.
2 Structure and mechanism of MHC1/
LILRB1 interaction

MHC1 molecules consist of ternary complexes containing a
chain (the MHC heavy chain), soluble serum protein b2
microglobulin (b2m), and bound peptide (7, 17). The a1 and a2
domains on the a chain form the peptide binding groove and

contact the T-cell receptor, while a3 domain engages with the T cell

co-receptor CD8 during T cell recognition. Differently, MHC1

binds to LILRB1 via a3 domain and b2m (18, 19). The b2m
subunit is essential for the binding of MHC1 to the LILRB1

receptor, as evidence clearly shows the incapability of LILRB1 to

recognize b2m-free forms of MHC1 molecules (6). On top of this,

b2m is also necessary for the proper folding and stability of the

MHC I molecule (Figure 1) (20).

The binding site on LILRB1 localizes on the two membrane-

distal Ig domains while the other two Ig domains are not involved as

disclosed by the crystal structure analysis (21). The same

crystallographic study also reveals that LILRB1 interacts with the

a3 domain of MHC1 via the N-terminal of D1 domain and the b2m
subunit via the hinge region of D1-D2 domain (22). This

engagement induces a conformational alternation of LILRB1

and thereby exposure of the intracellular phosphorylated

immunoreceptor tyrosine-based inhibitory motif (ITIM) domain

to Src family protein-tyrosine kinases (23). Upon the tyrosine
B CA

FIGURE 1

Structure and mechanism of MHC1/LILRB1 interaction. (A) LILRB1 contains four extracellular immunoglobulin (Ig)-like domains (D1-D4). The binding
sites for HLA class I/b2-microglobulin (b2m) molecules localize to the apical D1-D2 region. The intracellular portion comprises four ITIMs. Critical
tyrosine residues involved in the recruitment of SHP-1 within ITIM domains are indicated. (B) Cartoon structure of HLA-G1/b2m/RL9 complexed with
LILRB1 (PDB ID: 6AEE). HLA-G1 is shown in purple, b2m is shown in rose red, RL9 is shown in green, and LILRB1 is shown in pink. This diagram was
created with PyMOL software (20). (C) Surface diagram of the complex structure of HLA-G1/b2m/RL9 and LILRB1 (PDB ID: 6AEE). HLA-G1 is
depicted in purple, b2m in rose red, RL9 in green, and LILRB1 in pink. This diagram was generated using PyMOL software (20).
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residue is phosphorylated, the pITIM recruits Src homology 2

(SH2) domain containing phosphatases such as PTPN6, SHP-1,

SHIP and SHP-2. For instance, the phosphorylation of Y533 has

been shown to be involved in SHP-1 recruitment with Y614 as the

main docking site (24–26). The activated phosphatase leads to the

inactivation of ITAMs and inhibition of kinases critical for immune

cell activation including SRC, PI3K/AKT, Syk/Zap70 and others

(Figure 1) (27). For these reasons, LILRB1 is considered as an

immunosuppressive receptor and its engagement with MHC1 leads

to suppressive immune responses.
3 Regulatory effect of the MHC1/
LILRB1 Axis on innate immune cells

LILRB1 is the most widely expressed LILRB family member and

its expression is demonstrated on various immune cell populations,

including monocytes/macrophages, dendritic cells, and subsets of

NK cells and T cells (28, 29). Therefore, LILRB1 activation through

engaging MHC1 molecules are likely involved in broad spectrum of

immune regulation, particularly in innate immune cells considering

its high abundance on these cells.
3.1 MHC1–LILRB1 signaling
in macrophages

Macrophages, being major components in innate immune

systems, exhibit notable plasticity and functional diversity (30).

Being professional phagocytes and antigen presenting cells, they

play a substantial role in the modulation of immune responses (31).

Within the microenvironment of tumors, macrophages engage in

interactions with cancer cells and are subject to regulation by a

diverse repertoire of signaling molecules (32, 33). These intricate

interactions and regulatory mechanisms exert a profound impact

on the immune activity and function of macrophages.

The rapid advancements in cancer immunotherapy have

underscored the critical need for fundamental investigations into

immunoregulation across both adaptive and innate cell lineages (2).

