
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Franck J. D. Mennechet,
University of Montpellier 1, France

REVIEWED BY

Susetta Finotto,
Universitätsklinikum Erlangen, Germany
Chi-Heng Wu,
Dren Bio, Inc., United States

*CORRESPONDENCE

Rongfei Zhu

zrf13092@163.com

RECEIVED 21 April 2024
ACCEPTED 24 June 2024

PUBLISHED 04 July 2024

CITATION

Zhang P, Xu Q and Zhu R (2024) Vitamin D
and allergic diseases.
Front. Immunol. 15:1420883.
doi: 10.3389/fimmu.2024.1420883

COPYRIGHT

© 2024 Zhang, Xu and Zhu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 04 July 2024

DOI 10.3389/fimmu.2024.1420883
Vitamin D and allergic diseases
Panyu Zhang1, Qingxiu Xu1 and Rongfei Zhu1,2*

1Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and
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In recent years, the relationship between vitamin D and allergic diseases has

received widespread attention. As a fat-soluble vitamin, vitamin D plays a crucial

role in regulating the immune system and may influence the onset and

progression of diseases such as atopic dermatitis, allergic rhinitis, and asthma.

To understand the underlying mechanisms, we have summarized the current

research on the association between vitamin D and allergic diseases. We also

discuss the impact of vitamin D on the immune system and its role in the course

of allergic diseases, particularly focusing on how vitamin D supplementation

affects the treatment outcomes of these conditions. We aim to provide a

theoretical basis and practical guidance for optimizing the management and

treatment of allergic diseases by modulating vitamin D levels.
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1 Introduction

Allergic diseases are a result of the immune system’s overreacted response to allergens,

with a diverse set of immune cells (such as lymphocytes, mast cells/basophils) and immune

molecules like IgE playing a role in the pathogenetic process. Studies suggest that a complex

interplay between genetic, environmental, and nutritional factors can lead to the onset of

allergic diseases (1). Over the past decades, there has been a dramatic increase in the

prevalence of allergic diseases, such as atopic dermatitis (AD), allergic rhinitis (AR), and

allergic asthma (AA), posing a significant societal burden (2).

Vitamin D, a fat-soluble vitamin, exists in two forms: D2 (ergocalciferol) and D3

(cholecalciferol) (3). Initially, vitamin D is hydroxylated by the 25-hydroxylase enzyme in

the liver to form 25-hydroxyvitamin D (25(OH)D), which is then metabolized in the

kidneys by the 1a-hydroxylase enzyme into the biologically active form, 1,25-

dihydroxyvitamin D (1,25(OH)2D) (4). Vitamin D primarily acts through the vitamin D

receptor (VDR) to regulate calcium and phosphorus balance and maintain bone health (5).

Given that mast cells, monocytes, macrophages, T cells, B cells, and dendritic cells (DCs)

express nuclear receptors (nVDR) and membrane receptors (mVDR) (6), vitamin D also

plays a vital role in modulating immune responses (7, 8).

Recent research has indicated that vitamin D, through its regulatory effect on the

immune system, could be involved in the onset and progression of allergic diseases. This
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article provides a review of the influence of vitamin D on the

immune system, the relationship between vitamin D and allergic

diseases, and the impact of vitamin D supplementation on

allergic outcomes.
2 The impact of vitamin D on the
immune system

Vitamin D primarily exerts its immunoregulatory effects

through the VDR. The expression of VDR in immune cells such

as DCs, macrophages, monocytes, and lymphocytes provides a

foundation for its role in immune regulation (9, 10).
2.1 Vitamin D and innate immune cells

Innate immunity is the body’s frontline defense, swiftly fending

off pathogen invasions. Vitamin D showcases distinct impacts on

various innate immune cells through different routes.

Vitamin D mainly exerts immunosuppressive effects on human

innate lymphoid cells (ILCs), inhibiting the ability of vitamin A-

induced ILC2 cells to produce cytokines such as IL-5 and IL-13, and

the expression of gut-directed integrin a4b7 induced by vitamin A

(11). Vitamin D inhibits the response of ILC3 cells to IL-23 through

its receptor, thereby inhibiting the production of cytokines such as

IL-22, IL-17F, and granulocyte-macrophage colony-stimulating

factor (GM-CSF), while enhancing the expression of genes

associated with the IL-1b signaling pathway, converting the

production of ILC3 cell factors to the production of innate

cytokines, such as IL-6, IL-8, macrophage inflammatory proteins

1a/b (MIFs) (12).

Vitamin D mainly exerts inhibitory effects on eosinophils. 1,25

(OH)2D can upregulate the expression of C-X-C motif chemokine

receptor 4 (CXCR4) on them, promoting the transfer of eosinophils

from allergic inflammation sites to non-inflammatory tissues

outside the blood vessels induced by the latter (13, 14), and can

inhibit the production of eosinophil mediators, such as major basic

protein (MBP), eosinophil peroxidase (EPX), eosinophil cationic

protein (ECP), and eosinophil-derived neurotoxin (EDN) (15). In a

mouse asthma model, vitamin D reduced the infiltration of

eosinophils in the lungs (16).

In mast cells, 1,25(OH)2D can increase the number of VDRs in

mast cells, maintain the stability of mast cells, and inhibit the

production of inflammatory and vasodilatory mediators mediated

by IgE in human mast cells (17, 18). In vitro studies have shown that

vitamin D upregulates the expression of IL-10 mRNA in mouse

mast cells and induces the secretion of IL-10 (19).

Vitamin D enhances the formation of neutrophil extracellular

traps (NETs), upregulates the production of IL-4, and downregulates

the expression of pro-inflammatory cytokines IL-1b, IL-6, IL-8,
and IL-12 in neutrophils (20–22). Some studies have shown that

vitamin D induces apoptosis of peripheral blood neutrophils

in patients with acute exacerbation of chronic obstructive

pulmonary disease (AECOPD) through the p38 MAPK signaling

pathway (23).
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For NK cells, vitamin D can promote their secretion of IFN-a,
making them more successful in exerting antibody-dependent

cellular cytotoxicity (ADCC) effects (24).

