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Aging is generally regarded as an irreversible process, and its intricate relationship

with the immune system has garnered significant attention due to its profound

implications for the health and well-being of the aging population. As people age,

a multitude of alterations occur within the immune system, affecting both innate

and adaptive immunity. In the realm of innate immunity, aging brings about

changes in the number and function of various immune cells, including

neutrophils, monocytes, and macrophages. Additionally, certain immune

pathways, like the cGAS-STING, become activated. These alterations can

potentially result in telomere damage, the disruption of cytokine signaling, and

impaired recognition of pathogens. The adaptive immune system, too,

undergoes a myriad of changes as age advances. These include shifts in the

number, frequency, subtype, and function of T cells and B cells. Furthermore, the

human gut microbiota undergoes dynamic changes as a part of the aging

process. Notably, the interplay between immune changes and gut microbiota

highlights the gut’s role in modulating immune responses and maintaining

immune homeostasis. The gut microbiota of centenarians exhibits

characteristics akin to those found in young individuals, setting it apart from

the microbiota observed in typical elderly individuals. This review delves into the

current understanding of how aging impacts the immune system and suggests

potential strategies for reversing aging through interventions in immune factors.
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1 Introduction

Ever since Roy Walford first proposed the idea in 1962 that

aging might be intricately linked to the immune system’s

histoincompatibility response (1), the connection between aging

and immune functionality has remained a prominent focus within

gerontological research. As individuals age, their biological systems

undergo an irreversible decline in normal physiological functions,

such as memory deterioration (2), reduced secretion of pertinent

hormones (3), degenerative changes in tissues and organs (4), and a

weakened immune defense (5).

Aging is accompanied by a compromised immune response,

while the bone marrow, thymus, and secondary lymphoid organs

exhibit degeneration in the elderly when compared to the young.

Within the bone marrow, hematopoietic stem cells can differentiate

into myeloid cells (such as granulocytes, monocytes, and dendritic

cells) as well as lymphoid cells (such as T cells, B cells, and natural

killer (NK) cells) (6, 7). However, with age, the density of human

bonemarrow and angiogenesis decrease (8), which are coupled with a

reduction of hematopoietic stem cell regeneration potential and the

alteration of its epigenetic markers (9, 10). These changes might

contribute to age-related immunodeficiency. Thymus serves as the

primary site for T cell development (11), and the precisely organized

structure of secondary lymphoid organs plays a crucial role in

establishing distinct T and B cell compartments (12). The

involution of these organs with advancing age may have a negative

impact on the spatial and temporal interactions between stromal cells

and lymphocytes, thus can jeopardize the survival of naïve T cells and

impede the effective elimination of autoreactive lymphocytes (13–15).

These age-related immune system changes, including both the innate

and adaptive branches, are primarily manifested as a diminished

immune response to exogenous and endogenous antigens, a reduced

capacity to react to novel antigens, delayed responsiveness to the

protective effects of vaccines, and weakened immune memory (16,

17). Consequently, the overall ability of the individual to fend off

infectious diseases, combat tumors, and clear out senescent cells

wanes with age (18). This age-related impairment in immune

function is coined as “immunosenescence.”

Immunosenescence encompasses a comprehensive array of age-

related alterations within the immune system, including both innate

and adaptive immunity, along with imbalances between these two

components (19). Notable examples include shifts in the quantity

and functionality of neutrophils (20), monocytes (21), macrophages

(22), NK cells (23), mast cells (24), and related cytokines in innate

immunity; alteration in the number and function of T cells (25) and

B cells (26) in adaptive immunity. Current studies have highlighted

a more pronounced influence of aging on the adaptive immune

system compared to the innate counterpart (27), and the

impairment of immune surveillance will accelerate the

accumulation of senescent cells and further expedite the aging

process (28). However, whether in the context of health or

disease, aging and immunosenescence are closely related but not

equivalent concepts. Most aging individuals experience

immunosenescence, but the degree of immune function decline

varies greatly from individual to individual. At the same time,
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certain diseases may induce immune system changes resembling

those seen in immunosenescence even in young patients

(29). Therefore, the intricate interplay between “aging” and

“immunity” necessitates nuanced analysis considering different

categories, properties, and immune backgrounds. Most of the

research on the immune system and organismal aging has been

established at the level of immune cells, but the exploration of the

cGAS-STING pathway illuminates the mechanisms through which

DNA triggers innate immunity. In addition, investigations into

alterations in gut microbiota during aging and the potential for gut

microbiota rejuvenation in long-lived elderly individuals offer

promising avenues to unravel the complex relationship between

immunity and aging.

This review explores the effects of aging on both the innate and

adaptive immune systems. We delve into the dynamic changes

observed in the gut microbiota as humans age, highlighting the

distinct gut microbiota found in long-lived elderly individuals.

Furthermore, the review addresses contemporary clinical

approaches to anti-aging, specifically focusing on strategies aimed

at prolonging healthy lifespan by rejuvenating the immune system

in the elderly.
2 Aging and the innate
immune system

Aging is an irreversible natural development process of

organisms. Consisting of different cells and factors, innate

immunity (also known as nonspecific immunity or congenital

immunity) is the first line of defense against infection (30, 31).

Organisms directly resist the invasion of microorganisms to the

host by identifying pathogens. Many aspects of the effector

functions of innate immune cells, including neutrophils,

monocytes, macrophages, natural killer cells, mast cells, and

dendritic cells, change with age (32) (Figure 1).
2.1 Aging and neutrophils

Formed from stem cells in the bone marrow (33, 34),

neutrophils, the most abundant types of granulocytes in human

leukocyte population, are an important part of the innate immune

system (34–36). When infection occurs, neutrophils are the first to

reach the inflammatory site to kill pathogens through phagocytosis

and degranulation (37–39). In addition, neutrophils recruit other

immune cells by releasing cytokines and chemokines and exert an

important function in coordinating innate and adaptive immune

responses through antigen presentation (40, 41). Therefore,

neutrophils play an important role in inflammation. However, the

relationship between neutrophils and aging is presently not very

clear. In the process of aging, neutrophils will migrate from bone

marrow and infiltrate into peripheral tissues, such as white and

brown adipose tissue, liver tissue, and so on (42). Previous studies

have suggested that the number of neutrophils remains stable in

healthy elderly (43–45). Yet, recent studies have found that the
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number of neutrophils in the elderly increases relatively with age

and shows dysfunctional phagocytosis and chemotaxis (46–48),

which may be linked to the decrease of apoptosis caused by

neutrophils activated by chronic inflammation (49). CD11b and

HLA-DR are markers indicating neutrophil activation. In

experiments using CD11b++ and HLA-DR+ neutrophils, it was

found that the increase of age can also lead to the upregulation of

inflammation-related circulating products tumor necrosis factor

(TNF) and circulating mitochondrial DNA (mtDNA) (50), which

may also be a major reason for the increase in neutrophils with age

(48). Compared with the young, the proliferation of neutrophil

precursors in the bone marrow of the elderly is significantly

reduced, so the decrease in neutrophils is considered to be the

main reason for the increase in infectious events in the elderly (51).

Aging is also a factor leading to the decrease of neutrophils, which is

often associated with neutropenia (52–55). Previous studies have

suggested that ≥65 years old is one of the triggers for neutropenia

(54, 56–58). Other studies have found that there is a significant

correlation between age and the incidence of febrile neutropenia in
Frontiers in Immunology 03
patients with small cell carcinoma treated with cisplatin plus

etoposide and carboplatin plus etoposide (52).

Some studies suggested that neutrophils may induce senescence

by causing telomere damage in vitro and ex vivo, which is ROS-

dependent and may be related to organismal aging. For example,

when neutrophils were co-cultured with fibroblasts, the ROS

released by the neutrophils significantly reduced the telomere

FISH intensity in the fibroblasts and markedly increased their

telomere-associated foci, thereby inducing senescence. However,

these effects could be prevented by adding catalase (59). In addition,

the number of hepatocytes with telomere dysfunction increased

with age in aged mice (60). Exposing precision-cut liver slices

(PCLS) to wild-type neutrophils revealed increased expression of

the senescence markers p21CIP1 and p16INK4A in PCLS; however,

this effect was abolished when neutrophils from transgenic mice

overexpressing human catalase in mitochondria were added (59).

Overall, these findings shed light on the complex dynamics that

govern the connection between age and neutrophils, highlighting

the multifaceted nature of this relationship (Table 1). The numbers
FIGURE 1

Mechanisms of changes in innate immunity during human aging. During the aging process, the innate immune system undergoes changes that
impact various immune cells, giving rise to a spectrum of aging-related diseases. Neutrophil counts increase with age and they migrate from the
bone marrow to infiltrate peripheral tissues. Additionally, an upregulation of the inflammatory regulator gene Aw112010 results in an elevated
number of classical monocytes expressing the gene MHCII in aging mice, potentially triggering atherosclerosis. The aging-related rise in beta-2
microglobulin (b2M) levels is positively correlated with age and may contribute to an increase in circulating Ly6CHi monocytes. This elevation could
lead to chronic inflammation, adversely affecting cardiac function. Moreover, aging induces the polarization of macrophages from the M1 subtype to
the M2 subtype by expanding intermuscular adipose tissue in skeletal muscles. When subjected to complexed immunoglobulin G Toll-like receptor
(c-IgG-TLR) stimulation, anti-inflammatory M2 macrophages can paradoxically produce pro-inflammatory cytokines, potentially contributing to
conditions like rheumatoid arthritis. In the elderly, the number of CD56dim NK cells significantly increases, accompanied by heightened expression of
the inhibitory receptor CD57, which may underlie age-related immune dysfunction. Furthermore, chronic inflammation in old age, coupled with
increased extracellular matrix (ECM) levels, may contribute to elevated mast cell numbers. Concomitant with the rise in mast cell numbers, the
expression level of FDF-2 in rats also increases, suggesting mast cells’ potential involvement in age-related tissue remodeling by promoting fibrosis.
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of neutrophils can either decrease, increase, or remain stable with

age, depending on a range of influential factors. These factors

include chronic inflammation, upregulation of TNF and mtDNA,

increased risk of comorbidities, race, low-performance status, male

gender, and previous radiotherapy. The interplay of these elements
Frontiers in Immunology 04
collectively shapes the impact of age on neutrophil levels. In

addition, neutrophils may play a role in triggering organismal

aging, primarily through an indirect pathway involving the

induction of cellular senescence. This process is initiated by

oxidative damage, which in turn leads to telomere dysfunction.
TABLE 1 Changes in innate immune system during aging.

Immune cells Models Expression
changes

Mechanisms References

CD11b++ neutrophils The
advanced-
age,
frail elderly

Increase TNF is upregulated in the serum of frail elderly donors (48)

HLA-DR+ neutrophils The
advanced-
age,
frail elderly

Increase Exogenous mtDNA can stimulate blood neutrophils to express HLA-DR in
a dose-dependent manner

(48)

CD14highCD16−/
CD14highCD16+/
CD14lowCD16+ classical/
intermediate/non-
classical monocytes

Human
peripheral
blood
mononuclear
cells

Classical monocytes:
numbers increase, but
frequencies decrease
Intermediate/Non-
classical monocytes:
frequencies and
numbers increase

Monocytes display increased immune activation marker levels, decreased
co-inhibitory molecule expression, elevated CCR2 expression on classical
monocytes, and reduced CX3CR1 expression on non-classical monocytes.