Tumor-capturing antibodies have demonstrated clinical utility in

the treatment of various cancers, such as lymphomas, breast cancer,

and colon cancer, etc (34–40). These antibodies exhibit diverse

mechanisms of action, but their effectiveness is partially attributed

to their capacity to induce antibody-dependent cellular

phagocytosis of cancer cells (41). A recent study by Weissman’s

group has highlighted that the expression of MHC1 on tumor cells

can impede macrophage-mediated phagocytosis. Importantly, they

have found that tumor cells can harness the upregulation of MHC1

molecules as a strategy to effectively inhibit macrophage-mediated

phagocytosis, as indicated by the clear correlation of MHC1

expression level and resistance to macrophage phagocytosis.

Intriguingly, removal of MHC1 molecules from cancer cells

through CRISPR-mediated knockout clearly suppresses tumor

growth in vivo at a macrophage-dependent manner, suggesting

that MHC1 as a potential target for cancer immunotherapy (23).
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Monocyte-lineage cells have been observed to express two

MHC1-binding proteins namely LILRB1 and LILRB2, both of

which not only bind to MHC1 but also possess ITIMs responsible

for transmitting inhibitory signals intracellularly (42, 43). These

characteristics position LILRB1 and LILRB2 as possible interacting

partners on macrophages for mediating MHC1-associated

suppression of phagocytosis. However, Barkal et al. has shown that

LILRB1 but not LILRB2 is highly expressed in various subsets of

tumor associated macrophages from human patients and interacts

with MHC1 molecules, thereby exerting its inhibitory function on

macrophage activity (23).This finding holds significant implications

for understanding the immunoregulatory mechanisms of

macrophages and developing more effective strategies for cancer

immunotherapy. The study lays the groundwork for exploring

LILRB1’s functions, regulatory mechanisms, and its potential in

immunotherapy. The downregulation of MHC expression enhances

the susceptibility of cancer cells to macrophage-mediated attack (44).

A significant number of cancer types demonstrate compromised or

absent surface MHC expression, which leads to impaired

presentation of cancer neo-antigens (45). Consequently, patients

bearing this type of tumors may not be suitable candidates for T

cell-based therapies. However, intriguingly, these individuals could

potentially represent ideal candidates for immunotherapies that

harness the power of macrophages phagocytosis (46).

While macrophage-mediated immunotherapy has been

extensively studied and has shown promising results in clinical

practice (47), it remains an evolving field that requires further

refinement. Novel immunotherapy strategies can be developed by

effectively modulating the activity and function of macrophages like

blocking MHC1/LILRB1 axis to suit different cancer types and

individual patient characteristics (48). Nevertheless, there is still a

need for ongoing research to optimize the efficacy of macrophage-

mediated immunotherapy and overcome potential challenges and

limitations associated with its implementation (Figure 2A).
3.2 MHC1–LILRB1 signaling in NK cells

NK cells play crucial roles in mediating anticancer immunity, and

their effectiveness against cancer cells can be enhanced by engaging

activating receptors or blocking inhibitory receptors (49, 50). Among

the activating receptors, FcgRIII (CD16) is particularly important in

antibody-dependent cellular cytotoxicity (ADCC) induced by

therapeutic monoclonal antibodies (mAbs) (51, 52). These mAbs,

such as rituximab for lymphoma, daratumumab for multiple

myeloma (MM), cetuximab, and trastuzumab for metastatic solid

cancer, engage CD16 and promote NK cell-mediated tumor cell

destruction (53–58). Additionally, antibodies targeting the ligands of

activating receptors like NKG2D and NKp46 have shown promising

results in preclinical studies, indicating NK cell-dependent anti-

tumor immunity (59, 60). Moreover, blocking inhibitory receptors

on NK cells, such as LILRB1, KIR and NKG2A, with specific

antibodies has been demonstrated to enhance NK cell function

against cancer cells (61–65). Therefore, the function of NK cells is

governed by a delicate balance between activating and inhibitory

signals within the cell.
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Unlike macrophages, the expression of LILRB1 is only restricted to

a subpopulation of NK cells and at lower level (66). For example, the

surface level of LILRB1 varies significantly on NK cells between healthy

individuals (67). Usually, the LILRB1 level is relatively higher on

FcgIIIA+CDlow56 NK cells compared to FcgIIIA-CDhigh56 NK cells

(68). While the clear reason for this differential expression remains

obscure, it is likely that LILRB1 serves as a negative-feedback

controlling mechanism to dampen FcgIIIA-dependent NK activation.