Monocytes/macrophages can recognize components of bacteria,

viruses, and fungi through their surface-expressed toll-like

receptors. Vitamin D can form a 1,25/VDR/RXR complex with

VDR and retinoid X receptor (RXR) on monocytes/macrophages,

promoting the expression of toll-like receptors (25), enhancing

the chemotaxis and phagocytosis capabilities of monocytes/

macrophages, and inducing the production of antimicrobial

peptides (26). Additionally, 1,25(OH)2D can promote the

development of macrophages, which play a key role in

the phagocytosis and clearance of bacteria, as evidenced by the

increased expression of complement receptor immunoglobulin

(CRIg) mRNA, protein, and cell surface expression. The

phagocytic ability of macrophages treated with 1,25(OH)2D is

also significantly enhanced (26, 27). In general, macrophages

polarize into different phenotypes under various inflammatory

conditions (28). Resting macrophages (M0) become polarized

into pro-inflammatory M1-like macrophages (M1) when exposed

to stimuli such as lipopolysaccharide (LPS), interferon-alpha (IFN-

a), IL-12, and IL-23. These M1 macrophages primarily produce

pro-inflammatory cytokines such as TNF-a, IL-23, IL-12, and IL-

1b, thereby promoting inflammatory responses. Conversely, IL-4

and IL-10 enhance the development of anti-inflammatory M2-like

macrophages (M2), which produce anti-inflammatory cytokines IL-

10 and TGF-b, promoting wound healing and maintaining tissue

homeostasis (29, 30).

Studies have shown that vitamin D, through the VDR pathway,

downregulates the expression of IL-12, TNF-a, and IL-1b in M1

macrophages, as well as the expression of co-stimulatory molecules

CD80 and CD86 on macrophages, thereby reducing the

macrophages’ ability to stimulate T cells. Simultaneously, vitamin

D upregulates the production of IL-10 and TGF-b in M2

macrophages, promoting the differentiation of macrophages

towards the M2 phenotype (31, 32). This polarization alleviates

the development of allergic diseases such as AR and AD (33–35).

For dendritic cells (DCs), it has been found that 1,25(OH)2D

can inhibit the expression of MHC class II and co-stimulatory

molecules CD40, CD80, and CD86 on the surface of DCs, thereby

reducing their antigen-presenting and T cell-activating capabilities.

It also inhibits the release of pro-inflammatory cytokines such as

tumor necrosis factor alpha (TNF-a), interferon-gamma (IFN-g),
and interleukin-2 (IL-12) (which influences Th cell differentiation

into Th1 cells), and IL-23 (which influences Th cell differentiation

into Th17 cells). Additionally, it upregulates IL-10 (an anti-

inflammatory cytokine that inhibits Th2-type immune responses)

and IL-6, reduces the production of C-C chemokine ligand 17

(CCL17), and inhibits the differentiation, maturation, and

chemotactic abilities of DCs (36–41). Moreover, vitamin D

promotes the induction of FOXP3 transcription by DCs to

enhance the generation of Tregs, thus boosting immune tolerance

and reducing allergic reactions (42, 43). Brulefert et al. collected

human skin samples to investigate the effects of vitamin D on DCs.

They found that vitamin D-induced CD14+ skin DCs significantly

increased the production of IL-4 and IL-13, promoting T helper cell
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2 (Th2) responses even in the absence of TSLP (44). This seems

contradictory, suggesting that the mechanisms by which vitamin D

affects DCs need further investigation.

Through the above various ways, vitamin D regulates the

function of innate immune cells, playing a crucial role in the

body’s first line of defense (Figure 1).
2.2 Vitamin D and adaptive immune cells

The influence of vitamin D on T cells varies across different

subsets, primarily showcasing inhibitory effects on T helper cell 1

(Th1) and T helper cell 17 (Th17) subsets and stimulatory effects on

Th2 and regulatory T cell (Treg) subsets. Sloka et al. used an

experimental autoimmune encephalomyelitis (EAE) model and in

vitro cultures of human and mouse cells to demonstrate that 1,25

(OH)2D upregulates GATA-3 through a STAT6-dependent

mechanism, promoting Th2 cell polarization and inhibits the

differentiation of Th1 and Th17 cells and the production of

inflammatory cytokines (45). Zhang et al. constructed vitamin D

receptor-deficient (VDR-/-) and wild-type (WT) mouse models. In

vitro experiments showed that 1,25(OH)2D significantly inhibited

Th1 cell differentiation and the production of related cytokines

(such as IL-2, IFN-g, and TNF-b) activated by Bacillus Calmette-

Guérin (BCG). In vivo experiments further demonstrated that in

vitamin D-deficient mice vaccinated with BCG, 1,25(OH)2D
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reduced inflammatory infiltration in the spleen, decreased the

expression of inflammatory cytokines, and promoted the

development of Th2 cells. These results indicate that 1,25(OH)2D

alleviates inflammatory responses by inhibiting Th1 cell

differentiation and cytokine production through the JAK/STAT

pathway (46), while fostering the expression of Th2 cell factors (IL-

4, IL-5, IL-9, IL-13) (36, 43). Vitamin D also lowers the levels of IL-

12 and IL-23, the Th1/Th17 polarizing cytokines produced by DCs,

inhibits the differentiation of naive CD4+T cells into Th17

and Th1 cells, and significantly bolsters the development of

FoxP3+CD127lowCD25+ regulatory T cells (Tregs) and IL-10-

producing T cells. The induction of ICOS+Tregs (mainly IL-10

producers), CD69+FoxP3+ and TIGIT+FoxP3+Tregs is also

significantly increased (47). Moreover, 1,25(OH)2D curbs the

expression of IL-17A, IL-22, TNF-a, IFN-g and chemokine

receptor CCR6 in Th17 cells, thereby stopping Th17 cells from

migrating to inflamed tissues (48–50). It can also induce the

differentiation of Tregs by promoting the expression of IL-10 and

FoxP3, thereby curbing pro-inflammatory immune responses

(51, 52).

VDR also exists in human B lymphocytes. Studies indicate

that 1,25(OH)2D can curb the generation of plasma cells and

memory B cells (53), downregulate CD40, NF-kB signaling, lessen

the activation of human peripheral B cells and induce their apoptosis,

and curb the production of IgE (54–56). Simultaneously, 1,25(OH)

2D enhances the expression of IL-10 in activated B cells by
FIGURE 1

Vitamin D and immune system. Vitamin D exerts immunoregulatory effects by binding to the Vitamin D Receptor (VDR) expressed on various
immune cells, including monocytes/macrophages, dendritic cells, innate lymphoid cells (ILC), as well as T and B cells within the adaptive immune
system. In innate immunity, vitamin D enhances monocyte/macrophage chemotaxis and phagocytosis, and induces antimicrobial peptide
production. It modulates dendritic cell maturation, activation, and chemotactic and immunostimulatory capabilities, along with affecting the
functions of ILCs and eosinophils. In the realm of adaptive immunity, vitamin D promotes the development of Th2 and regulatory T cells (Treg),
while inhibiting the differentiation and activation of Th1 and Th17 cells. It also modulates B cell activity and IgE production. Through these pathways,
vitamin D contributes to maintaining immune homeostasis and preventing excessive inflammatory responses, thereby playing a vital role in
preserving human health.
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recruiting VDR to the promoter of IL-10, thereby participating in the

inhibition of T cell activation (57).