(63)

Ly6Chi/Ly6Cint/Ly6Clo

classical/intermediate/non-
classical monocytes

Blood/spleen/
bone marrow
of mice

Classical monocytes:
increase in the blood
and spleen
Intermediate/Non-
classical
monocytes: increase

Aging leads to an augmentation in both classical and non-classical
monocyte counts, which may be attributed to myeloid-biased
hematopoiesis. Elevations in the pro-aging factor plasma b2 microglobulin
are responsible for the rise in circulating Ly6CHi monocytes.

(21, 66)

M1 macrophages Rat
hepatic
macrophages

CD68+

macrophages increase
Excessive iron levels and age-related conditions. (73)

M1/M2 macrophages Human
skeletal
muscle

CD68+/CD80+

macrophages decrease
whereas CD68+/
CD206+

macrophages increase

Progressive accumulation of intermuscular adipose tissue (IMAT) in aging
skeletal muscle.

(70)

M2 macrophages Rat
hepatic
macrophages

CD163+

macrophages increase
Excessive iron levels and age-related conditions (73)

F4/80+

CD11b+ macrophages
Male mouse
peritoneal
macrophages

Frequencies decrease The functionality of macrophages is compromised by both aging and
protein malnutrition.

(77)

CD56dim NK cells Human
peripheral
blood

Increase The rise in the absolute count of CD56dim cells could indicate a
compensatory mechanism in response to alterations in receptor expression.

(85)

CD56dim/CD56bright

NK cells
Human
peripheral
blood

Stable/decrease Impaired immune regulation in the elderly is associated with a decline in
CD56bright NK cells.

(84)

CD56bright NK cells Human
peripheral
blood

Frequencies decrease,
but numbers are stable

CD56bright cells represent immature NK cells that have the capacity to
undergo differentiation into CD56dim cells both in vitro and in vivo.

(85, 86)

NKG2C+ CD122low

NK2 cells
Human
peripheral
blood

Increase The NK2 subpopulation represents a phenotypically memory-like subset of
NK cells, and it is notably linked to the aging process.

(91)

Tryptase+/-/chymase+/-

mast cells
Human
epithelial
tissues

Frequencies
remain stable

The quantity of mast cells rises, yet the frequency of cells identified
through dual labeling remains constant in aged skin.

(122)
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Therefore, although neutrophils are recognized for their pivotal role

in microbial killing and inflammation, their involvement in the

aging process and potential long-term negative effects on the body

should not be overlooked.
2.2 Aging, monocytes, and macrophages

Aging is a complex process that involves multiple biological and

biochemical mechanisms. Monocytes and macrophages, two key

cell types in the innate immune system, also play important roles in

the aging process. Both monocytes and macrophages belong to

phagocytes. Monocytes are generally considered to be the

precursors of macrophages, but current studies suggest that most

macrophages are embryonic-derived (61, 62). With the aging of the

organism, the phenotype and function of monocytes and

macrophages in the elderly may change.

As the body ages, monocytes will change. In both aged mice and

humans, the total number of circulating monocytes increases with

age across classical, intermediate, and non-classical subsets (21, 63),

while the percentage of classical monocytes relative to the total

monocyte population decreases in the elderly (63). Plasma beta-2

microglobulin (b2M) is mainly derived from platelets (64) and

positively correlated with age (65). An increase in b2M partially

leads to an increase in circulating Ly6CHi monocytes. When

platelet-specific b2M was knocked out (Plt-b2M-/-), aged mice

had significantly fewer circulating Ly6CHi monocytes but more

pro-reparative genes Il10, Il27, and Cxcl12, exhibiting an anti-

inflammatory phenotype (66). This seems to suggest that aging

can be delayed by reducing Ly6CHi pro-inflammatory monocytes.

However, aged mice exhibited more aging phenotypes, such as

reduced heart function (64). Inflammation, while harmful in some

cases, can also help maintain heart function in others (67).

Therefore, it seems that people should center more attention on

maintaining immune homeostasis than preventing chronic

inflammation. Furthermore, the number of classical monocytes

with MHCII genes increased during aging in mice, which may be

due to the increased expression of inflammatory regulator

Aw112010 (21). In addition to quantitative changes, aging can

also lead to changes in the function of monocytes. Aged

monocytes are known to have reduced cellular effector capacity.

The main manifestation is the impaired phagocytosis of monocytes,

which leads to telomere shortening under the stimulation of Toll-

like receptor (TLR) 4, significantly increased levels of intracellular

tumor necrosis factor (TNF)-a level (63, 68), and decreased

production of interleukin (IL)-1 (69) and IL-6 (63). Further,

aging also decreased the expression of co-inhibitory molecules

2B4 (CD244), T-cell immunoglobulin domain and mucin domain

3 (TIM-3), CD200R, T-cell immunoglobulin and ITIM domain

(TIGIT), and B and T lymphocyte attenuator (BTLA), while

increased the expression of immune activation markers human

leukocyte antigen-DR (HLA-DR), cluster of differentiation

molecule 11b (CD11b), and L-selectin (CD62L) (63).

Compared with monocytes, much more effort has been devoted

to studying the effects of aging on macrophages. The total number

of macrophages remains stable in aged skeletal muscle, most of
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which are the anti-inflammatory M2 subtype, proportional to age,

and a small part are M1 subtypes, which are inversely proportional

to age (70). This seems to contradict the pro-inflammatory state of

aging. In fact, M2 macrophages can also produce pro-inflammatory

cytokines in response to complexed immunoglobulin G (c-IgG)-

TLR stimulation (71), and macrophages are not the only cells that

cause systemic inflammation due to aging (72). The reason why M2

becomes the main subtype of macrophages in skeletal muscle in the

elderly may be intertwined with the increase of intermuscular

adipose tissue in aged skeletal muscle (70). Aging can also lead to

hepatic iron deposition and the accumulation of M1 and M2

hepatic macrophages, but no changes in the phenotype and

number of macrophages were observed by administering iron

dextran to mice, signifying that iron may not be the cause of the

increase in liver macrophages due to aging (73). Paradoxically, iron

can both promote the production of pro-inflammatory cytokines

such as IL-6 and TNF-a, thereby increasing the number of

macrophages (74), and accumulate continuously with age in

monocytes, thus differentiating into macrophages (75). The

reason for this contradictory phenomenon may lie in the different

types of cellular iron. Malnutrition is one of the predisposing

problems in the elderly population (76), and studies have linked

macrophages to the disease. Compared with young malnourished

animals, the number of F4/80+ CD11b+ macrophages was

significantly decreased in aged malnourished animals, but there

was no significant difference compared with aged control animals

(77). CD86, one of the most representative surface markers of M1

macrophages (78), was also found to be reduced in aged animals,

but it was not associated with malnutrition (77), which partly

confirms that macrophages in aged animals are polarized to M2

subtype. TLR-4, the receptor of lipopolysaccharide (LPS) (79), plays

a critical role in regulating the innate immune system (80). The

expression of this receptor is decreased in the malnourished

population, but this decrease is not implicated in age (81).

Through this experiment, we can find that aging may lead to the

decrease of M1 macrophages, but this decrease has nothing to do

with malnutrition. Malnutrition may lead to a decrease in TLR-4

expression, but this decrease has nothing to do with aging (81).

Therefore, based on the above findings, we conclude that aging or

malnutrition induces the polarization of macrophages from pro-

inflammatory M1 to anti-inflammatory M2 subtypes, adversely

affecting the immune response. However, it is impossible to

determine from this review if there are any interactions between

aging and malnutrition. Albumin, a biological indicator of

malnutrition, has been found to decrease with age in the elderly

population (82), which directly links aging with malnutrition.

Future research can utilize albumin as a medium to explore the

connections among aging, malnutrition, and macrophages, thereby

exploring the immune mechanism in greater depth.

In summary, the number of monocytes tends to increase with

age. However, the knockout of platelet-specific b2M can inhibit the

pro-inflammatory differentiation of monocytes in aged mice,

suggesting that inflammation may not be entirely harmful to the

human body. In fact, acute inflammation might be beneficial in

some ways. Acute inflammation is the body’s response to infection

and injury, aiding in the healing process. For example, when a
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person is injured or contracts a virus such as a cold or flu, the

immune system releases white blood cells to the affected area. These

cells surround and protect the injured site, playing a crucial role in

the body’s healing mechanism. Nevertheless, aging can still lead to

monocyte dysfunction and shortened telomere length, affecting

their functionality. Regarding macrophages, their numbers

typically remain stable in skeletal muscle as individuals age. The

accumulation of hepatic macrophages in aging may not be directly

linked to iron deposition, but previous studies have shown that iron

can indirectly promote the increase of macrophages by generating

pro-inflammatory cytokines such as IL-6 and TNF-a and

accumulating in monocytes. However, the impact of long-term

changes in iron metabolism on macrophages requires further

investigation. Moreover, the high expression of IL-6 and TNF-a
can also lead to a decrease in albumin (83), a biological indicator of

malnutrition in elderly individuals. This finding might explain why

the elderly, considered a high-risk group for malnutrition,

experience reduced M1 macrophages after a high-fat diet. In

conclusion, we shed light on the complex relationships between

monocytes, macrophages, and aging (Table 1). Further research is

necessary to fully understand these interactions and their

implications for human health.
2.3 Aging and natural killer cells

NK cells are a group of toxic lymphocytes defined by CD3-,

CD16+, and CD56+ phenotypes, which belong to a type of

lymphocytes and can directly kill virus-infected cells, tumor cells,

and abnormal cells. With age, the frequency and composition of NK

cells may change. Previous studies found that the count of NK cells

remains constant with age. For instance, the number of CD56dim

NK cells was independent of aging (84). Recent studies have found

that the frequency and absolute number of total NK cells and

CD56dim NK cell subset were stable in the elderly compared to

adults. In contrast, the frequency of CD56bright NK cell subsets was

strikingly reduced in the elderly, although the absolute number of

CD56bright NK cell subsets were stable when compared with adults

(85, 86). The two experiments mentioned above have reached

different conclusions regarding “the impact of aging on the

absolute number and frequency of NK cells”. This discrepancy

may be due to several factors: the different definitions of the age

span of adults (the former is 20-40 years old; the latter is 19-59 years

old), the distinct health status of the subjects and the limitations of

techniques. For mice, since CD56 is not expressed, subset

classification cannot be performed based on CD56, but can be

divided according to CD27 (87). Aging leads to significant changes

in the distribution of NK cells in different tissues of mice. Aged mice

show a significant decrease in the frequency and number of NK cells

in their blood, spleen, and liver compared to young mice (88),

indicative of a decline in the immune function of aged mice, as NK

cells play an important role in defending against viral infections and

cancer. Although the proportion of NK cells in the immune system

of the lung is altered in aged mice, the total number of NK cells in

the lung remains stable (88). Moreover, the frequency and number

of NK cells in the lymph nodes of aged mice tend to increase, albeit
Frontiers in Immunology 06
not significantly (88). This may suggest that the immune system of

aged mice is compensating for the decline in NK cells in other

organs by increasing the number of NK cells in lymph nodes.

Memory-like NK cells (NK2, NKG2C+ CD122low) exhibit distinct

characteristics, including lower expression of FceRg (FCER1G), SYK
(SYK), EAT-2 (SH2D1B), PLZF (ZBTB16) and higher NKG2C

(KLRC2) compared with other NK cell subpopulations (89, 90).