Recent findings have shown that LILRB1 engagement by MHC1

reduces the activating synapse of NK cells via suppressing microtube

re-organization and polarization of lytic granules (69). Meanwhile, the

ligation also inhibits Ca2+ mobilization, the release of interferon g and
therefore impairs NK cell mediated cytotoxicity (24, 70).

It is worth mentioning that LILRB1 is not the sole receptor for

MHC1 engagement on NK cells. Killer inhibitory receptors (KIR),

which are ubiquitously expressed on all types of NK cells, are the

main MHC1 binding partners on NK cells (71). Upon engagement

withMHC1, KIR receptors transmit inhibitory signals to the cytolytic

machinery of NK cells, thereby preventing the lysis of target cells (72).

The inhibitory signal is mediated, in part, by the binding of the Src

homology domain-containing tyrosine phosphatase (SHP-1) to

ITIMs within the cytoplasmic domains of KIRs (73). This

interaction leads to the dephosphorylation of signaling molecules

that are crucial for the activation of NK cell cytolytic functions and

release of inflammatory cytokines (Figure 2A).
3.3 MHC1–LILRB1 signaling in DC cells

Dendritic cells (DCs) are the most effective antigen presentation

cells in the immune system, bridging the activation of innate and

adaptive immunity (74). They are capable of sensing imbalances in the
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body, secreting cytokines and growth factors, and processing antigens

for presentation to T helper (Th) cells, thereby inducing initial T cell

activation and differentiation into effector cells (75). The precursor of

DCs are monocytes or CD34+ progenitor cells which are highly

expressed LILRB1. In differentiated DCs, the expression of LILRB1 is

slightly upregulated and present in nearly all lineages upon maturation

(13, 76). Additionally, stimulation with toll-like receptor (TLR) agonists

such as lipopolysaccharide (LPS) or imiquimod has been demonstrated

to further upregulate LILRB1 level in some subset of DCs, suggesting

the dynamic expression of LILRB1 under various circumstances (13).

DCs have been implicated in the induction of immune tolerance

through their interaction with MHC1-LILRB1. This interaction

transmits inhibitory signals that contribute to the suppression of

immune responses, thereby preventing excessive activation and

promoting tolerance. For instance, in the presence of a LILRB1

ligand, DCs cannot be fully activated by LPS and are unable to

secrete inflammatory cytokines (13, 28, 77). Moreover, the ligation

of LILRB1 with MHC1 also compromises the immune-stimulating

effect of the osteoclast-associated receptor which is an activating

FcR g- chain associated myeloid receptor involved in antigen

presentation (78). Therefore, dysregulation of MHC1-LILRB1

signaling in DCs has been linked to the development of

autoimmune disorders and cancer. Alterations in this pathway

can have implications for immune surveillance, self-tolerance, and

immune evasion by tumor cells (Figure 2A).
4 Emerging role of MHC1/LILRB1 axis
as an innate immune checkpoint

Immune checkpoint proteins are regulatory molecules that act

as gatekeepers of immune responses (79). These receptors usually
FIGURE 2

The role of MHC1/LILRB1 axis on innate immune cells and cancer therapy. (A) MHC1 on cancer cells transmits a negative signal through LILRB1 to
inhibit the phagocytic ability of TAMs (top panel). NK cells express markedly high levels of LILRB1 molecules, which, upon engagement with MHC1
on tumor cells, leads to suppression of NK cell activity (middle panel). Cancer cell MHC1 induces tolerogenic DCs through LILRB1 (bottom panel).
(B) The interaction between MHC1 and LILRB1 primarily involves the b2m subunit. b2m levels are typically low in serum and synovial fluid under
normal conditions but are significantly upregulated in various cancers, including cervical, ovarian, and gallbladder cancer, serving as a significant
prognostic marker. (C) Blocking the MHC1/LILRB1 axis with monoclonal antibody or targeted drug has shown remarkable anti-tumor activity through
harnessing tumoricidal activity of macrophages and NK cells.
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contain intracellular ITIM or immunoreceptor tyrosine-based

switch motif (ITSM) and use them to deliver suppressing signals

to immune cells (80). In the past decades, several immune

checkpoints, such as PD-1, CTLA4, LAG3, and TIM3, have been

identified and usually associated with adaptive immunity, primarily

regulating the function of T cells (79, 81–83).