In summary, through various pathways to regulate the

activity of various T cell subgroups and B cells, maintain immune

balance and suppress inflammatory responses, vitamin D is of great

significance for maintaining the stability of the immune system and

preventing excessive immune responses.
3 Vitamin D and allergic diseases

3.1 Vitamin D and atopic dermatitis

Atopic dermatitis (AD) is a chronic, recurrent inflammatory skin

allergic disease, characterized by the disorder of skin barrier function

leading to dry skin, itching, eczematous skin lesions, and IgE-

mediated sensitization to food and environmental allergens (58). In

an ovalbumin (OVA)-induced AD mouse model (59), vitamin D

significantly improved the skin condition of mice, decreased IgE and

IL-5 levels, but increased IL-4 and IL-13 levels, reduced filaggrin

levels, and decreased epidermal thickness. Histological studies further

confirmed that vitamin D has significant effects in alleviating

inflammation and improving the pathological state of the skin.

Most studies support the negative correlation between vitamin D

levels and AD. A case-control study by El Taieb et al. (60) found that

the average vitamin D level in children with ADwas much lower than

the normal value. A nationwide cross-sectional survey conducted by

Heimbeck et al. (61) in Germany found that low serum vitamin D

levels were negatively correlated with eczema in German children and

adolescents. Ahmed Mohamed et al. (62) also observed a dose-

response relationship between vitamin D deficiency and the

prevalence of AD in a comparison of 100 AD patients and 1001

normal controls in the dermatology outpatient department in Cairo,

Egypt. Moreover, most studies have observed a negative correlation

between the severity of AD and serum 25(OH)D levels; the more

severe the vitamin D deficiency, the higher the scoring atopic

dermatitis (SCORAD) score (63–67). A recent case-control study

(64) involving 96 AD patients and 90 healthy controls found that

compared with atopy and eosinophilia, the reduction of serum

vitamin D levels seems to have a more significant impact on the

severity of AD. For each unit increase in serum vitamin D levels, the

SCORAD index decreases by 0.449 units, while an increase of 1 unit

in eosinophil count will cause the SCORAD index to increase by

0.009 units. However, several other cohort studies believe that there

is no association between the risk of AD in offspring at 3–5 years

and the level of vitamin D during pregnancy, at birth, and early life

(68–70). Overall, the majority of existing studies suggest that vitamin D

is associated with the risk and severity of atopic dermatitis.
3.2 Vitamin D and allergic rhinitis

Allergic rhinitis (AR) is a common allergic disease mediated by

immunoglobulin E (IgE), caused by inhaled allergens, and clinically

manifested as sneezing, nasal congestion, nasal itching, and

rhinorrhea. In an ovalbumin-induced AR mouse model, 1,25
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(OH)2D reduced serum levels of ovalbumin-specific IgE and

spleen IL-17 levels, as well as IL-5 and IL-13 levels in nasal lavage

fluid (71). Additionally, studies on human serum have shown that

the level of 1,25(OH)2D is related to the Th1/Th2 balance in AR

patients, and vitamin D deficiency shifts the Th1/Th2 balance to

Th2 (72). Most studies believe that the serum vitamin D level of AR

patients is lower than that of healthy people or the control group

(73–78). Jung et al. (79) conducted a large-scale national survey of

8,012 Korean adults over 18 years old, indicating that the lower the

25(OH)D level, the higher the prevalence of AR. A recent secondary

study (80) of the Vitamin D Antenatal Asthma Reduction Trial

(VDAART) birth cohort showed that compared with patients with

vitamin D deficiency in early and late pregnancy, the occurrence of

AR and sensitization to airborne allergens at 3 and 6 years old in

the offspring of mothers with sufficient prenatal vitamin D in

late pregnancy was reduced (OR= 0.47; 95% CI, 0.26–0.84).

Bunyavanich et al. (81) studied 1,248 mother-child pairs in the

US prenatal cohort and found that every 100 IU/d of dietary

vitamin D intake in the first three months and the last three

months of pregnancy reduced the chance of school-age children

suffering from AR by 21% and 20% respectively. Saad et al. (73)

found in a cohort study of 120 Egyptian children with AR and 100

healthy children that the average 25(OH)D level of patients with

moderate/severe AR was significantly lower than that of patients

with mild AR, and the average 25(OH)D level of the AR group was

negatively correlated with the total nasal symptom score and

total IgE level. However, it has been observed that the association

between Vitamin D and AR is affected by race, age, gender, etc. (82–

84). For example, Mai et al. (84) reported that lower levels of

vitamin D in the Norwegian adult population are related to an

increased risk of AR in men and a reduced risk of AR in women.

The authors speculated that this might be related to female sex

hormones enhancing Th1 responses and reducing Th2 responses.

Wegienka et al. (83) found that higher prenatal and cord blood 25

(OH)D levels were generally associated with fewer allergic

outcomes, such as eczema and sensitization to airborne allergens.

This association was more significant in white children and less

evident in black children. Additionally, they observed that 25(OH)

D levels were negatively associated with sensitization to airborne

allergens only in black children.

Some research has refuted the link between vitamin D and AR.

A cross-sectional study conducted byWu et al. (85), which included

32 patients with persistent AR and 25 controls, found no significant

difference in serum 25(OH)D levels between the two groups. A large

cross-sectional study (86) in Korea involving 15,212 adults aged 19

or above indicated, through multivariate linear regression analysis,

that adults with vitamin D deficiency did not have an increased

likelihood of asthma, AR, or IgE sensitization. A cohort study (87)

collected the cord blood 25(OH)D levels of 239 newborns. Using a

symptom questionnaire based on the International Study of Asthma

and Allergies in Childhood (ISAAC) and following up these

children until they were 5 years old, it was found that there was

no correlation between cord serum 25(OH)D levels and asthma and

AR at age 5. The most recent Mendelian randomization study (88)

also did not find evidence of a causal relationship between serum

vitamin D levels and AR risk in individuals of European descent.
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Therefore, more research is needed to confirm the relationship

between vitamin D and the development of AR.
3.3 Vitamin D and asthma

Asthma is a common chronic respiratory disease, characterized

by chronic inflammation of the airways and high airway reactivity,

manifested as coughing, wheezing, chest tightness, and difficulty

breathing. The most common phenotype is allergic asthma.