These cells have garnered significant attention for their robust

response to viruses and their tendency to accumulate with age

(91). However, the development process, cell life of memory-like

NK cells and which subset of mature NK cells they are transformed

from await further studies to be clarified.

In addition to the effect on the frequency of NK cells and

circulating NK cell pool, aging also has an impact on NK cell

phenotype and function. CD16, also known as FcgRIII, is an Fc

receptor that can bind antibodies and virus particles to activate the

killing effect of NK cells. It was found that the expression of CD16 in

elderly donors has a slight but not significant extension compared

with young controls (86, 92). NKG2D is another surface marker of

NK cells, which can bind to a variety of protein ligands, including

MICA/B (major histocompatibility complex class I chain-related

molecules A/B) and ULBP (UL16-binding protein), to activate the

killing effect of NK cells (93, 94). The effect of age on the expression

of NKG2D in NK cells is controversial. Despite the expression of

NKG2D in CD3-CD56dim NK cells only significantly increased in

neonatal and middle-aged populations (92), other studies have also

found that the expression of NKG2D decreased with age (95–97). In

addition to CD16 and NKG2D, aging also affects the expression of

other receptors on NK cells. For example, the expression of CD57,

an inhibitory receptor, increases with age in CD56dim NK cells (86,

92, 97–99). CD57 is thought to reflect the accumulation of highly

differentiated, senescent NK cells, which may contribute to age-

related immune dysfunction. The expression of KLRG1 in CD3-

CD56dim and CD3-CD56bright NK cells was negatively correlated

with age (100). Withal, the expression of inhibitory receptors called

killer-cell immunoglobulin-like receptor (KIR) superfamily on NK

cells is known to be stable (92, 98) or elevated (in CD56bright NK

cells) (85) when comparing adult controls with old subjects. It is

important to note that the expression of KIR receptors can be

influenced by various factors, the type and content of fatty acids in

the plasma of the elderly may be the main influencing factors.

Recent studies have found that arachidonic acid (AA) can inhibit

the expression of KIR2DL1/S1 and KIR2DL5 in aged NK cells,

while DHA and EPA can promote the expression of KIR2DL3 and

KIR3DL1 (96). However, the NK cell responses of young adults and

healthy elderly recipients in this experiment were similar, and the

control experiment and paired Student’s t-test were not performed

for statistical analysis of young and old recipients after fatty acid

administration, thus it is impossible to determine whether the

promotion or inhibition is caused by impaired cell function.

Furthermore, aging also affects the functional capabilities of NK

cells. NK cells, which are known to eliminate diseased cells through

natural killer cell cytotoxicity (NKCC) and secretion of cytokines or

chemokines (101, 102), were also found to be affected by aging. As

people age, the ability of NK cells to lyse specific cells is significantly

attenuated, but no age-related statistical changes have been found in
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the binding ability of NK cells to target cells, which indicates that

the level of NKCC gradually declines, and the post-binding defect of

target cells is responsible for the decrease of NK cell killing ability

(86). Further, the decrease of perforin release from NK cells is

responsible for the reduced NKCC in the elderly population (86). A

recent study has used NKCC, rather than therapeutics such as

senolytics or senomorphics to eliminate senescent cells (103). The

researchers found that 40-50% of senescent cells were killed when

the effector-target ratio was 1:1 and the co-culture time was 16

hours (103), which suggests that NKCC could be an effective way to

eliminate senescent cells and potentially prevent or treat age-related

diseases. In addition to the weakening of NKCC, aging also leads to

the decrease of IFN-g, perforin, and granzyme, yet the increase of

TNF-a secreted by NK cells (104, 105), which induces NK cell

dysfunction or exhaustion. However, some studies disagree with the

above point of view (86, 92). NK cells are the main cells that can

exert antibody-dependent cellular cytotoxicity (ADCC). As

previously mentioned, research indicates that aging does not have

a statistically significant impact on the expression of CD16 (86, 92)

or CD16-induced cytotoxicity (106) in NK cells. Therefore, the

prevailing belief remains that ADCC, which is a measure of CD16

signal transduction, is not affected by the aging process (106–108).

However, aging leads to a shift in the composition of human

lymphocytes, with CD57+ NK cells becoming the dominant cells

(99), which are known to mediate more potent ADCC (109).

In conclusion, the effects of advancing age on NK cell phenotypes

vary among different organisms (Table 1). In human NK cells, CD56 is

an important surface marker. Upon aging, the number of CD56dim NK

cells in the blood increases significantly, while the number of CD56bright

NK cells remains stable. Due to species differences in the phenotype of

NK cells, mouse NK cells are commonly classified into distinct subsets

based on the expression of CD27, CD11b, and other markers. The

distribution and development of NK cells in most tissues of aged mice

have age-related defects, which may be attributed to the reduction of

terminal mature CD11b+CD27− NK cells (88). Other markers of NK

cells, such as CD16 and NKG2D have the effect of activating NK cell

killing. CD57 is expressed on senescent NK cells, whereas KLRG1 is

notably reduced in NK cell subsets of the elderly. Beyond the impact of

aging on NK cells, these cells may in turn have an impact on

immunosenescence and healthy aging by clearing senescent cells

(110). Granule exocytosis of NK cells plays a crucial role in the

elimination of senescent cells (111, 112). For instance, perforin-

mediated exocytosis is a primary mechanism by which NK cells clear

senescent cells. NK-92 cells have been found to eliminate senescent

LX2 cells through the activation of NKG2D and its ligand MICA,

ULBP2, as well as robust NKCC and granule exocytosis (112). Overall,

understanding the varied effects of aging on NK cell phenotypes and

their role in immunosenescence and healthy aging could provide

valuable insights into potential therapeutic strategies for age-

related conditions.
2.4 Aging and mast cells

Mast cells, first discovered by Paul Ehrlich in 1878, are a type of

immune cell (113). Based on the tissue distribution of cells, they can
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be divided into connective tissue mast cells (CTMCs) and mucosal

mast cells (MMCs) (114, 115). The origin of mast cells has been

controversial, but it is currently believed to vary from the stage of

development (116). For example, in humans and mice, mast cells

first originate from primitive hematopoiesis in the yolk sac during

the embryonic period (117–119), whereas they originate from

hematopoietic stem cells in the bone marrow in adults (120).

Mast cells play a crucial role as effector cells in the innate

immune system. However, the impact of age on their cytobiology

is not commonly explored. Therefore, this section aims to review

the effects of physiological aging on the quantity, phenotype, and

function of mast cells.

Studies on the effect of age on the number of mast cells have

found that, as a kind of important effector and regulatory immune

cells in the skin (121), the count and frequency of mast cells often

increase with age. It was found that the dermis of male fetuses and

young men had a low proportion of mast cells, whereas the

percentage of mast cells in fibroblast-like cells was increased in

the dermis of a 66-year-old man by immunohistochemical staining

and spatial morphometry (24). The results of this experiment are

similar to those of another experiment on photoprotected skin. In

this experiment, mast cells were more numerous in aged vs. young

skin by 40%, most of which were located in the papillary dermis,

with a lower incidence of degranulation (122). However, some

studies have found a significant increase in degranulated mast cells

in the skin of aged rats by observing the changes in mast cells in

albino rats at different ages (123). To explain this contradiction, we

put forth a speculation that the increased coefficient of association

between vasoactive intestinal peptide-positive nerve fibers and mast

cells in aged skin could be responsible for the lower incidence of

degranulation (124, 125). However, it should be noted that the

paracrine effect of activated mast cells can trigger adjacent mast cells

to undergo degranulation, leading to an increase in the incidence of

degranulation (126). Intriguingly, although there are changes in the

number of mast cells in the aging papillary dermis, the expressions

of several mast cell phenotypes, specifically tryptase and chymase,

were not found to be altered (122) (Table 1). As individuals age, the

number of mast cells increases significantly in various organs, such

as epididymis (127), ear skin (127), peritoneal cavity (127), intestine

(128, 129), brain (129), heart (130), and kidney (130), not just in the

skin. The increase in the number and frequency of mast cells may be

due to chronic inflammation during the aging process (24, 128). As

the extracellular matrix (ECM) accumulates in aging tissues (131,

132), it triggers the release of proinflammatory and cytotoxic

compounds such as chymotrypsin, tryptase, CXCL1, TNF-a, and
histamine from ECM-attached mast cells (127). On one hand, ECM

may serve as a cell connector (133, 134), contributing to the

accumulation of mast cells in aging organs, which may be due to

the low apoptosis rate of senescent mast cells resulting in high

survival rate (127). On the other hand, the toxic compounds

released from mast cells may contribute to a reduction in the

number of fibroblasts, which in turn promotes the frequency of

mast cells (24).

Age may also affect the phenotype of mast cells. For example,

CD45 is present in virtually all bone marrow-derived cells (135),

including mast cells, and its expression is increased in the dermis of
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the elderly (24). Although many studies have examined the impact

of age on mast cells, the majority have primarily focused on changes

in mast cell numbers. There are comparatively fewer studies that

have investigated the effects of age on mast cell surface markers such

as CD117, FceRI, and T1/ST2 (119). Fibroblast growth factor-2

(FGF-2, or basic fibroblast growth factor, bFGF), intertwined with

aging (136) and angiogenesis (137, 138), has been found to affect the

function of mast cells. In line with the increased number of mast

cells, the expression level of FGF-2 was also upregulated in adult

rats compared with young rats, indicating that mast cells may play a

role in the aging process by fostering fibrosis (130). Additionally,

mast cells also have the ability to trigger lipolysis by releasing

histamine (139). It has been observed that the secretory activity of

mast cells is heightened and there is a substantial increase in the

release of histamine in the skin of aged rats (123). The level of

histamine can also be upregulated by stroke in an age-dependent

fashion, which was found to be correlated with the significant

increase of plasma pro-inflammatory cytokines such as IL-6,

granulocyte colony-stimulating factor (G-CSF), TNF-a and IFN-g
in aged stroke mice (129). However, this study failed to identify the

source of the pro-inflammatory cytokines, therefore, whether these

pro-inflammatory factors are produced by mast cells remains to be

further proved by subsequent experiments.

In conclusion, chronic inflammation can result in an increased

number and frequency of mast cells in various organs and tissues

with age. Firstly, ECM can be used as a local cell docking substrate,

helping to reduce the apoptosis rate of mast cells in aging organs.

This, in turn, contributes to the accumulation of mast cells.

Secondly, cytotoxic products attached to ECM can reduce the

number of fibroblasts, which indirectly leads to an increase in the

percentage of mast cells. Regarding mast cell degranulation, there

are conflicting findings. On the one hand, vasoactive intestinal

peptide has been shown to inhibit mast cell degranulation, while on

the other hand, activated mast cells can initiate degranulation of

nearby mast cells in an autocrine or paracrine manner through the

histamine pathway and the tryptase pathway effect. Studies

investigating the effects of aging on mast cell phenotype have

predominantly focused on CD45, a surface marker of mast cells.