In recent years, the concept of immune checkpoints has

transformed cancer immunotherapy, allowing for remarkable

advances in the field. In contrast, innate immune checkpoints are

a relatively new concept, involving receptors and ligands regulating

innate immune cell activity (84, 85). While much of the focus has

been on adaptive immune checkpoints like PD-1/PD-L1, emerging

research highlights the importance of innate immune checkpoints,

with the MHC1/LILRB1 axis as the most recent one.
4.1 Role of MHC1/LILRB1 axis in cancer

MHC1 is a fundamental component of the immune system,

responsible for presenting antigenic peptides to T cells (86).

Although MHC1 is traditionally associated with adaptive immune

recognition, its engagement in innate immunity is gaining

increasing recognition (87, 88). LILRB1 is predominantly

expressed on innate immune cells, such as macrophages and

dendritic cells (13, 23). LILRB1 can interact with MHC1 on

tumor cells, forming an axis to transmit negative signals to innate

immune cells (23, 89). Therefore, when LILRB1 ligates MHC1, it

inhibits innate immune cells mediated anti-tumor responses.

Numerous studies have revealed that cancer cells can actively

exploit this axis to evade immune surveillance by the innate

immune system. As mentioned above, the main subunit on

MHC1 interacting with LILRB1 is b2m, which remains at a low

level in serum and synovial fluid under normal physiological

conditions. In contrast, the elevation of b2m has been shown to

be a significant prognostic marker for various types of cancers such

as cervical cancer, ovarian cancer, gallbladder cancer and others

(Figure 2B) (90–93). Since b2m is a non-covalent binder to MHC1

molecules, upregulation of b2m could increase the level MHC1

complexes to interact with LILRB1 and therefore help cancer cells

evade the innate immune system during tumor progression (94).

However, the mechanisms underlying the dynamic regulation of

b2m expression remain unexplored and warrant further

investigations. It is worth mentioning that some cancer cells

could reduce the expression of MHC1 molecules on their surface,

because in this way they can hide themselves from the recognition

and killing by cytotoxic T cells (95). This also makes LILRB1 a

better target than MHC1 from a therapeutic point of view.

In Tumor microenvironment (TME), the expression of LILRB1

is mainly restricted in tumor stroma with tumor-associated

macrophages as the major immune cell populations. This has

been demonstrated in various types of cancers (96, 97).

Importantly, further analysis has shown that LILRB1-expressing

macrophages bears an M2- like phenotype, probably due to tumor

cell mediated education through MHC1 molecules (98). Notably, it

is reported that the ratio of LILRB1 expressing NK cells is higher in

the peripheral blood of cancer patients compared to healthy
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of LILRB1 in the TME could serve as a prognostic feature as well.

For example, a clear association of LILRB1 expression level with

advanced tumor stages and inferior survival rate has been

demonstrated in gastric cancer (99). In ovarian cancer, a shorter

survival, and worse adjuvant chemotherapy responses can be

predicted by a high content of LILRB1-positive immune cells

(100). The intricate relationship between LILRB1 expression and

the tumor microenvironment highlights its potential as a significant

prognostic marker across different cancers, providing valuable

insights into disease progression and treatment outcomes.
4.2 Targeting MHC1/LILRB1 axis in
cancer therapy

Due to the important inhibitory function of MHC1/LILRB1 axis

on innate immune cells, therapeutic disruption of this interaction

may offer beneficial effects through unleashing anti-tumor innate

immunity. Barkal et al. initially used GHI/75, a monoclonal

antibody derived from murine hybridoma, to block MHC1/

LILRB1 interaction. They showed that this antibody enhances

macrophage-mediated phagocytosis of solid tumor cells which

can be largely boosted when combining with CD47-targeted

antibody magrolimab. Additionally, LILRB1 antibody can

increase CD20 antibody-induced phagocytosis and EGFR

antibody-induced phagocytosis in the presence or absence of an

Fc-silent CD47 antibody (23). Together, this compelling evidence

suggests that LILRB1 blockade can induce macrophage-mediated

tumor elimination through enhancing antibody-dependent cellular

phagocytosis (Figure 2C).