Vasiliou et al. (89) investigated the immune responses and

inflammatory markers in neonatal allergic airway disease using a

vitamin D-deficient mouse model. Their findings indicated that

vitamin D deficiency resulted in an elevated proportion of Th2

cells, a decrease in IL-10-secreting regulatory T cells, and

exacerbated eosinophilic inflammation and airway remodeling

following exposure to house dust mites, thereby fostering the

development of allergic diseases (90). Vitamin D supplementation

significantly mitigated these pathological changes. Hamzaoui et al.

collected peripheral blood samples from young children with asthma

and found that vitamin D significantly inhibited the differentiation of

Th17 cells and the production of IL-17 while increasing the levels of

the anti-inflammatory cytokine IL-10 (91). A cross-sectional study in

the Cyprus region (92) included 69 active asthmatics and 671 never

wheezing/never asthmatic teenagers aged 16–17. It was found that the

average vitamin D level of asthmatic children was lower, and in the

AA group, the vitamin D level was negatively correlated with the

severity of asthma. Previously, Bener et al. (93) compared the vitamin

D levels of 483 asthmatic children with healthy children in Qatar, and

also proposed that vitamin D deficiency is a major predictor of

childhood asthma. A cross-sectional study (94) in the UK of 435,040

adults found that compared with vitamin D deficiency, the risk of

asthma in individuals with low and sufficient vitamin D

concentrations was reduced by 6.4% and 9.8% respectively, and

their lung function would also improve. Similarly, many studies

have reported that 25(OH)D deficiency is related to increased risk

of asthma in newborns, adolescents, adults, and decreased lung

function (95–100), and is affected by many factors such as gender,

race, ethnicity, smoking, whether to use ICS, sleep mode and genetic

susceptibility (98–101). As Chang et al. (98) discovered in a large-

scale prospective cohort study based on the UK Biobank, the

protective effect of vitamin D against asthma was strongest under

healthy sleep patterns. In individuals with moderate genetic risk,

higher levels of vitamin Dwere associated with a significantly reduced

risk of asthma. The protective effect of vitamin D was most notable in

males, individuals under 60 years old, overweight individuals, and

current or former smokers. Another Norwegian cohort study

reported that the association between vitamin D levels and lung

function varied by gender and allergy status, with this association

being particularly significant among male asthma patients (99).

Studies have shown that vitamin D has a protective effect on

airway smooth muscle cell contraction and remodeling in asthma.

Vitamin D inhibits the growth of airway smooth muscle cells by

reducing the expression of cyclin D1 and inducing the

phosphorylation of retinoblastoma protein and checkpoint kinase

1 (102). It also inhibits vascular endothelial growth factor (VEGF)-
Frontiers in Immunology 05
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expression and proliferation, reducing airway remodeling (103).

Furthermore, Plesa et al. demonstrated that vitamin D can inhibit

the proliferation and migration of bronchial fibroblasts by

suppressing ERK1/2 and Akt signaling pathways and upregulating

genes involved in cell cycle arrest, such as p21 and p27. It also

reduces the expression of genes involved in extracellular matrix

remodeling, such as type I collagen and matrix metallopeptidase 2

(MMP2) (104). Vitamin D inhibits NF-kB activation, reducing the

expression of pro-inflammatory cytokines like IL-6 and IL-8 (105),

and decreases the expression of type I collagen and protein

arginine methyltransferase 1 (PRMT1) activity, exhibiting anti-

inflammatory and antifibrotic effects (106). These mechanisms

indicate that vitamin D may play a pivotal role in regulating

airway remodeling in asthma, thereby reinforcing its association

with the condition and its potential as an adjunctive therapy for

asthma management (107, 108).

Recent studies underscore a close interrelationship between

vitamin D, gut microbiota, and asthma. Vitamin D deficiency

may compromise barrier integrity and alter microbiome

composition, with gut dysbiosis potentially impairing both local

and pulmonary immune functions, thus heightening asthma

susceptibility. Respiratory infections can disrupt the gut

microbiome, decreasing bacteria that produce short-chain fatty

acids (SCFAs), which in turn impacts the function and fate of

immune cells, further exacerbating asthma symptoms (109–111).

Contradictorily, as mentioned earlier, in vitro experiments have

proven that vitamin D can promote Th2 cell shift (45, 112), which

seems to contradict the protective effect of vitamin D on allergies. A

cohort study (113) based on a large population of adults only

reported that vitamin D deficiency is related to acute asthma

attacks, but there is no significant connection with doctor-

diagnosed asthma. Cheng et al. (86) investigated the data of 15,212

people aged 19 and above in South Korea, and also found that adults

with vitamin D deficiency did not increase the likelihood of asthma or

IgE sensitization. Overall, the majority of studies support the

association between vitamin D and the risk and severity of asthma.
3.4 Vitamin D and food allergies

Food allergies (FAs) are pathological reactions triggered by the

immune systemmistakenly identifying one ormore protein antigens in

food as harmful substances. Symptoms can accumulate in multiple

systems such as the skin, digestion, respiration, circulation, and even

lead to anaphylactic shock. They can be classified as IgE-mediated, IgE-

dependent and IgE non-dependent pathways co-mediated (mixed),

and non-IgE-mediated (114). Studies have shown that light, latitude,

and season of birth are related to FAs (115). For example, a survey by

Vassallo (116) and others showed that the proportion of children under

5 years old born in autumn or winter with FA is 50% higher than those

born in spring or summer. In the United States and Australia, the

overall risk of allergies, FAs, and FA markers in the population farthest

from the equator is higher than those closest to the equator (117, 118).