The expression of CD45 is found to be higher in the dermis of the

elderly, suggesting a potential link between aging and mast cell

behavior. Additionally, it’s worth noting that mast cells themselves

are also involved in aging and lipolysis pathways, which are induced

by age-dependent elevation of FGF-2 and histamine, respectively.
2.5 Aging and cGAS-STING signaling

Cyclic guanosine monophosphate (GMP)-adenosine

monophosphate (AMP) (cGAMP) synthase (cGAS), which was

first reported in 2013 as a cytoplasmic DNA recognition receptor,

is also believed to activate innate immune pathways by binding to

exogenous pathogenic DNA or cytosolic DNA escaped from the

nucleus or mitochondria (140, 141). Stimulator of interferon genes

(STING, a.k.a. MITA, MPYS, or ERIS), as a downstream signaling

ligand of cGAS (140, 141), was discovered in 2008 in the study of

antiviral immunity and found to be critical for the innate immune
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response induced by intracellular DNA (142–145). Since 2017,

when people first began to recognize the significance of the

cGAS-STING pathway in cellular senescence (146), the role of

this innate immune pathway in the organismal aging has gradually

been explored.

Cellular senescence, a fundamental process associated with

aging, has emerged as a prominent mechanism in recent years

and serves as a hallmark of the aging process (147–149). Yes-

associated protein (YAP) and transcriptional co-activator with

PDZ-binding motif (TAZ) serve as downstream transcriptional

complexes in the protein kinase Hippo signaling pathway,

activated in response to robust mechanical signals such as high

cytoskeletal forces elicited by stiff ECM (150). When the ECM is

flawed and experiences a reduction in mechanical force, the nuclear

YAP/TAZ is devoid, consequently inhibiting the expression of

downstream target genes such as Lamin B1 and actin related

protein 2 (Actr2). As a result, the integrity of the nuclear

membrane is compromised, and the DNA becomes exposed to

the cytoplasm. Subsequently, cGAS identifies the exposed DNA and

generates the second messenger cGAMP, which activates STING

and its subsequent signaling pathways. This activation ultimately

leads to the release of senescence-associated secretory phenotype

(SASP) and the expression of senescence-associated b-galactosidase
(SA-b-gal). Consequently, this cascade of events results in cellular

senescence and aging phenotypes (151). Phosphatase and tensin

homolog (PTEN), an extensively researched tumor suppressor gene

(152), not only plays a crucial role in diverse signal transduction

pathways and cell cycle regulation (153, 154), but also holds

significant importance in various physiological activities,

including cell adhesion, differentiation, senescence, and apoptosis

(155–158). It is worth noting that the inactivation of PTEN lipid

phosphatase can upregulate the expression of YAP/TAZ and

facilitate the translocation of YAP into the nucleus, thereby

inducing cell proliferation and migration (153). However, further

studies are required to determine whether this process effectively

safeguards the integrity of the nuclear envelope, thereby preventing

DNA leakage from the nucleus. Such leakage could potentially

activate the cGAS-STING pathway, leading to the promotion of

aging. Mitochondrial dysregulation is a condition that induces the

activation of the cGAS-STING pathway (159). The loss of PTEN-

induced kinase 1 (PINK1) protein, which leads to mitochondrial

dysfunction, promotes the activation of the cGAS-STING pathway

and consequently results in pathological changes in the kidney,

particularly renal tubular aging (160).

Humans and viruses share a co-evolutionary relationship.

Endogenous retroviruses (ERVs), also known as long terminal

repeat (LTR) retrotransposons (161), are remnants of retroviruses

that invaded and integrated into the human genome in ancient

times, accounting for 7-8% of the human genome sequence and

playing a significant role as genetic memories (162–164). The Pol

protein encoded by human endogenous retrovirus-K (HERV-K)

performs the reverse transcription of RNA to DNA (165, 166),

resulting in the addition of extra DNA to the cytoplasm of human

mesenchymal progenitor cells (hMPCs). The DNA sensor cGAS

recognizes this DNA and activates the innate immune system,

inducing cellular senescence and organismal aging (167).
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Likewise, cGAS-STING pathway in the brain is also activated with

advancing age (168). The inhibition of B-type lamin expression,

along with the subsequent resurgence of ERVs, emerged as the

primary trigger in the cascade of neuronal senility when human

neurons were cultured for prolonged durations. By employing a

siRNA gene silencing system that specifically targets the ERV or

cGAS pathway, the suppression of aging in human neurons has

been successfully achieved (169). However, the study into the aging

mechanism focused solely on an in vitro model. To fully

comprehend the mechanism of ERV-induced cellular aging

through the cGAS-STING pathway, it is imperative to conduct

future in vivo experiments, which will provide further insights and a

clearer understanding of the intricate process.

Various neurological diseases including frontotemporal

dementia (170), Alzheimer’s disease (171), Parkinson’s disease

(172), Huntington’s disease (173), ischemic brain injury (174,

175), amyotrophic lateral sclerosis (176), and ataxia telangiectasia

(177) are also germane to aging. These diseases are characterized by

an acute or chronic neuroinflammatory response triggered by the

cGAS-STING pathway, which significantly contributes to the

pathological progression of the conditions (178, 179). Recent

studies have not only linked the activation of the cGAS-STING

pathway to neurological degeneration (180) and cardiac
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dysfunction (181) caused by aging but have also shed light on its

association with age-related endothelial dysfunction (182). The

aging-induced decline in endothelium-dependent vasodilation was

significantly inhibited by knocking down cGAS using siRNA or by

injecting the cGAS inhibitor RU.521 (182, 183). Consistently,

comparable outcomes were observed when using si-STING or the

STING inhibitor H-151 (182, 184).

Overall, the cGAS-STING pathway induces aging primarily

indirectly through cellular senescence (Figure 2). Under the

action of external factors such as extracellular matrix defects,

reduced mechanical force, loss of PINK1 protein, and the

resurrection of ERV, DNA is released into the cytoplasm to

activate cGAS and generate 2’,3’-cGAMP. This molecule binds to

STING on the endoplasmic reticulum, resulting in the production

of the inflammatory molecule SASP. Ultimately, SASP leads to the

death of senescent cells and senescence of adjacent cells,

culminating in the aging process. In addition, the cGAS-STING

pathway is also involved in the process of considerable aging-related

diseases, including neurodegenerative diseases and cardiovascular

diseases. Understanding the intricate interplay between the cGAS-

STING pathway and these age-associated disorders may pave the

way for novel therapeutic interventions and strategies to combat the

challenges posed by aging populations.
FIGURE 2

cGAS-STING signaling pathway regulates immune system in aging. Mechano-defective extracellular matrix (ECM) triggers the inactivation of nuclear
YAP/TAZ, resulting in diminished expression of ACTR2 and LaminB1, along with the loss of the actin cap and nuclear deformity. Subsequent
exposure to cytoplasmic DNA and its binding to cGAS facilitate cGAS-STING activation, ultimately causing cellular senescence and the manifestation
of aging phenotypes. Moreover, PINK1 deficiency is correlated with mitochondrial dysfunction, which can also activate the cGAS-STING signaling
pathway. Treatment with the STING inhibitor H-151 and the cGAS inhibitor RU.521 both demonstrated a reduction in the expression of senescence
signaling mediators and SASP, thereby highlighting their potential as therapeutic interventions.
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3 Aging and the adaptive
immune system

When a pathogen manages to breach the first lines of defense

and enters an organism, the adaptive immune system, also known

as the specific or acquired immune system, is triggered and begins

fighting off the infection (185, 186). Immunosenescence is not only

associated with the adaptive immune system, but also with the

innate immune system, as already stated above (187–189). These

changes during immunosenescence involve a series of age-related

modifications in both T cells and B cells (Figure 3).
3.1 Aging and T lymphocytes

During the natural aging process, the immune system

undergoes dysregulation, resulting in the development of various

immune-related diseases (190). T cells, which are a crucial

component of the adaptive immune system, play a significant role

in the process of immunosenescence (16). At the same time, they

are also subject to age-related effects.
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Thymus serves as the primary location for T cell differentiation

and maturation, and plays a crucial role in the process of adaptive

immunity (11). It is well-established that in humans, the thymus

undergoes development during infancy and gradually involutes and

atrophies during adolescence (191, 192). The reason for the large

size of the thymus in infancy is possibly as a way to prepare for the

establishment of the initial T cell repertoire. The involution of the

thymus that occurs with age is primarily characterized by the

deterioration of tissue structure, a decrease in thymocytes, and a

decline in thymus mass. While the precise causes of thymus

involution are not fully investigated, recent research has shed

some light on the matter. Malnutrition, resulting from either

insufficient or excessive nutrition, is often linked to inflammation,

increasing the risk of infections and weakening the immune system

(193). In the elderly, thymus, the primary immune organ,

undergoes histological and functional decline due to aging and

nutr i t ional defic ienc ies , wi th disorganizat ion of the

corticomedullary boundary being a key feature of its involution

(194). Nutrient deficiencies frequently occur in the elderly with age

(76), and the histology of the aging thymus changes mainly in the

destruction of the corticomedullary boundary, where T cells with

different developmental stages are separated into cortical and
FIGURE 3

Aging in the regulation of adaptive immunity. Both T cells and B cells are pluripotent stem cells, differentiated from hematopoietic stem cells (HSCs).
In the bone marrow, HSCs undergo differentiation, giving rise to progenitor T (pro-T) and pro-B cells. Subsequently, pro-T cells migrate to the
thymus, where they undergo somatic recombination to transform into naïve T cells. These naïve T cells then migrate to the lymph nodes. On the
other hand, pro-B cells undergo somatic cell recombination and V(D)J recombination, transitioning into immature B cells. These immature B cells
migrate to the lymph nodes and spleen to actively participate in the immune response. Adaptive immunity comprises two types: humoral and cell-
mediated. B cells mediate humoral immunity, and the reduction in telomere length due to telomerase deficiency during aging hinders B cell
production. Additionally, the apoptosis-inducing drug dexamethasone, along with improper feedback from aged age-associated B cells producing
TNF-a, inhibits precursor B cell production, ultimately decreasing the overall B cell count. Cell-mediated immunity, on the other hand, is
orchestrated by T cells. Age-related telomere shortening results in a significant decline in the expansion ability of T cell clones, leading to a
generational reduction in CD4+ T cells and, consequently, a decrease in lifespan.
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medullary compartments (194). This separation is crucial for

proper immune function, but when it fails, central tolerance is

compromised, and autoimmune phenomena may develop (195,

196). Further, since the thymus naturally shrinks in size as we age,

dietary restriction doesn’t have a robust impact on its size in older

adults. Of note, studies have shown that the rate of thymic

involution in mice seems to be slower than that of humans (197).

However, the mentioned test on corticomedullary boundary of the

thymus in young and old age was constructed using a mouse model,

and as of now, there is insufficient evidence to suggest that thymic

involution caused by nutritional deficiency will manifest similarly in

humans. Some soluble molecules are also thought to be associated

with age-related thymic atrophy. By establishing an infant thymic

organoid model of thymocyte loss to simulate age-related thymus

involution, it was observed that the viability and functional marker

CCL21 of thymic epithelial cells was significantly increased along

with the reduction of thymocytes (192). Conversely, L-selectin, a

biomarker considered to be present in living thymocytes, was found

to be significantly reduced in thymic organ cultures in vitro, but this

change was not seen during aging in vivo (192).

In addition to the belief that thymic atrophy leads to the decrease

of T cell production and the loss of T cell receptor (TCR) diversity

(198), there have been new views on age-related T cell changes

recently. Aside from heritability and early-life environment (199),

aging is the primary factor that has a significant impact on telomere

length (200). Developing a model of telomere length-dependent T-

cell clonal expansion capacity with age, individuals with average

hematopoietic cell telomere length at twenty years of age maintained

maximal T cell clone expansion ability until their sixth decade of life.