Emerging evidence also shows that LILRB1 blockade leads to

anti-tumor effects through NK cells. For example, in chronic

lymphocytic leukimia, combination of LILRB1 antibody with

lenalidomide promotes lysis of tumor cells through activation of

NK cells (101). LILRB1 antibody produces similar effects against

glioblastoma cells at a NK cell dependent manner. B1–176 is a

humanized, Fc-engineered antibody to disrupt LILRB1 signaling

and shows enhanced natural cytotoxicity against various tumor cell

lines and in vivo xenografts (102). As mentioned previously,

LILRB1 has been shown to inhibit antibody-mediated cellular

cytotoxicity by NK cells (48). Thus, the combination of LILRB1

blockade with cetuximab has been tested in triple-negative breast

cancer and showed significant synergistic effects in elimination of

tumor cells through NK cells (Figure 2C) (103).

The above promising results in preclinical models have paved

the way for clinical trials for LILRB1 antagonists in patients with

cancer. BND-22 is a promising therapeutic agent that specifically

targets the LILRB1 receptor. It is an antibody antagonist designed to

disrupt the interactions between LILRB1 and its ligands, thereby

modulating the immune response against solid tumors (104).

Preclinical studies have demonstrated the potential of BND-22 in

inhibiting tumor growth and metastasis. By blocking the LILRB1-

mediated inhibitory signals, BND-22 promotes the activation of

natural killer (NK) cells and CD8+ lymphocytes, which are key

components of the antitumor immune response. This activation
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https://doi.org/10.3389/fimmu.2024.1421092
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2024.1421092
leads to enhanced cytotoxicity against tumor cells and improved

tumor clearance. One of the mechanisms by which BND-22 exerts

its antitumor effects is through the activation of macrophages.

Normally, LILRB1 signaling in macrophages prevents them from

engulfing tumor cells, allowing the tumor to evade immune

surveillance. By blocking LILRB1 with BND-22, macrophages are

relieved from this inhibitory signal and can effectively phagocytose

tumor cells, leading to tumor regression. In preclinical models,

BND-22 has shown promising results in various types of solid

tumors, including melanoma and colorectal cancer (104). It has

demonstrated significant inhibition of tumor growth, prolonged

survival, and reduced metastasis. These findings suggest that

targeting LILRB1 with BND-22 may have therapeutic potential in

the treatment of solid tumors. Further studies are needed to

evaluate the safety, efficacy, and optimal dosing strategies of

BND-22 in clinical settings (104). Clinical trials are currently

being conducted to assess the therapeutic benefits of BND-22 in

patients with solid tumors (clinical trial identifier: NCT04717375).

If successful, BND-22 could potentially become an important

addition to cancer immunotherapy, providing a novel approach

to enhance immune responses against solid tumors and improve

patient outcomes (Figure 2C).
5 Perspectives

The cancer-immune axis serves as a crucial cellular checkpoint,

by which the immune system controls immune responses against

cancer. In contrast, cancer cells often hijack these mechanisms to

evade immune surveillance and progress. MHC1/LILRB1 seems to

be such an axis to regulate innate immune responses for various

types of cancer. Intriguingly, therapeutic blockades disrupting

MHC1/LILRB1 interaction have been advanced in clinical trials,

displaying a great promise for the therapy of cancer. Nevertheless,

one should note that this field is still in its infancy and more studies

are warranted to further investigate research directions including

but not limited to (1) identification of possible alternative ligands on

cancer cells to interact with LILRB1; (2) assess the function of

immune cells according to induvial patients upon LILRB1 blockade

treatment; (3) evaluate alteration of cytokine profiles of immune

cells when inhibiting LILRB1; (4) demonstrate to what extent the

expression of other inhibitory receptors may impact the efficacy of

LILRB1 targeting agents and (5) therefore discover the rational
Frontiers in Immunology 06
combination for synergism to test in preclinical and clinical studies.

Ultimately, it is hopeful that completion of these studies will help

turn this promising strategy into a real therapy for human cancer.
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