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Integrating single-cell and spatial
transcriptomic analysis to unveil
heterogeneity in high-grade
serous ovarian cancer
Haixia Luo †, Kunyu Wang † and Bin Li*

Department of Gynecological Oncology, National Cancer Center/National Clinical Research Center
for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
High-grade serous ovarian cancer (HGSOC) presents significant challenges due

to its heterogeneity and late-stage diagnoses. Using single-cell and spatial

transcriptomics to elucidate the complex landscape of HGSOC to understand

its underlying mechanism. Our analysis reveals significant inter- and intra-

tumoral diversity, manifested through distinct cellular subpopulations and

varied microenvironmental niches. Notably, our findings highlight a widespread

immunosuppressive environment, marked by complex networks of cell-cell

interactions, particularly evident in areas of elevated tumor cell density within

metastatic samples. We identify the exclusive presence of COL14A1+ neoplastic

cells in metastatic specimens, alongside a strong correlation between CD8A+

NKT cells and poor prognosis, and elevated CHODL expression in HGSOC

metastasis tissues. Furthermore, knockdown experiments targeting CHODL

demonstrate its role in reducing migration and invasion abilities in HGSOC

cells. A pivotal discovery of our study is the delineation of specific cellular

signatures correlated with adverse outcomes, notably a subset of CHODL+

neoplastic cells characterized by a distinct metabolic phenotype with a

predilection for lipid metabolism. The therapeutic targeting of this metabolic

pathway with existing inhibitors appears promising in curbing tumor proliferation.

These findings enhance our understanding of HGSOC heterogeneity and reveal

potential therapeutic targets, promising more effective management strategies

for this aggressive cancer subtype.
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1 Introduction

Ovarian cancer ranks as the eighth most common cause of

cancer-related deaths among women globally (1). High-grade

serous ovarian carcinoma (HGSOC), the deadliest and most

prevalent histologic subtype, is responsible for 70–80% of deaths

from ovarian cancer (2, 3). It is characterized by an advanced stage

at diagnosis and a propensity for rapid metastasis. The genetic

architecture of HGSOC is defined by extensive chromosomal

instability and signature mutations in key genes such as TP53 and

BRCA1/2, alongside numerous disruptions in the pathways

responsible for homologous recombination repair (4, 5). These

genetic aberrations contribute to the cancer’s diverse clinical

manifestations and notable resistance to chemotherapy,

underlining the complexity of tumor dynamics and therapeutic

outcomes in affected individuals.

The tumor microenvironment (TME), primarily composed of

fibroblasts, endothelial cells, lymphocytic infiltrates, and

extracellular matrix proteins, can directly influence cancer cell

growth, migration, and differentiation, presenting a unique

opportunity for diagnosis and treatment (6). The immune system

significantly shapes the TME; ongoing inflammation leads to the

production of various immunologic gene products that create a

favorable microenvironment for tumor growth and progression (7).

The presence of specific immune cell types, such as intratumor CD8

+ T cells, is associated with improved survival in patients with

various cancers, including ovarian cancer (8). These findings

indicate that TME heterogeneity especially immune cell, plays a

crucial role in determining the malignant phenotypes of cancer

cells. However, the heterogeneity of the TME in HGSOC and its

association with clinical outcomes, as well as the molecular

mechanisms by which various TME components promote or

inhibit cancer, remain incompletely understood. Additionally, the

interplay between different cellular and non-cellular populations

and their spatial organization within the TME in HGSOC requires

further elucidation.

Recent advances in single-cell technologies have elucidated the

complex cellular landscapes within HGSOC, underscoring the

dynamic interactions among cancer cells, immune cells, and

stromal elements in the TME. Single cell sequencing enables

detailed analysis of transcriptomic characteristics across different

cell subsets, revealing cell heterogeneity and microenvironmental

features that traditional methods cannot capture (9, 10). However,

the aforementioned techniques and analyses cannot provide spatial

information. Growing evidence across multiple cancer types

indicates that the spatial arrangement of various cellular

components within the TME, and their positioning relative to

tumor cells, immune cells, and blood vessels, can significantly

influence both antitumor and protumor responses (11–13).

Spatial transcriptomics technology, capturing genome-wide

readouts across biological tissue, enables researchers to determine

gene expression spatially within the complex TME (14).

In light of these findings, our study employs scRNA-seq and

spatial transcriptomics to dissect the cellular and molecular

landscapes of primary HGSOC tumors and their distant

metastases. By integrating these state-of-the-art technologies, we
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aim to uncover the heterogeneity within HGSOC tumors,

identify key drivers of metastasis, and elucidate the interactions

between tumor cells and the TME that facilitate distant spread.

We validated these findings through in vitro experiments and

immunohistochemistry assays, and corroborated the results using

both internal and external data from numerous clinical samples.