After this point, this capacity declines exponentially. Additionally, the

generation of new naïve T cells and the capacity of naïve T cells to

produce memory T cells were also impaired (201). Although naïve T

cells possess telomerase capable of reversing telomere length (202), it

is clear that this degree of telomere elongation is far from

compensating for age-dependent telomere shortening. The telomere

length of young mice is longer than that of newborn humans [~50kb

(203) vs. ~9.5kb (204)] and telomerase has high activity in somatic

cells (205), which may suggest that telomere length-mediated

replicative aging is not a concern in the short lifespan of mice.

However, the rate of telomere shrinkage is 100-fold faster in mice

than in humans (203), which may contribute to their shorter lifespan.

Therefore, it is crucial to investigate whether a correlation exists

between telomere length and T cell repertoire in aged mice. A study

conducted recently used mice deficient in telomerase (mTerc-/-) as a

model to explore the effects of aging on adaptive immunity (206). The

findings showed that in mTerc-/- mice, the number of CD4+ T cells in

both blood and secondary lymphoid organs (like the spleen and

mesenteric lymph nodes) tended to decrease with each successive

generation when compared to the control counterpart. The impact of

telomerase on naïve CD4+ T cells was especially significant. In the

third generation of mTerc-/- mice, the frequency of naïve CD4+ T

cells was significantly reduced in the thymus and spleen and relatively

decreased in the blood compared to the control group. In addition,

there was no significant difference in the expression of costimulatory

molecules CD27 and CD28 (206), which are necessary for antigen

activation of immature CD4+ T cells through TCR (207, 208), in
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different generations of mTerc-/- mice. This is different from the up-

regulation of co-suppressor molecules CD244 and CD160 in CD8+ T

cells of the elderly, where high levels of CD244 are also related to the

aging of CD8+ T cells (209).

Apart from the negative alterations mentioned earlier, aging

also causes an elevation in the number of T cells. For example, in

aged mice, there was a notable decrease in the output of naïve T

cells, while the proportion of memory T cells significantly increased

(210). Also, in the subventricular zone of healthy and

neurodegenerative elderly people, a substantial rise in the number

of CD3+ and CD8+ T cells was found (211). However, the precise

mechanism behind this increase in T cell count remains unclear.

Extensive research has been conducted on the impact of aging

on the diminished T-cell repertoire, primarily attributed to thymic

involution. Nonetheless, emerging evidence suggests that aging

further alters the mechanical characteristics of cells and the

internal organization of their diverse components. Various types

of cells (212), including T cells (213), experience cellular stiffening

as a result of aging. This means that T cells become less deformable

with age. Cell deformation is a critical step for T cell activation and

migration (214). When T cells become less deformable, their ability

to migrate is reduced as well. Recent studies have confirmed that T

cells are not exempt from age-related cellular stiffening, as

evidenced by increased relative size of nuclei and reduced myosin

content, indicating that aging reduces their ability to migrate

effectively (213).

Taken altogether, T cells undergo a process of differentiation

from naïve to mature cells during development (Table 2). T cell

recruitment is associated with the generation of new T cells in the

thymus. However, as individuals age, the thymus gradually shrinks

and becomes involuted due to factors such as malnutrition,

resulting in a continuous reduction of naïve T cells. Furthermore,

during age-related in vitro thymic involution, researchers observe a

decrease in L-selectin-labeled viable thymocytes. Surprisingly,

despite this decrease in thymocyte content, the thymus actually

produces more of the thymocyte chemoattractant CCL21. This

suggests that the loss of thymocytes may activate homeostatic

mechanisms attempting to counteract the underlying atrophy by

enhancing the recruitment of T cell precursors. Unfortunately, these

efforts prove unsuccessful in the context of aging. In addition to

thymic atrophy and involution, shortened telomere length,

decreased telomerase activity, and accumulation of the co-

inhibitory molecule CD244 in the elderly may all lead to changes

in the number of certain T cell subsets. The function of T cells will

also gradually become dysregulated with age, which is specifically

reflected in the reduced migration ability caused by T cell stiffening.

Nevertheless, it’s worth noting that the effect of aging on the

number of T cells is not always negative. The reduction of naïve

T cells is often accompanied by an increase in the number of

memory T cells and effector T cells. CD3+ and CD8+ T cells are also

significantly increased in the subventricular zone of the elderly. At

present, ongoing studies are focusing on artificial thymic organoids

(215), presenting a promising new tool for investigating T cell

differentiation and reconstruction. Concurrently, it is imperative to

gain a deeper understanding of the interactions between T cells and

other cell types, their crucial role in maintaining immune balance,
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TABLE 2 Changes in adaptive immune system during aging.

Immune cells Models Expression
changes

Mechanisms References

Naïve T cells
(CD62LHigh

CD44low)

Telomerase-
deficient mice

Decrease Telomerase deficiency makes T cells in lymphoid organs more susceptible
to apoptosis, impacting the early developmental stages.

(206)

CD62LHigh CD44low/
CD62Llow CD44High

naïve/memory
T cells

D-galactose-
induced aging
model mice

Decrease/increase As the thymus undergoes atrophy with age, the output of naïve T cells
decreases, and memory T cells become the dominant cells in the
peripheral T cell pool.

(210)

CD3+ and CD8+

T cells
Human aged
subventricular
zone

Increase Cytotoxic T cell infiltration is present in the subventricular zone in
the elderly.

(211)

CD4+ T cells Telomerase-
deficient mice

Decrease The quantity of CD4+ T cells is associated with either telomerase
deficiency or telomere shortening.

(206)

Progenitor B cells Miz-1DPOZ mice Frequencies decrease, while
numbers are stable
compared to the
control group

The quantity of murine pro-B cells remains consistent throughout the
aging process, whereas the aging process notably impacts the maturation
into pre-B compartment.

(219)

Progenitor B cells IL-7-mediated
mouse pro-
B cells

Decrease In aging, a proportional increase exists in spleen and bone marrow ABCs,
acquiring the ability to produce TNF-a and inhibiting pro-B cell growth.

(218)

Precursor B cells IL-7-mediated
mouse B
cell precursors

Decrease Coculturing bone marrow cells with splenic age-associated B cells reduces
B-cell precursor growth, with inhibition extent depending on
ABC quantity.

(218)

Precursor B cells Miz-1DPOZ mice Decrease compared to the
control group

The elimination of Miz-1 in B lymphocytes hinders the differentiation
process of late precursors starting from the pre-B cell stage onward.

(219)

Precursor B cells BALB/c mice Decrease Old age can lead to the loss of pre-B cells, primarily attributed to an
elevated rate of apoptosis.

(220)

Precursor B cells C57BL/6 mice Decrease The proportion of pro–B cells expressing rag2 is diminished, and this
reduction is associated with a decrease in the quantity of pre–B cells.

(221)

Precursor B cells C57BL/6 and
NG-BAC
transgenic mice

Decrease Attrition in the pre-B cell pool is primarily caused by reduced pro-B cell
differentiation, resulting from suboptimal pre-BCR signaling and/or
decreased synthesis and responsiveness to IL-7.

(223)

Naïve B cells Epstein Barr
virus-
immortalized
human B
cell lines

Decrease Cellular senescence partly leads to reduced B cell function and antigen
sensitization capacity with age, ultimately affecting B cell class switching
during antibody production.

(224)

Naïve B cells Miz-1DPOZ mice Decrease Mice lacking Miz-1 exhibit indications of premature aging within the B
cell compartment.

(219)

Naïve B cells Human
peripheral B
cell subsets

Frequency: increase,
number: decrease

The absolute number of both naïve and memory B cells is lower in the
aged subject compared to the young subjects, the rate of reduction in the
absolute number is notably higher in memory B cells than in naïve
B cells.

(225)

Naïve B cells Healthy
Malawians

Decrease The thymus undergoes involution with age, leading to reduced
production of naïve T cells.

(226)

Age-associated B
cells (CD21/35-

CD23- mature
B-cells)

Spleen/bone
marrow of
aged mice

Increase/Number peaks at
24 month and then
declines, frequency
increases with age

ABC grows more dominant in the spleen and bone marrow, they might
form a subset of B cells that can inappropriately inhibit B lymphopoiesis
as individuals age.

(218)

CD27+ B cells Human
peripheral B
cell subsets

Decrease Memory B cell depletion is a common phenomenon observed in
older humans.

(225)

CD27dull memory B
cells/CD27bright

memory B cells

Human
peripheral blood

Decrease/increase The immune systems of elderly individuals may effectively recognize and
respond to familiar antigens, yet they exhibit a diminished capacity to
react to novel pathogens.

(229)

(Continued)
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and their effectiveness in combating diseases. By delving into these

studies, we can advance the prevention and treatment of immune

aging, while also devising more effective therapeutic strategies to

improve human health.
3.2 Aging and B lymphocytes

B lymphocytes derive from progenitor B (pro-B) cells in the

bone marrow, mature in the spleen, and then migrate into

peripheral body fluids. Once stimulated by antigen, B cells

undergo proliferation and differentiation, ultimately producing a

large spectrum of plasma cells. These plasma cells produce specific

antibodies, which play a critical role in the immune response within

body fluids (216, 217).

Both the percentage and absolute number of B cells are known

to decline during aging, which may be coupled with improper

feedback from age-associated B cells (ABCs) (218) and telomere

shortening caused by telomerase deficiency in the elderly

population (206). With old age, aged ABCs secrete TNF-a, which
hinders the production of precursor B (pre-B) cells (218). A recent

study examined the effects of knocking out the Myc-interacting zinc

finger protein 1 (Miz-1) gene in mice on the number and frequency

of different types of immune cells as they age. The results showed

that, compared to the control group of mice, there was no

significant difference in the frequency of pro-B cells between the

two groups as they aged. However, the frequencies of B cells and

pre-B cells in the bone marrow were significantly lower in the mice

lacking the Miz-1 gene (219). Administering dexamethasone, an

apoptosis-inducing drug, to young adult mice observed a loss of

pre-B cells similar to that seen spontaneously in aged mice,

suggesting that aging-induced apoptosis may drive the loss of

pre-B cells (220). In addition, a decrease in the expression of rag2
Frontiers in Immunology 13
and recombinase activity in pro-B cells during aging may also lead

to attrition of pro-B cells during passaging, resulting in a decline in

pre-B cells (221). IL-7 plays a crucial role in the transition from pro-

B to pre-B cells (222). Therefore, it is possible that the reduction of

IL-7 levels during aging may also contribute to changes in the

number of pre-B cells (223).

Naïve B cells are developed in the bone marrow from pre-B cells

(216, 217), and their numbers also decline with age. This age-

dependent reduction may be related to exogenous pathogen

infection and deletion of certain genes in addition to pre-B cells.

For example, when human B cell lines were infected with Epstein

Barr virus, B cells underwent a switch from IgM-producing naïve B

cells to IgA- and IgG-producing B cells, this phenomenon is

particularly prevalent in B cells from the elderly (224).

Additionally, it was found that the depletion of the Miz-1 in mice

led to a significant decrease in the population of naïve B cells (219).

However, inconsistent results have sometimes been obtained as to

the effect of aging on the percentage of naïve B cells. For example,

the proportion of circulating CD27- B cells, regarded as naïve B

cells, in the blood was significantly higher in older donors than in

their younger counterparts (225), which may be due to the fact that

the decline in CD27+ B cells is more prominent than that of CD27-

B cells with increasing age. On the other hand, research conducted

in Malawians discovered that the frequency of naïve B cells was

greatest in newborns and then decreased as they age (226).