Seasons and latitude affect the exposure of the human body to sunlight

and solar radiation (with fewer megajoules of sunlight per square meter
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in the world’s southernmost and northernmost parts and shorter

daylight hours in autumn and winter). The synthesis of vitamin D is

also related to light with 80%-90% of the serum 25(OH)D levels

deriving from sun exposure. Its level changes periodically with the

seasons, because the time for sun exposure to synthesize vitamin D is

longer in winter than in summer (119). There is also direct evidence

indicating that insufficient sunlight exposure before the age of 24

months may elevate the risk of developing FAs, asthma, AR, and AD in

school-aged children (120). This connects vitamin Dwith FAs, AR, AD

and other allergic diseases. A cross-sectional study (121) by Silva and

others found that infants with cow’s milk protein allergy had lower

average vitamin D levels compared with the healthy control group. A

large study (122) reported a cross-sectional association between

vitamin D deficiency (VDI; 25(OH)D <50 nmol/L) in one-year-old

infants of Australian-born parents and positive provocation test IgE-

mediated food allergies, with evidence suggesting a dose-response

relationship, where infants deficient in vitamin D had a 3-fold

increased risk of egg allergy, an 11-fold increased risk of peanut

allergy, and a 10-fold increased risk in infants with two or more FAs.

In addition, in infants who already have food sensitization, those who

are deficient in vitamin D have a 6-fold risk of developing FAs

compared to those who develop food tolerance. A recent systematic

review suggests that maternal vitamin D deficiency and infant vitamin

D deficiency appear to increase the risk of FAs, especially in the second

year after the baby’s birth (123). In contrast, Weisse et al. (124)

observed in a cohort study that the higher the maternal and cord

blood 25(OH)D levels, the higher the risk of FAs in children in the first

two years, and they believe that this association can be explained by the

observed decrease in the number of Treg cells at birth. Similarly, a case-

cohort study by Molloy (125) and others also believes that vitamin

deficiency in the first 6 months of infancy is not significantly associated

with FAs at one year old. In summary, most of the literature supports a

significant association between vitamin D and food allergies, but the

specific mechanism needs to be further studied.

Indeed, the relationship between vitamin D and allergies may

depend on several factors, including an individual’s vitamin D

levels, the type of allergic disease, gender, ethnicity, and other

potential immune regulatory mechanisms. Therefore, further

research is necessary to clarify the exact role of vitamin D in

allergic diseases, and how to effectively use vitamin D in the clinic

to regulate immune responses and improve the treatment of

allergic diseases.
4 The clinical efficacy of vitamin D
supplementation in allergic diseases

4.1 The impact of vitamin D
supplementation on the outcomes of
allergic diseases

With the established association between vitamin D deficiency

and allergic diseases, numerous studies have been dedicated to

investigating the clinical benefits of vitamin D supplementation in

various populations, and the results have been relatively promising

(Table 1). A significant, large-scale randomized controlled trial
Frontiers in Immunology 06
(RCT) study is the VDAART trial (126). The VDAART trial was

a randomized, double-blind, placebo-controlled study conducted

across three centers in the United States. It included 881 non-

smoking pregnant women aged between 18–39 years, who were at

10–18 weeks of gestation and had a high risk of their offspring

developing asthma. These women were randomly divided to receive

either the intervention group (4400 IU of vitamin D daily) or

placebo (a multivitamin containing 400 IU of vitamin D daily) until

childbirth. The study examined the maternal 25(OH)D levels in the

late stages of pregnancy and the conditions of asthma and recurrent

wheezing in the offspring. While the intention-to-treat analysis

and stratified analysis based on the 25(OH)D levels of the

mothers during pregnancy indicated that maternal vitamin D

supplementation did not impact the occurrence of asthma and

recurrent wheezing in the offspring at ages 3 and 6 (127, 128),

further analysis of early and late prenatal vitamin D status, baseline

vitamin D levels of the mothers at the beginning of the study, and

the timing of supplementation initiation led researchers to conclude

that adequate prenatal vitamin D throughout pregnancy provides a

protective effect against the development of asthma/recurrent

wheezing in children before the age of 3 (129). The study also

found that earlier intervention during pregnancy can significantly

reduce the risk of asthma or recurrent wheezing in offspring, with

each week of earlier intervention reducing the odds of the offspring

developing asthma and recurrent wheezing by 15%. When

compared with daily supplementation of 400 IU of vitamin D,

initiating daily intake of 4400 IU of vitamin D between the 9th and

12th weeks can decrease the odds of asthma or recurrent wheezing

by a maximum of 55% (130). Concurrently, a secondary analysis of

VDAART by Chen et al. (80) also highlighted that prenatal vitamin

D supplementation has a protective effect on the incidence of AR

and sensitization to airborne allergens at ages 3 and 6.

A randomized, triple-blind, parallel, placebo-controlled study

(131) conducted in Spain included 112 patients with an average age

of 55 years suffering from asthma and with serum 25(OH)D levels

below 30ng/mL. The study period was 6 months. The intervention

group received 16,000 IU of oral cholecalciferol supplements

weekly, while the control group added a placebo to the routine

asthma treatment. The results showed that compared with

the placebo, weekly oral supplementation of 25(OH)D can

significantly improve Asthma Control Test (ACT) scores within 6

months. It can also improve the quality of life of patients, reduce the

use of oral corticosteroids and the number of asthma attacks, and

reduce the risk of hospital treatment for asthma.

In a prospective double-blind study conducted by Nabavizadeh

et al. (132), 80 patients with chronic spontaneous urticaria were

included. These patients were given low-dose vitamin D (4200IU/

week, Group 1) and high-dose vitamin D (28,000 IU/week, Group

2) supplements for 12 weeks, in addition to their baseline treatment

plan. The results indicated that both groups experienced a

significant decrease in the total scores of urticaria severity,

medication scores, and quality of life scores. Moreover, the high

vitamin D group exhibited a more significant reduction in the total

score of urticaria severity at the 6th week, and a more noticeable

decrease in the quality-of-life score at the 6th and 12th weeks,

compared to the low vitamin D group. Another study by Mohamed
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TABLE 1 Studies on the impact of vitamin D supplementation on allergy outcomes.