Our research not only contributes to the understanding of HGSOC

biology but also holds promise for identifying novel biomarkers and

therapeutic targets to combat HGSOC.
2 Materials and methods

2.1 Acquisition and processing of bulk
transcriptomic data

For this study on ovarian cancer, transcriptomic data,

encompassing RNA expression profiles along with relevant

clinical details, were sourced from the TCGA database via the

“TCGAbiolinks” package (15). To enhance the survival analysis’s

reliability, we omitted samples lacking survival data or with a

survival duration under 30 days. Subsequently, the data were

converted to Transcripts Per Million (TPM) and subjected to log2

transformation in preparation for further analysis (16).
2.2 Acquisition and processing of single-
cell and spatial transcriptomic data

Single-cell transcriptomic data were meticulously acquired from

the GEO database (17), specifically targeting primary tumor

samples from GSE211956 and metastatic samples from

GSE147082, resulting in a comprehensive collection of 11

samples. The Read10 × function was utilized to process the Seurat

object containing the gene expression data of each sample. After

quality control of the cells, encompassing data normalization to

correct for technical variances, identification of 2,000 highly

variable genes to focus on biologically significant fluctuations, and

the application of specific functions to mitigate cell cycle effects.

Batch effects were corrected using the harmonization technique,

ensuring comparability across samples. Dimensionality reduction

was achieved through UMAP (Uniform Manifold Approximation

and Projection) and t-SNE (t-Distributed Stochastic Neighbor

Embedding), revealing inherent data structures, while the Louvain

algorithm facilitated insightful clustering, uncovering previously

unrecognized cell populations. Differential expression analysis was

conducted with stringent criteria, employing a p-value < 0.05, log2

fold change > 0.25, and expression proportion > 0.1, to ascertain

significant gene variations across clusters.

In parallel, spatial transcriptomic analysis of 8 primary tumor

samples from GSE211956 was executed with precision using

“SpaceRanger” for initial quality checks. This was followed by

meticulous normalization and variable gene selection via the

“SCTtransform” method, optimizing data for subsequent analysis.

The spatial data, characterized by an average of 2515 spots per

sample, underwent a thorough examination and visualization
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process through Seurat, enabling a spatially resolved understanding

of tumor heterogeneity. The CARD algorithm, informed by single-

cell annotations, was applied for cutting-edge spatial data

deconvolution, adeptly predicting cell type distributions for each

spot, thus bridging the gap between single-cell and spatial

transcriptomics. Visualization of spatial cell type distributions and

signature score calculations were adeptly achieved using CARD and

the “GSVA” package, further complemented by Seurat’s

AddModelScore function, providing a multifaceted view of the

tumor microenvironment and its dynamic interplay with

cancer progression.
2.3 Cell annotation

We employed a rigorous and detailed approach to categorize

cells within the single-cell transcriptomic datasets. Marker genes

were meticulously selected based on established literature and

database references to ensure high specificity and sensitivity for

each cell type. For epithelial cells, markers included “EPCAM”

(epithelial cell adhesion molecule), “KRT18” and “KRT19” (keratins

18 and 19), and “CDH1” (E-cadherin) (18), reflecting their pivotal

role in maintaining epithelial integrity and function. Fibroblast

identification hinged on the expression of “DCN” (decorin),

“THY1” (CD90), “COL1A1”, and “COL1A2”, which are

indicative of extracellular matrix production and fibroblast

activation (19). Endothelial cells were distinguished by

“PECAM1” (CD31), “CLDN5” (claudin-5), “FLT1” (VEGFR-1),

and “RAMP2”, markers that denote vascular structures and blood

vessel lining (20). T-cells were identified through T-cell receptor

components “CD3D” , “CD3E” , “CD3G” , and “TRAC” ,

underscoring their role in adaptive immunity. NK cell markers

“NKG7”, “GNLY” (granulysin), “NCAM1” (CD56), and “KLRD1”

(CD94) were chosen for their relevance in innate immune

responses. B-cells were annotated using “CD79A”, “IGHM”,

“IGHG3”, and “IGHA2”, reflecting their antibody production

capabilities. Lastly, mast cells were identified by “KIT” (CD117),

“MS4A2” (FcϵRI), and “GATA2”, known for their role in allergic

responses and tissue homeostasis. Following cell annotation, we

conducted clustering analyses on epithelial cells, immune cells

(including T-cells, NK cells, B-cells, and mast cells), and

fibroblasts to dissect the tumor heterogeneity further.
2.4 Cell culture and lentivirus packaging

The cell lines 293T, ES-2, OVCAR3, SKOV3, OVCA-429, and

TOV-21G were procured from the American Type Culture

Collection (ATCC; Manassas, VA, USA). A2780 cells were

obtained from the National Experimental Cell Resource Sharing

Platform (Beijing, China), and 3AO cells were purchased from the

Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

293T cells were cultured in DMEM supplemented with 10% fetal

bovine serum (FBS), SKOV3 cells in McCoy’s 5A with 10% FBS,

and the rest in RPMI 1640 10% FBS.
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To generate pLKO.1-puro lentiviruses, HEK293T cells were co-

transfected with packaging plasmids psPAX2, pMD2G, and

lentiviral vectors. As described previously (21), lentivirus infection

was performed in accordance with the manufacturer’s guidelines,

and puromycin (2 mg/mL) (540222, Sigma) was applied to establish

the stable cellular populations. The CHODL shRNA sequences were

as follows (5′-3′): sh1, GCAAGTATGAACCAGAGATTA and sh2,

GCATATTCATTGATGAGGGTT.
2.5 Tissue microarray

Tissue chips from 125 patients with HGSOC were supplied by

the Department of Gynecology Oncology, National Cancer Center/

National Clinical Research Center for Cancer/Cancer Hospital.