In the aged immune system, memory B cells play a crucial role

and can be distinguished from naïve B cells by differences in

phenotype, the responses they exhibit after exposure to activating

stimuli, and differential expression of CD27 particularly in humans

(227). As a memory B cell subset, ABCs persist in the immune

response of the body to external infection (228). In the experiments

on mice, the number and proportion of ABCs in the spleen of

C57BL/6 mice gradually increased with age, while the count and
TABLE 2 Continued

Immune cells Models Expression
changes

Mechanisms References

CD21+ memory
B cells

Human spleen Increase Newly egressing memory B cells are recruited into the spleen,
systematically organized archive that undergoes homogeneous expansion
and remains conserved throughout age.

(230)

CD19+CD27+

memory B cells
Healthy
Malawians

Increase The expression of CD27 on B cells increases with age, and the B cell
subsets exhibit age-related changes, with no significant variations based
on gender.

(226)

IgDhighCD27neg

splenic marginal
zone B cells

Human splenic
marginal zone

Decrease The composition of the B cell pool undergoes changes with age and
exhibits features indicative of memory B cells.

(238)

Follicular B cells Aged
mouse spleen

Frequency: Peak at 12-
month-old
Number: No
significant change

Follicular B cells exhibit heightened CXCR5 expression, yet demonstrate
reduced migration in response to CXCL13.

(236)

Marginal zone
B cells

Aged
mouse spleen

Frequency: Peak at 15-
month-old
Number: No
significant change

The impact of aging on the abundance of marginal zone B may vary
depending on the background strain.

(236)

Marginal zone
B cells

Aged female
mouse spleen

Frequency: decrease The decline in the frequency of marginal zone B cells is associated with a
concurrent decrease in marginal zone macrophages.

(237)
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percentage of ABCs in the bone marrow were variable, with a peak

at 24 months old, followed by a gradual decrease (218).

Additionally, it has been observed that the frequency and number

of peripheral memory B cells with CD27 as a surface marker are

higher in young people but lower in older individuals (225).

Carsetti’s group has also reported a similar trend (229). As

individuals age, the number of memory B cells in the spleen also

steadily rises, and these memory B cells of the elderly can make up

as much as 60% of all B cells in the spleen (230). Nevertheless,

contradictory results were found in the frequency of memory B cells

in elderly subjects in Malawi, in line with the previously reviewed

naïve B cells, suggesting that the frequency of CD19+CD27+

memory B cells increases with age (226). The reasons for these

contradictory findings could potentially be intertwined with

ethnicity (231, 232). In humans, marginal zone B cells are

believed to be equivalent to the long-lived IgM memory B cells

found in mice (233). Along with follicular B cells, both of which are

part of the B2 cell lineage (234, 235). Aging also has an effect on

these B cell populations. The frequency of follicular and marginal

zone B cells in the spleen increased significantly in 12- or 15-

month-old female C57BL/6J mice respectively, but decreased at

later ages. For absolute numbers, when comparing 2-month-old

and 18-month-old mice, there was a slight upward trend but no

significant change (236). However, another experiment in female

BALB/c mice showed that the percentage of marginal zone B cells in

the spleens of older mice was about 40% lower than that of younger

mice (237). This contradictory phenomenon may be related mainly

to the different strains of mice used in the experiments. Similarly,

this age-dependent reduction was also observed in human

IgDhighCD27neg splenic marginal zone B cells (238).

In total, changes in B cells during aging can be reflected in three

aspects: cell number, cell subsets, and secretory function (Table 2).

As we age, the development of B cells in the bone marrow becomes

impaired, leading to reduced production of B cells. Additionally, the

aging process also influences the composition of B cell subsets in the

body. One notable change is the decrease in the number of pre-B

cells during aging, which has been associated with factors such as

TNF-a secretion, loss ofMiz-1, increased apoptosis, decreased rag2

expression and recombinase activity, and lower levels of IL-7 in

ABCs. A significant hallmark of immunosenescence is the decline in

naïve B cells and the simultaneous increase in memory B cells (239).

In humans, these two cell subtypes are often differentiated by the

expression of CD27. The loss of pre-B cells and the susceptibility to

pathogen infections are the primary factors contributing to the

reduced tolerance of naïve B cells in older individuals. However, the

frequency of naïve B cells during human aging sometimes shows

variation across experiments, which could be due to the influence of

other B cell subtypes counteracting the changes in naïve B cells, as

well as differences in ethnicity. On the other hand, memory B cells

tend to increase with age and exhibit heightened production of

cytokines like IL-1, IL-6, and TNF-a (240), which may contribute to

the formation and maintenance of a chronic inflammatory state in

the body. Similar to naïve B cells, changes in the number and

frequency of memory B cells during aging can also vary slightly

between individuals. Understanding the changes in B cells during

aging is essential for comprehending age-related alterations in the
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immune system. Further research is required to shed light on the

precise mechanisms that underlie these changes and their impact on

overall health and immunity in the elderly population.
4 Aging and gut microbiota

Since the proposal of the nine hallmarks of aging in 2013 (147),

recent studies have extended our understanding by identifying gut

microbiota dysbiosis as a novel hallmark of aging (241). As an

integral part of the dynamic organism, throughout our lifetime, the

gut microbiota co-evolves with age, drives the maturation of the

host’s immune system and thus contribute to host health (Table 3).

Maternal gut microbiota may influence the maturation of fetal

immune cells. Pups born to mothers who were transiently colonized

with the Escherichia coli HA107 strain during pregnancy showed

significant increases in innate lymphocytes and F4/80+CD11c+

mononuclear cells in their gut (242). Thus, the maternal

microbiota may play an important role in shaping the offspring’s

immune system. Furthermore, feeding pregnant mothers a high-

fiber diet resulted in a predominance of Bacteroidetes in their gut

microbiota and increased levels of short-chain fatty acids (SCFAs).

This intrauterine stimulation may suppress allergic respiratory

diseases in offspring, possibly by increasing SCFAs, which induce

regulatory T cells (243). Delivery mode strongly influences neonatal

early microbial exposure. Moreover, the abnormal colonization of

gut microbiota in infants delivered by caesarean section can prolong

postnatal immune immaturity and hinder normal immune

development, thereby increasing the risk of future immune

diseases (244). Breastfeeding, the first and most natural source of

nutrition for newborns, profoundly shapes the infant’s gut

microbiota and immune system development. Although a baby’s

immune system is not fully mature at birth, the complement

components in breast milk can partially compensate for this

deficiency, helping the baby resist pathogen invasions (245, 246).

Bifidobacterium, which belongs to Actinobacteria phyla, was the

predominant genus in the intestinal tract of breastfed infants (247),

while non-breast-fed infants are predominantly colonized by

Bacteroidaceae (248).Interestingly, disrupting the gut microbiota

early in life seems to increase the risk of autoimmune and

inflammatory diseases later on, which suggests that early

antibiotic use may have long-lasting consequences (249). The

notion that pets offer immune benefits to human health is rooted

in the hygiene hypothesis. First proposed by David Strachan in

1989, this hypothesis suggests that an overly hygienic environment

increases the risk of allergic diseases (250).

As the babies grow older, their dietary structure gradually

changes, from exclusive breast milk and formula feeding to the

addition of complementary foods. This transition makes the baby’s

gut microbiota undergo a sharp change, known as weaning reaction

(251). During this period, the Bacilli class, and in particular the

Lactobacillales order, experience a rapid contraction in the gut, while

the Clostridia undergo a significant expansion, co-dominate with

Bacteroidia, ultimately reaching adult levels (252, 253). In addition,

Ruminococcaceae and Faecalibacterium also increased significantly

(248). The expanding microbiota at weaning triggers a strong
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TABLE 3 Changes in gut microbiota during aging.

Stages Models Core microbiome Expression changes References

Initial stage First 3 months of
early life

Cesarean section
delivered infants

Phylum: Firmicutes
(dominated from day 5 to
week 4 after birth)

Firmicutes: Shows a gradual
decrease from day 5 to month 3
after birth.

(330)

Cesarean section
delivered infants

Phylum: Proteobacteria
(dominated from week 6 to
month 3)

Proteobacteria: Exhibits a
consistent upward trend from day
5 to month 3 after birth.

(330)

Cesarean section
delivered infants

Phylum: Bacteroidetes Bacteroidetes: Exhibits a reduced
abundance from day 5 to week 4,
followed by a gradual increase
from week 6 to month 3.

(330)

Cesarean section
delivered infants

Genus: Escherichia–Shigella Escherichia–Shigella: Shows a rising
trend from day 5 to month 3.

(330)

First 3 months of
early life

Cesarean section
delivered infants

Genus: Clostridioides,
and Streptococcus

Clostridioides and Streptococcus:
From day 5 to month 3, there is a
decreasing trend in the abundance.

(330)

Vaginally delivered infants Phylum: Proteobacteria,
and Firmicutes (dominated
from day 5 to day 11 after
birth)
Genus: No obvious
variation tendency

Firmicutes: The abundance
noticeably declines from day 5 to
month 3.

(330)

40 days, 3 months,
and 6 months
after birth

Breast-fed infants Genus: Bifidobacterium
Family: Enterobacteriaceae

Proportion gradually decreases as
time goes on.

(247)

1-year-old infants Non-breast-fed infants Family: Bacteroidaceae Become dominant in infants aged 1
year that never follow
exclusive breastfeeding.

(248)

3–4 months Infants at the mean age of
3.3 months

Ruminococcus
and Oscillospira

The ownership of pets leads to an
increased abundance of
Ruminococcus and Oscillospira
across various birth scenarios.

(331)

1 week, 1, 3, 6, and
18 months
after birth

Prenatal/early-life dog
exposure infants

Fusobacterium, Collinsella,
Ruminococcus,
Clostridiaceae and
Lachnospiraceae OTUs

Living with dogs has higher levels
of Ruminococcus sp. in their gut
compared to those living in
households without pets.

(332)

Transitional stage Weaning period Mouse Clostridia and Bacteroidia The weaning period is marked by a
relative expansion of Clostridia and
Bacteroidia, ultimately shaping the
bacterial composition of the adult
microbiota over time.

(252, 253)

Weaning period >4 months of age infants Ruminococcaceae
and Faecalibacterium

Infants who are weaned after the
4th month of age exhibit a rise in
levels of Ruminococcaceae
and Faecalibacterium.

(248)

Early
weaning period

≤4 months of age infants Veillonellaceae Early-weaned infants exhibit
Veillonellaceae enrichment, though
significance faded post multiple-
comparison adjustments.

(248)

Stable stage Human Firmicutes
and Bacteroidetes

Dominant bacterial phyla in the
intestinal tract during the
stable phase.

(258–260)

Adults Blautia in the
Lachnospiraceae family

The gut microbiota of children and
adults during the stable phase
differs significantly at the family
and genus levels.

(258–260)

Children Bacteroides in the
Bacteroidaceae family

(258–260)

(Continued)
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immune response, inducing RORg+ regulatory T cells, whose

perturbation can lead to increased susceptibility to immune

pathology later in life (252). Nonetheless, the effect of early

weaning (≤4 months) on the gut microbiota did not differ at the

phylum level while may be distinct at the family level (248). Early

introduction of complementary foods was associated with a lower

relative abundance of Bifidobacterium at 3 months of age. However, it

is important to note that prematurely reducing the abundance of

Bifidobacterium by introducing supplementary foods too soon may

hinder their interaction with the immune system, potentially leading

to higher levels of inflammation (254).