Reference Design Country
Sample
size
and age

Subject
characteristics

Treatment
Primary
outcome

Conclusion

Litonjua et al.
(2014,2016,2020)
(126–128)

Multicenter,
double blind,
randomized,
placebo-
controlled
trial

Boston,
Massachusetts;
St Louis,
Missouri; San
Diego, USA

n=806, vitamin
D group: 27.5
(5.5) y; Placebo
group: 27.32
(5.5) y

Pregnant women
with either history of
asthma or allergies
in themselves or the
biological father

Vitamin D group:
vitamin D3 4400 IU/
day; Placebo group:
vitamin D3 400 IU/
day, duration the
woman’s pregnancy,
about 22 to 30 weeks

Offspring asthma or
recurrent wheeze

• Prenatal VD
supplementation
alone
• Has no effects
on offspring
asthma and
recurrent wheeze
development up
to age 6

Lu et al. (2021)
(129);
Shadid et al.
(2023) (130)

Multicenter,
double blind,
randomized,
placebo-
controlled
trial,
secondary
analysis

Boston,
Massachusetts;
St Louis,
Missouri; San
Diego, USA

n=806, vitamin
D group: 27.5
(5.5) y; Placebo
group: 27.32
(5.5) y

Pregnant women
with either history of
asthma or allergies
in themselves or the
biological father

Vitamin D group:
vitamin D3 4400 IU/
day; Placebo group:
vitamin D3 400 IU/
day, duration the
woman’s pregnancy,
about 22 to 30 weeks

Offspring asthma or
recurrent wheeze

•VD sufficiency
throughout
pregnancy
• Reducing the
risk of asthma
and recurrent
wheeze in
offspring
•The earlier the
intervention, the
better the effect

Chen et al.
(2021) (80)

Multicenter,
double blind,
randomized,
placebo-
controlled
trial,
secondary
analysis

Boston,
Massachusetts;
St Louis,
Missouri; San
Diego, USA

n=806, vitamin
D group: 27.5
(5.5) y; Placebo
group: 27.32
(5.5) y

Pregnant women
with either history of
asthma or allergies
in themselves or the
biological father

Vitamin D group:
vitamin D3 4400 IU/
day; Placebo group:
vitamin D3 400 IU/
day, duration the
woman’s pregnancy,
about 22 to 30 weeks

Offspring aeroallergen
sensitization and
allergic Rhinitis

•VD sufficiency
throughout
pregnancy
•Attenuating the
risk of offspring
allergic rhinitis
with
sensitization by
age 6 years.

Andújar-
Espinosa et al.
(2021) (131)

Prospective,
randomized,
triple-blind,
placebo-
controlled,
parallel-
group study

Murcia, Spain

n=112,
Calcifediol
group: 54.57
(15.83) y;
Placebo group:
56.61(15.00) y

Adult asthmatic
patients with serum
25(OH)D3 <30
ng/mL

25(OH)D group: 25
(OH)D 16000 IU/
week; Placebo group:
placebo + usual
asthma
treatment, 6months

Asthma control degree:
ACT; Life quality: Mini-
AQLQ, Asthma attacks,
Oral corticosteroid
cycles, Emergency visits,
Unscheduled
consultations with the
primary care physician
and hospitalizations
for asthma.

•Weekly oral
calcifediol
compared with
placebo
•Improving
asthma control
among asthmaic
adults with VD
deficiency at
6 months.

Nabavizadeh
et al.
(2023) (132)

Prospective,
randomized,
double-
blinded
clinical trial

Shiraz, Iran

n=69, vitamin
D group: 27.5
(5.5) y; Placebo
group: 27.32
(5.5) y

Patients with
chronic
spontaneous
urticaria

Low vitamin D3
group: 4200 IU/week;
High vitamin D3
group: 28,000 IU/
week, 12 weeks

Quality of life (CU-
Q2oL questionnaire),
urticaria severity (USS
questionnaire) and
medication scores

•High dose of
vitamin D
• Reducing CU
symptoms
severity and the
required doses of
allergy
medications.

Mohamed et al.
(2022) (133)

Prospective,
randomized,
controlled
and single
blinded
clinical trial

Cairo, Egypt

n=77, Study
group: 35.2
(4.37) y;
Placebo group:
34.6(9.8) y

Adults >18 y with
urticaria episodes at
least 2 days per week
for 6 weeks
or longer

Study group: 0.25mg
alfacalcidol +
Hydroxyzine 25 mg/
day; Placebo group:
0.25mg placebo +
Hydroxyzine 25 mg/
day, 12 weeks

UAS7 total score, serum
IL-6, hsCRP, TNF-a

•VD
supplementation
for 12 weeks
•Improveing
UAS7 total score
and the level of
the
inflammatory
markers
•Having a
beneficial effect
on CSU patients

(Continued)
F
rontiers in Immuno
logy
 07
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1420883
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1420883
TABLE 1 Continued

Reference Design Country
Sample
size
and age

Subject
characteristics

Treatment
Primary
outcome

Conclusion

El-Heis et al.
(2022) (134)

Multicenter,
double-
blind,
randomized
placebo-
controlled
trial

Southampton,
Oxford and
Sheffield, UK

n=703,
Cholecalciferol
group: 31.0
(4.9) y; Placebo
group: 31.1
(5.0) y

Pregnant women
aged over 18 years,
gestational age < 17
week, and serum 25
(OH)D between 25
and 100 nmol/L and
calcium < 2.75
mmol/L

Cholecalciferol group:
cholecalciferol 1000
IU daily; Placebo
group: matched
placebo; from 14
weeks’ gestation
until delivery

Offspring atopic eczema
at ages 12, 24 and
48 months

•Maternal
cholecalciferol
supplementation
•Reducing the
risk of atopic
eczema in
offspring during
their first year
of life.

Aldaghi et al.
(2022) (135)

Single-
center,
double-
blind,
randomized,
parallel-
group
clinical trial

Sabzevar, Iran

n=81,
Synbiotic
group: 4.09
(2.78) y;
vitamin D3
group: 4.44
(2.84) y;
Control group:
6.07(4.50) y

Infants under 12
months of age,
without other
chronic diseases,
SCORAD score>14

Synbiotic group:
synbiotic 5 drops/day
+routine treatment;
vitamin D3 group:
vitamin D3 1000IU/
day + routine
treatment; Control
group: routine
treatments, 2months

SCORAD score

•VD
supplements
administration
along with
routine
treatments
•Reducing the
severity of AD
in infants.