The gut microbiota of adults is relatively stable (255, 256). The

initial colonization of the mammalian gut is pivotal for the

maturation of the host’s immune system. The innate immune

receptor Toll-like receptor 5 (TLR5) functions as a sensor for

bacterial flagellin. In murine models, the TLR5-mediated counter-
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selection of colonizing flagellated bacteria is limited to the neonatal

period. Despite this temporal restriction, the process is crucial in

determining the composition of gut microbiota, which subsequently

influences immune homeostasis and overall health during

adulthood (257). Firmicutes and Bacteroidetes were the dominant

bacterial phyla in the intestinal tract during the stable phase (258–

260), however, there were significant differences in families and

genera between children and adults. The largest distinction came

from Blautia in the Lachnospiraceae (more abundant in the adult

cohort) and Bacteroides in the Bacteroidaceae family (more

abundant in the child cohort), respectively (260).

Although the gut microbiota maintains a relatively stable

composition throughout adulthood, it tends to decline as

individuals age (261, 262). Changes in the gut microbiota may

elevate the expression of pro-inflammatory factors, contributing to

chronic age-related inflammation (263). For example, in the
TABLE 3 Continued

Stages Models Core microbiome Expression changes References

Recession stage Drosophila melanogaster Bacilli, g-Proteobacteria,
and a-Proteobacteria

As age advances, the abundance of
Bacilli, g-Proteobacteria, and a-
Proteobacteria tends to increase.

(333)

Drosophila melanogaster Acetobacter The prevalence of Acetobacter
nitrogenifigens increases in 29-
day samples.

(334)

Rejuvenation stage Centenarians from Guangxi
Province of China

Bacteroides, Escherichia-
Shigella, Prevotella,
and Blautia

Centenarians show enrichment in
Proteobacteria and potentially
beneficial Bacteroidetes, along with
increased levels of specific bacteria
in long-lived individuals.

(335)

Centenarians and semi-
supercentenarians from
Emilia Romagna and the
surrounding area of Italy

Christensenellaceae Christensenellaceae shows an
increase in both relative abundance
and prevalence among centenarians
and individuals aged 105 and older.

(270)

Rejuvenation stage Centenarians from Rugao
City, Jiangsu Province, China

Howardella and
Rikenellaceae RC9

These genera might play a
potential role in preserving youth
or reversing the aging process.

(336)

Centenarians from Guangxi
Province or Rugao City,
Jiangsu Province, China

Odoribacter The abundance of Odoribacter
splanchnicu is elevated in
centenarians, suggesting a potential
role in supporting overall health.

(335, 336)

Long-lived families from
Hechi City, Guangxi
Province, China

Rikenellaceae,
Porphyromonadaceae,
Mogibacteriaceae,
Odoribacteraceae,
Verrucomicrobiaceae,
Christensenellaceae,
and Enterobacteriaceae

Increased numbers among long-
lived people.

(337)

Centenarians from Estonia;
Hechi City, Guangxi, China;
Sardinia, Italy; Bama County,
Guangxi, China; and Japan

Faecalibacterium The population with longer
lifespans exhibits a significantly
lower presence of Faecalibacterium.

(269, 337–340)

Centenarians and semi-
supercentenarians from
Emilia Romagna and the
surrounding area of Italy

Ruminococcaceae,
Lachnospiraceae,
and Bacteroidaceae

Abundance decreases with age. (270)

Centenarians from India,
Italy, Japan, and China

Ruminococcaceae Increase with age. (341)
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absence of adequate SCFA production, the permeability of the

intestinal mucosa increases, allowing intestinal bacteria to pass

through and enter the bloodstream. Pathogen-associated

molecular patterns of invading bacteria, such as LPS, bind to

pattern recognition receptors expressed by immune cells and

adipocytes and trigger the production of proinflammatory

cytokines, leading to chronic inflammation (264, 265).

The gut microbiota can also influence the education and

maturation of immune cells, enhancing their function and

immunological plasticity (266, 267). For example, the gut

microbiota can impact neutrophil production by regulating

myelopoiesis in the bone marrow (266). When neutrophils were

exposed to bacterial components (LPS), low doses (1 ng/mL) of small

extracellular vesicles heightened their proinflammatory sensitivity,

leading to elevated TNF-a, IL-6, ROS, and MCP-1 levels, along with

enhanced migration and phagocytic activity (267). These findings

suggest that small extracellular vesicles can prime neutrophils to

respond more robustly to subsequent infections, a phenomenon

known as trained immunity. This enhanced response helps defend

against potential invading pathogens, thereby maintaining overall

health and forming the basis for adaptive immune responses.

Conversely, higher doses (28.1 µg/mL) induced a tolerant

phenotype characterized by increased IL-10 production and

decreased migration and phagocytosis. These effects were linked to

changes in TLR2/MyD88 and TLR4/MyD88 signaling, which were

associated with the activation of adaptive pathways in neutrophils in

vitro (267). Microbiota-derived small extracellular vesicles were

shown to modulate the function of mouse neutrophils, exhibiting

memory-like features (267). With age, neutrophil proinflammatory

activities—such as tissue infiltration, phagocytosis, and the formation

of neutrophil extracellular traps—increase (266). However, this

increase may not always be beneficial, particularly when not

properly regulated (20). Changes in the microbiota can influence

these neutrophil functions, potentially impacting immune responses

in the elderly (266). Microglia are also innate immune cells with

adaptive immune memory (268). Aging significantly alters how

microglia respond to pathogen challenges by influencing their

developmental state and the characteristics of immune memory

(268). Neonatal microglia exhibit greater plasticity and can induce

trained immunity in response to ultra-low doses of pathogen

stimulation, whereas aged microglia are more likely to develop

immune tolerance when exposed to high doses (268). This suggests

that microglia may become more likely to develop suppressive

immune responses with age, which could help reduce excessive

tissue damage during repeated systemic inflammation.

Centenarians provide a valuable model for investigating the

connection between longevity and gut microbiota. Negative changes

in diverse gut microbiota caused by frailty with age lasted until

ordinary old age, and was uncoupled from extreme longevity. Long-

lived populations typically demonstrate a significant level of a-
diversity and species richness (269). Centenarians, as the population

with the longest life expectancy in humans, exhibit unique gut

microbiota characteristics compared to elderly people. Previous

research has indicated that Christensenellaceae could serve as a

potential indicator of remarkable longevity in centenarians (270),

recent studies have further explored additional microorganisms
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linked to prolonged lifespan. The original paper suggested minimal

changes in the core gut microbiota with age, but certain bacterial

taxa within the core microbiota decrease in abundance, particularly

Ruminococcaceae, Lachnospiraceae, and Bacteroidaceae (270).

Recent studies have shown that centenarians possess a unique

composition and activity of immune cell types (271). However,

few studies have explored the connection between their distinctive

gut microbiota and the immune system. In the future, combining

these two lines of research could provide a more comprehensive

understanding of the mechanisms behind longevity in centenarians.

In short, as an integral part of the body, the gut microbiota

develops alongside the immune system. During the growth and

development of the human body from newborns to adults, and then

gradually aging, the gut microbiota also undergoes dynamic

changes of initial, transitional, stable, and ultimately declining

states (Figure 4). Centenarians, the poster child for healthy aging,

deviate from typical age-related gut microbiota trends, showcasing

similarities to youth-associated patterns. Long-lived populations

often exhibit heightened a-diversity and species richness. Studying

the unique gut microbiota of centenarians offers insights into

potential anti-aging strategies, such as fecal microbiota

transplantation (FMT).
5 Clinical treatment of regulating
immunity and aging

Aging, as an irreversible natural process, is closely linked to

functional changes in the immune system and alterations in

microbiota. These changes not only affect the body’s resistance to

pathogens but may also exacerbate pathological conditions

associated with aging. Therefore, studying how to regulate

immune system function through clinical interventions to delay

aging has become a significant focus in current scientific research.

In this section, we will explore the latest developments in this field,

aiming to provide new ideas and methods for the treatment and

prevention of aging-related diseases in the future.

In recent years, a growing consensus among researchers

underscores the escalating significance of immune factors in the

processes of bodily degeneration and pathological changes, and the

onset and progression of numerous diseases are intricately linked to

the aging process. Consequently, the exploration of clinical

interventions aimed at modulating immunity and retarding aging

has emerged as a steadfast focus of ongoing investigation.

A prevalent type of malnutrition among older adults is the lack

of essential micronutrients, including vitamins and minerals, which

contributes to the gradual weakening of the immune system

associated with aging (76). However, the administration of multi-

vitamin and mineral supplements (MVM) to the elderly only

resulted in a notable increase in the levels of immune-modulating

micronutrients, namely vitamin C and zinc, there was no significant

alteration observed in the immune function or immune status of

older adults (272). Higher levels of micronutrients in the plasma

of participants prior to the intervention, the limitations of

dihydrorhodamine for measuring ROS (273), the rationality for

the choice of specific immune markers (274), and the small sample
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size of the trial might have constrained the ability to detect

significant changes. The beneficial impacts of simple caloric

restriction on extending healthspan were initially showcased

through rodent studies in 1935 (275), followed by human clinical

trials (CALERIE study) in 2015 (276). Recent clinical studies on

caloric restriction without malnutrition has also been shown to

extend the lifespan of organisms and delay the onset of age-related

diseases. For example, two years of caloric intake reduction in

humans can rejuvenate the thymus and increase its ability to

produce T cells, thereby ameliorating the age-related deterioration

of immune function (277). In addition, an 800 kcal/day caloric diet

exhibits the potential to postpone immune senescence by shaping

the gut microbiota of humanized gnotobiotic mice and regulating

immune cell types and proportions (278). Nevertheless, when

caloric intake is drastically reduced by as much as 40%, it tends

to impede the immune system, thereby increasing susceptibility to

more severe infections (279, 280).

Certain senotherapeutic pharmacological agents, such as senolytics

that eliminate senescent cells, and senostatics or senomorphics that
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prevent senescent cells from generating harmful cell-extrinsic effects,

also exhibit immunomodulatory properties (281–283). In a

groundbreaking in vitro experiment conducted in 2015, it was

discovered for the first time that the combination of dasatinib and

quercetin (D+Q) possesses the remarkable capability to enhance bodily

function and extend the span of healthy life by eliminating senescent

cells (284). Recent research has expanded upon this perspective. In a

preclinical study conducted on the nonhuman primate cynomolgus

macaques, the administration of a combination of D+Q (5 mg/kg + 50

mg/kg) for 3 months, the gene expressions of senescence markers

p16INK4A and p21CIP1 exhibited significant reductions. At the 5-month

mark, the expression of the apoptosis-related gene BAX showed a

substantial increase, collectively indicating a notable improvement in

the aging status of cynomolgus macaques (285). Aging is often

accompanied by a decline in immune capacity. However, D+Q has

also been found to possess anti-inflammatory properties. The number

of immune cells in the experimental group of animals continued to

decrease, allowing the animals to maintain healthier immune

characteristics (285). Currently, D+Q combination therapy is being
FIGURE 4

Five stages the gut microbiota goes through during human aging. As individuals age, the composition of the human gut microbiota undergoes
distinct phases: an initial phase, a transitional phase, a stable phase, a recession phase, and a rejuvenation phase. In the initial stage, various factors
impact the gut microbiota of newborns. Specifically, infants born via cesarean section experience a transition from Firmicutes to Bacteroidetes and
Proteobacteria, while those born vaginally have Proteobacteria and Firmicutes as the predominant phyla. During the transitional phase, early weaning
has a limited impact on the infant gut microbiota at the phylum level but leads to an enrichment of Veillonellaceae. Notably, Ruminococcaceae and
Faecalibacterium show significant increases during the weaning stage. By the age of 3, toddlers experience a substantial increase in both the
quantity and variety of their gut microbiota, reaching a level of maturity comparable to that of adults, entering a stable stage. However, distinctions
persist between the gut microbiota of children and adults. Blautia in the Lachnospiraceae family is more abundant in the adult cohort, while
Bacteroides in the Bacteroidaceae family is more prevalent in the child cohort. As individuals progress into the recession phase of aging, a decrease
in the Firmicutes and Bacteroidetes ratio serves as an indicator. Centenarians, in particular, display unique gut microbiota profiles distinct from the
average elderly population. Their microbiota undergoes a rejuvenation phase, suggesting that the distinctive microorganisms associated with
longevity may play a role in maintaining youth and potentially reversing aging.
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employed in Phase II clinical trials to address mental illnesses linked to

accelerated aging (193). Fisetin, another senolytic compound, is

abundantly present in various fruits and vegetables (286, 287).