Mansour et al.
(2020) (136)

Double-
blind,
randomized,
parallel,
placebo-
controlled
clinical trial

Cairo, Egypt

n=86, vitamin
D group: 12
(4.75) y;
Placebo group:
11(5.5) y

Patients aged from 5
to 16 years old, with
a diagnosis of
severe AD

Vitamin D3 group:
vitamin D3 1600 IU/
day + 1%
hydrocortisone cream
twice daily; Placebo
group: placebo + 1%
hydrocortisone cream
twice daily, 12 weeks

EASI score

•VD
supplements in
children with
severe AD
•Providing
clinical
improvement

Cabalıń et al.
(2023) (137)

Open-label
pilot trial

Santiago, Chile
n=86, 6.8
(3.8) y

Children aged 2–18
years with AD,
SCORAD ≥ 25

Oral doses of liquid
VD3 8000 IU/week
for 2–5.9 years;
12,000 IU/week for 6–
11.9 years; 16,000 IU/
week for 12–18
years, 6weeks

Stratum corneum RNA
expression of the VDR,
CAMP, and TSLP genes,
and LL-37 protein

•VD
supplementation
in children with
AD.
•Improving AD
severity, VDR
and Cathelicidin
expression in
lesional skin

Guo(2023) (138)

Single-
center,
Assessor/
statistician-
blinded,
randomized,
parallel
study

Ganzhou,
China

n=128,
Experimental
group: 32.8
(10.2) y;
Control group:
32.1(11.1) y

Patients aged
between 16 and 60
years, with
moderate-to-severe
AR, did not receive
any AR-related
treatment within
two weeks of
diagnosis, had good
drug compliance

Experimental group:
vitamin D 1600 IU/
day + 200 mg
mometasone nasal
spray twice/day;
Control group: 200
mg mometasone nasal
spray twice/
day, 4weeks

TNSS, RQLQ, T
lymphocyte subsets
(CD3+, CD4+ and CD8
+), IL-10, TNF-a, and
IFN-g

•VD
supplementation
in AR patients
•Improving AR
symptoms and
quality-of-life
•Decreasing
TNF-a levels
and increased
IFN-g and IL-
10 levels.

Liu et al.
(2022) (139)

Single-
center,
randomized,
controlled
trial

Hohhot, China

n= 90, vitamin
D group: 27.2
(8.8) y; DCD
group: 27.3
(7.1) y; Control
group: 31.2
(10.6) y

Patients with mild
seasonal pollen AR

Vitamin D group:
oral desloratadine
citrate disodium
(DCD, 8.8 mg/day) +
vitamin D3 nasal
drops (1.5 × 106 IU,
once/week; DCD
group: DCD, 8.8 mg/
day; Control group:
no medication

Peripheral blood
eosinophils, IL-4 levels,
and nasal symptoms

•VD3 as an
adjuvant therapy
•Alleviating the
nasal symptoms
and decrease
serum IL-4 and
blood eosinophil
count in patients
with AR.
F
rontiers in Immuno
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 08
VD, vitamin D; ACT, asthma control test; mini-AQLQ, the mini asthma quality of life questionnaire; CU-Q2oL, chronic urticaria quality of life questionnaire; USS, urticaria severity score; CU,
chronic urticaria; CSU, Chronic spontaneous urticaria; UAS7, urticaria activity score over 7 days; AD, atopic dermatitis; SCORAD, scoring atopic dermatitis; EASI, eczema area and severity
index; VDR, vitamin D receptor; CAMP, cathelicidin antimicrobial peptide; TSLP, thymic stromal lymphopoietin; AR, allergic rhinitis; TNSS, total nasal symptom score; RQLQ,
rhinoconjunctivitis quality of life questionnaire.
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et al. (133), which focused on adults aged 18 and above in Egypt,

corroborated these findings. They also observed that, in comparison

with the placebo group and baseline results, the study group had

significantly lower average serum IL-6, hypersensitive C-reactive

protein (hs-CRP), and TNF-a levels.

For AD, El-Heis et al. (134) observed that supplementing

mothers with 1000 IU of vitamin D daily from 14 weeks of

pregnancy to delivery could reduce the incidence of AD in the

first year after birth. Most RCT studies have confirmed that the

addition of vitamin D to the basic treatment of AD significantly

reduces the severity of the disease in children, including reducing

SCORAD scores and eczema area and severity index (EASI) scores

(135, 136). A study in the United States further found that oral

vitamin D supplementation may be related to the increase in the

expression of VDR and Cathelicidin in lesion skin (137).

In the context of AR, an RCT study carried out by Guo et al.

(138) discovered that supplementing vitamin D can enhance the

therapeutic effect of mometasone nasal spray on moderate to severe

AR. This resulted in a more significant decrease in patients’ TNSS

total score, T lymphocyte subsets (CD3+, CD4+), CD4+/CD8+

ratio, TNF-a, and rhinoconjunctivitis quality of life questionnaire

(RQLQ) total score. The levels of CD8+, IFN-g, IL-10, and serum

vitamin D were found to be more significantly increased compared

to the control group and the initial test. Liu et al. (139) also noticed

that patients who received vitamin D as an adjunct therapy had

higher serum 25(OH)D levels, lower AR symptom scores, IL-4

levels, and peripheral blood eosinophils, and a higher effective rate

of AR treatment, compared to those treated with desloratadine

citrate dihydrate (DCD) alone. Hence, supplementing vitamin D in

routine treatment can serve as an effective adjuvant treatment for

AR patients by suppressing inflammation (Table 1).

The above studies have many limitations. First, the study

population may be single-center, short-term, and small-scale.

Second, the selection of the severity of the study subjects may be

overly broad. Third, most studies may not consider the intake of

vitamin D in the diet and the data of the patient’s sun exposure

time. Fourth, many self-filled questionnaires may have recall bias.

Therefore, subsequent studies should consider the impact of

differences in age, gender, severity, race, etc. on the clinical

efficacy of vitamin D supplementation, and further large-scale,

long-term follow-up, multi-center clinical trials and randomized

controlled trials are needed. Also, it’s necessary to determine the

optimal dosage and duration of vitamin D supplementation and to

deeply understand the impact of vitamin D on the treatment effect

of allergic diseases.
4.2 Vitamin D and allergen immunotherapy

Allergen immunotherapy (AIT) is a therapeutic approach for

allergic diseases that modulates the patient’s immune system by

progressively increasing the dose of allergens, thus reducing the

allergic response to specific allergens. This method is commonly

used for treating conditions such as pollen allergy, house dust mite

(HDM) allergy, certain FAs, and bee venom allergy. AIT can be
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administered via subcutaneous injections, sublingual drops, or

sublingual tablets. It can decrease allergen-specific Th2, stimulate

regulatory T cells and B cells, and produce IgG and IgA blocking

antibodies, thereby inducing tolerance to allergens in patients,

reducing symptoms, and enhancing the quality of life. Given its

long treatment cycle and high demand for patient compliance, new

strategies are being explored currently, such as novel adjuvants,

recombinant allergens, and immunomodulators, to provide safer,

more effective, and convenient treatment plans and more lasting

long-term tolerance (140). In this context, vitamin D has been

identified as a potential enhancer, improving the effectiveness

of AIT.

Numerous animal studies have demonstrated the enhancing

effect of vitamin D on AIT. In a murine model of grass pollen-

induced allergic asthma, vitamin D supplementation reduced the

Th2 cell factor responses and innate cell factor responses to

allergens in lung tissue, increased IL-10 in lung tissue, and

reduced airway hyperresponsiveness (AHR). Researchers observed

that, compared to subcutaneous immunotherapy (SCIT) or

sublingual immunotherapy (SLIT) alone, the combination of 1,25

(OH)2D with SCIT or SLIT resulted in a more significant reduction

in eosinophil counts and IL-5 and IL-13 levels in bronchoalveolar

lavage fluid, as well as marked improvement in lung function. The

authors concluded that vitamin D enhances the efficacy of grass

pollen SLIT and SCIT in mice (141, 142).

Li (143) and colleagues conducted a regression analysis on 153

AR patients who received SLIT, revealing that a deficiency in serum

Vitamin D could impact the effectiveness of SLIT in children with

AR. Majak (144) and others carried out a retrospective secondary

analysis of the combined data from a prospective, randomized,

placebo-controlled trial involving 36 children with asthma

undergoing AIT. They discovered that patients with higher serum

25(OH)D levels experienced more significant reductions in asthma

symptom scores and AIT-induced corticosteroid reduction effects

over the 12-month AIT period. These patients also exhibited higher

peripheral blood TGF-b production and greater expression of

Foxp3 positive cells, suggesting that vitamin D might serve as an

effective adjuvant for AIT. A randomized, double-blind, placebo-

controlled trial (145) in Poland, which included 50 children aged 5–

12 who were allergic to grass pollen and had AR (with 8 also having

asthma), used a daily 5-grass pollen sublingual 300 IR tablet and

supplemented with either 1000 IU of vitamin D or a placebo for 5

months. The study found that the SLIT plus vitamin D group was

more effective in alleviating nasal symptoms, asthma symptoms,

and symptom-medication combined scores compared to the

placebo group. In a study on children with asthma who were

allergic to HDMs, the SCIT plus vitamin D group had a lower

total asthma symptom score at the 6th month and the highest

average fluorescence intensity of Foxp3 at the 12th month,

compared to using SCIT alone (146).

A study conducted in Bangkok, Thailand (147), demonstrated

that, compared to a placebo, adult patients allergic to HDMs who

received subcutaneous AIT and supplemented with vitamin D

experienced significantly reduced symptom-drug scores and

increased treatment response rates. This improvement in allergic
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symptoms is thought to be achieved by vitamin D significantly

reducing the quantity of dysfunctional regulatory T cells (CRTH2

+Treg). This lends further support to the potential value of vitamin

D in AIT. These findings also offer new treatment strategies for

AIT and pave the way for new possibilities in the treatment of

allergic diseases.
5 Summary

Based on existing research, the role of vitamin D in allergic

diseases cannot be ignored. Vitamin D can affect the occurrence and

development of allergic diseases through its immune regulatory

function. Although existing research shows that vitamin D

deficiency is related to an increased risk of allergic diseases, its

correlation is not consistent among different populations, and the

effect of vitamin D supplementation on improving the outcomes of

these diseases still needs further research. In terms of mechanism,

there are many contradictions in vitamin D’s regulation of Th1/Th2

balance, Th17/Treg, ILC2 cells, etc. Due to the complexity of the

immune system, the occurrence and development of allergies by

vitamin D cannot be explained by a single regulatory method,

and further research is needed to discuss which regulation

predominates. In terms of clinical efficacy, future research should

explore the optimal supplement dose and duration of vitamin D

more deeply, considering patients’ lifestyles, dietary habits, and

basic health conditions, and carry out more rigorous and detailed

research design. This includes cross-racial and regional studies, as

well as analyses of different age and gender groups, to ensure the

wide applicability and accuracy of the research results, and how to

use vitamin D more effectively to regulate immune responses and

improve the treatment effects of patients with allergic diseases. At

the same time, we need to pay attention to the potential of vitamin

D as an adjuvant combined with AIT, to develop safer, more

effective and convenient treatment methods. In summary, vitamin

D plays an important role in the prevention and treatment of

allergic diseases, but its specific mechanisms and application

strategies still need to be clarified by further research in the future.
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Glossary

AD Atopic Dermatitis

AR Allergic Rhinitis

AA Allergic Asthma

VDR Vitamin D Receptor

DCs Dendritic Cells

ILCs Innate Lymphoid Cells

GM-CSF Granulocyte-Macrophage Colony-Stimulating Factor

CXCR4 C-X-C Motif Chemokine Receptor 4

MBP Major Basic Protein

EPX Eosinophil Peroxidase

ECP Eosinophil Cationic Protein

EDN Eosinophil-Derived Neurotoxin

NETs Neutrophil Extracellular Traps

AECOPD Acute Exacerbation of Chronic Obstructive Pulmonary Disease

ADCC Antibody-Dependent Cellular Cytotoxicity

RXR Retinoid X Receptor

CRIg Complement Receptor Immunoglobulin

LPS Lipopolysaccharide

INF-a Interferon-Alpha

TGF-b Transforming Growth Factor Beta

MHC Major Histocompatibility Complex

TNF-a Tumor Necrosis Factor Alpha

IFN-g Interferon-Gamma

IL Interleukin

CCL17 C-C Chemokine Ligand 17

FOXP3 Forkhead Box P3

Th1 T Helper Cell 1

Th2 T Helper Cell 2

Th17 T Helper Cell 17

Tregs Regulatory T Cells

SCORAD Scoring Atopic Dermatitis

JAK/STAT Janus Kinase/Signal Transducer and Activator of Transcription

ICOS Inducible T-Cell Costimulator

CCR6 C-C Chemokine Receptor Type 6

NF-kB Nuclear Factor Kappa-Light-Chain-Enhancer of Activated
B Cells

IgE Immunoglobulin E

SCFAs Short-Chain Fatty Acids

AHR Airway Hyperresponsiveness

(Continued)
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ERK1/2 Extracellular Signal-Regulated Kinase 1/2

PRMT1 Protein Arginine Methyltransferase 1

VEGF vascular endothelial growth factor

MMP2 matrix metallopeptidase 2

ACT Asthma Control Test

hs-CRP High-Sensitivity C-Reactive Protein

EASI Eczema Area and Severity Index

RQLQ Rhinoconjunctivitis Quality of Life Questionnaire

DCD Desloratadine Citrate Dihydrate

AIT Allergen Immunotherapy

SCIT Subcutaneous Immunotherapy

SLIT Sublingual Immunotherapy

HDM House Dust Mite
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