Preclinical studies have shown that it has the potential to decrease

the number of damaged cells and senescent immune cells in mice,

leading to improved health and an extended lifespan in elderly mice

(288). These findings suggest that fisetin holds promise for further

exploration in human clinical trials. At present, researchers are

conducting clinical studies using fisetin as a potential means to target

cellular senescence, with the aim of enhancing bone health in elderly

individuals (289) and address frailty in the elderly (290). The immune

system of the elderly gradually loses its vitality and becomes more

susceptible to viruses. Clinical researchers have administered fisetin to

elderly COVID-19 patients aged 65 and above to verify whether it can

help enhance the immune response in older individuals and

consequently reduce the mortality rate associated with the disease

(291). In 2016, the senolytic efficacy of ABT-737 and ABT-263

(navitoclax), inhibitors of BCL-2 family proteins (including BCL-2,

BCL-W, and BCL-XL), was first demonstrated, allowing senescent cells

to initiate apoptosis (292–294). Senescent macrophages play a role in

the development of lung cancer and tend to accumulate as individuals

age (295). However, when young mice with tumorigenic lungs were

treated with ABT-737, it led to the ablation of senescent macrophages,

thereby enhancing the immunosurveillance process and effectively

reducing tumor burden (296). However, due to technical limitations,

the experiments fail to provide insights into the exact mechanism

through which lung tumors trigger macrophage senescence, nor could

it elucidate the reason behind the molecular similarities between

senescent macrophages in the lungs of naturally aging mice and

those in young mice with lung tumors. Furthermore, and the

potential involvement of other macrophage or senescent cell

populations in the process of tumorigenesis cannot be excluded.

Regrettably, ABT-737’s limited oral bioavailability restricts its

potential for therapeutic applications. On the other hand, ABT-263,

while offering the advantage of oral bioavailability, presents a

significant challenge due to its severe platelet toxicity in clinical

settings, rendering it unsuitable for safe human use (297–299).

Age serves as an unalterable risk factor for the inflammation that

forms the foundation of age-related conditions like type 2 diabetes

mellitus (T2DM) (300, 301). Metformin, as a first-line medication for

the prevention and treatment of T2DM in elderly individuals (302),

its safety and efficacy have been guaranteed in more than 60 years of

clinical use. This extended history of safe use suggests the potential

for metformin to also function as an anti-inflammaging medication,

promoting healthy aging. Oral metformin, on the one hand, has the

ability to repair mitochondria, enabling them to supply energy to

cells, restore autophagy function, and counteract the inflammatory

response triggered by immune cell Th17. On the other hand, it

enhances mitochondrial efficiency and reduces the generation of free

radicals by activating the AMP-activated protein kinase (AMPK)

pathway, effectively combating the aging process (303). Additionally,

metformin has the potential to enhance the growth of beneficial gut

bacteria known as Akkermansia muciniphila, improve the cognitive

function of elderly mice by regulating inflammation-related pathways

within the host and lowering the levels of the pro-inflammatory

cytokine IL-6 (304). Nevertheless, it remains essential to confirm
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Ether lipids serve as essential intermediate substances for biguanide

drugs, such as phenformin and metformin, which play a pivotal role

in promoting life extension, and the biosynthetic state of it also affects

dietary restriction, inhibition of mitochondrial electron transport

chain, rapamycin, and other aging intervention strategies (305).

Rapamycin is known as an immunomodulator (306, 307), and

similar to metformin, it is also recognized as a well-established

senomorphic. In 2009, the Interventions Testing Program (ITP)

certified rapamycin as the first drug to significantly extend the

lifespan of mammals, confirming its distinction among dozens of

drugs tested for anti-aging research (308). Subsequent in vivo animal

experiments have conclusively demonstrated that senescent immune

cells can induce systemic tissue damage and lead to a shortened

lifespan (309). Consequently, senescent immune cells have emerged

as a pivotal therapeutic target for extending overall health and

longevity. Notably, the administration of rapamycin has been

shown to reduce senescence markers in peripheral T cells, boost

anti-keyhole limpet hemocyanin (KLH) serum titers, increase white

blood cell counts, and effectively reverse the processes associated with

systemic aging (309). As individuals age, the deteriorative immune

function leads to a diminished response to vaccinations (310). This

decline is largely attributed to a reduced capacity of hematopoietic

stem cells to generate naïve lymphocytes and an increase in the

presence of PD-1 positive T cells. Rapamycin analog RAD001 has

been shown to restore hematopoietic stem cell function, reduce the

frequency of PD-1-positive CD4 and CD8 T cells, increase the

production of naive lymphocytes, enhance influenza antibody titers,

improve vaccination response, and extend lifespan (310). Moreover,

the decline in immune function that accompanies aging increases the

risk of infections, particularly respiratory infections (311). Low doses

of RAD001 + BEZ235 (catalytic site mTOR inhibitor) combination

synergistically inhibited multiple nodes downstream of TORC1 while

avoiding TORC2 inhibition (311). This selective inhibition is

significant as TORC2 inhibition is linked to adverse effects like a

reduced lifespan in male mice (311). The combination of RAD001 +

BEZ235 strengthened IFN-induced innate antiviral immunity,

leading to a decrease in infection rates (311). This drug boosts the

immune system by upregulating antiviral genes, which may offer

broader protection against respiratory infections compared to

treatments that target individual viruses. While the anti-aging

potential of rapamycin has shown promise in numerous animal

experiments (312–316), its transition to clinical applications has

encountered significant hurdles. The primary challenge lies in the

emergence of toxic side effects when used in humans. For example,

rapamycin have been associated with adverse symptoms, including

hyperglycemia, hyperlipidemia, nephrotoxicity, impaired wound

healing, and immunosuppression (317). However, compared to

oral and injectable administration routes, topical rapamycin has,

for the first time, clinically demonstrated its ability to delay the aging

of human skin tissue (318). This is evident in the increased collagen

content observed in the skin of most participants who received

rapamycin, as well as the decreased levels of skin cell senescence

markers (319). Although rapamycin may affect local immune cell

function, unfortunately, no immune cell infiltration was observed in

any histological sections from this experiment. In addition, this
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experiment only observed significant changes in one senescence

marker, p16INK4A, and future experiments should strive for a more

comprehensive assessment of rapamycin’s influence on human tissue

aging by examining a broader range of senescence markers.

Research in cell therapy represents a pivotal frontier in the field

of medicine. In recent years, significant advancements have been

achieved in cell therapy technology, with a focus on immune cells

and stem cell regenerative medicine. The primary vehicle for

chimeric antigen receptor (CAR) cell therapy is immune cells,

originally employed to combat non-solid tumors such as

leukemia, B-cell lymphoma, and multiple myeloma clinically

(320). In addition to their role in targeting cancer cells, CAR T

therapy has firstly found its way into the field of aging biology as a

senolytic strategy in 2020 (321–323). In this capacity, animal

experiments have shown that CAR T cells can target senescence-

specific cell surface markers such as urokinase-type plasminogen

activator receptor (uPAR) and natural killer group 2 member D

ligands (NKG2DLs), with the potential to eliminate senescent cells,

extend survival, and reinstate tissue homeostasis effectively (321,

324). Furthermore, as immune cell reinfusion therapy continues to

evolve, T cell receptor-engineered T cell (TCR T) and CAR NK cell

therapies are being developed and optimized, with expectations for

their potential in anti-aging applications in clinical settings.

In general, current anti-aging interventions can be categorized

by their risk levels, with caloric restriction, drugs, and cell therapy

spanning from low to high risk. Additionally, other alternative

approaches to reverse aging, like gene editing (325) and plasma

exchange (326–328), have seen limited adoption primarily because

of their cost and ethical concerns stemming from nascent

technology. Consequently, there is an imperative to advance these

technologies and conduct further clinical trials in the future to

establish the safety and efficacy of diverse anti-aging strategies.
6 Concluding remarks and prospects

The intricate interplay between immunity and aging presents a

captivating realm of study. It encompasses a physiological process

entailing intricate mechanisms, encompassing manifold changes in

both the phenotype and function of immune cells – both innate and

adaptive. The waning vigor and diminishing numbers of these

adaptive immune cells can precipitate a decline in the body’s

capacity to combat infections and counter aberrant cells, thereby

augmenting susceptibility to a spectrum of ailments. Moreover,

innate immunocytes assume a pivotal role in regulating

inflammatory responses and reparative processes, thereby

potential alterations in their functionality could reverberate on

the body’s retort to injuries and convalescence. Distinguishing

aging from cellular senescence remains a controversial issue.

Although cellular senescence is considered a hallmark of the

aging process (147–149), some studies suggest that senescent cells

in vitro and aged cells in vivo differ significantly in function and

phenotype. For example, microglia cultured in vitro exhibit

shortened telomeres, reduced cell proliferation, and increased

levels of senescence marker proteins, such as p16INK4a, p21CIP1,
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and p53. In contrast, microglia acutely isolated from aged brains

show only a moderate increase in p16INK4a, with no changes in

telomere length or cell proliferation (329). This suggests that

replicative senescence in vitro and aging in vivo may involve

different mechanisms. In mice, aging in vivo appears to be

primarily independent of telomeres.

In addition, the aging process is accompanied by dynamic

changes in immune-related signaling pathways and gut

microbiota. An increasingly robust body of research corroborates

the intimate link between the gut and the immune system,

underscoring the profound impact of the composition and

function of the gut microbiota on immune regulation. With age,

these microbia l inhabitants of the gut may undergo

transformations, thereby potentially exerting a cascading

influence on the state and efficacy of the immune system.

Although current research has achieved pivotal strides, a deeper

delve is imperative to unveil the intricate molecular underpinnings

underpinning the nexus of immunity and aging, along with

strategies to potentially stave off the aging process via immune

system interventions. This endeavor not only augments our

comprehension of the interface between immunity and aging, but

also offers novel insights that could potentially shape the trajectory

of therapeutic paradigms targeting age-related maladies. Continued

in-depth exploration of this field will undoubtedly bring more hope

for human health and longevity.
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