These patients underwent surgical resection from January 2010 to

October 2019. Following the exclusion of 3 unsuitable samples, the

remaining 119 samples were subjected to further analysis.
2.6 Western blotting

Western blotting procedure was performed as described

previously (21). Post-blocking with 5% skim milk, the membranes

underwent overnight incubation at 4°C with anti-CHODL (diluted

at 1:1000; ab236742, Abcam) and anti-GAPDH (diluted at 1:4000;

Abclonal) antibodies. Subsequent visualization of the immunoblots

was achieved using the ImageQuant LAS-4000 System (GE).
2.7 Immunohistochemistry

Tissue microarrays were stained with anti-CHODL antibody

(1:100; ab236742, Abcam). The images were captured by Aperio

ScanScope (Leica, Nussloch, Germany).
2.8 Transwell assays

The migration and invasion capabilities of A2780 cells were

evaluated using the transwell assay as described previously (21).

Briefly, cells (2 × 104/well) were seeded in 200 mL of serum-free

medium. The lower chamber contained 600 mL of medium with

10% FBS. Matrigel (BD Bioscience, USA) was applied to the upper

compartment for the invasion assay or omitted for the migration

assay. After 24 hours, cells that had invaded or migrated to the

lower chamber were stained with 0.1% crystal violet and quantified.

Each experiment was conducted independently in triplicate.
2.9 Subclustering analysis of
cell populations

We adopted a refined approach to discern intricate

subpopulations among immune cells, epithelial cells, and

fibroblasts, leveraging the robust capabilities of the Seurat
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1420847
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1420847
package. Initially, we performed a high-resolution clustering

analysis, adjusting the resolution parameter in Seurat to detect

subtle variations within the broad cell types identified. Differential

expression analysis between the identified clusters was then

performed to select specific markers for each cell type. The

UMAP technique was then employed to visualize the subclusters

in a two-dimensional space, allowing for the intuitive interpretation

of the complex cellular landscape. To enhance the rigor of our

subclustering analysis, statistical tests were incorporated to validate

the significance of the identified subclusters.
2.10 Copy number variation analysis

We employed the InferCNV software to conduct a

comprehensive Copy Number Variation (CNV) analysis on

subpopulations of tumor cells, with a specific focus on

distinguishing malignant cells within the tumor microenvironment.

Immune cells were meticulously chosen as the reference for

comparison, based on their stable genomic profile and minimal

CNV alterations.
2.11 Pseudotime analysis

For the pseudotime analysis within epithelial cel l

subpopulations, we utilized the Monocle2 software, specifically

employing its DDRTree algorithm for effective dimensionality

reduction, while adhering to the default settings for other

parameters. This analysis was strategically aimed at delineating

the cell differentiation trajectory.
2.12 Transcription factor analysis

We applied the SCENIC software, maintaining default settings

for the RcisTarget and GRNBoost databases. The RcisTarget

package was deployed to pinpoint transcription factors notably

expressed within our gene list, whereas the AUCell package

quantified the activity levels of regulatory networks across

identified cell types.
2.13 Cell-cell communication

For cell-cell communication assessment, the CellChat package

was our tool of choice. Starting with the normalized gene expression

matrix, we constructed a CellChat object, followed by the execution

of preprocessing functions such as identifyOverExpressedGenes

and identifyOverExpressedInteraction, all under default

parameters. Subsequent steps involved the computeCommunProb

and filterCommunication functions to unveil potential ligand-

receptor interactions. The analysis culminated with the

aggregateNet function, synthesizing a comprehensive cell

communication network.
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2.14 Statistical analysis

All data processing, statistical analysis, and plotting were

performed using R 4.1.3 software. The Pearson correlation

coefficient was used to evaluate the correlation between two

continuous variables. The chi-square test was employed for

comparison of categorical variables, while the Wilcoxon rank-sum

test or t-test was used for comparing continuous variables. Cox

regression and Kaplan-Meier analysis were conducted using the

survival package.
3 Results

3.1 Single-cell transcriptome atlas
of HGSOC

Utilizing single-cell transcriptomics, our investigation revealed

a complex cellular landscape within the tumor microenvironment

of HGSOC, characterized by the identification of 22 distinct cell

clusters. This diversity was elucidated through the detection of

specific markers, such as EPCAM and KRT for epithelial cells, DCN

and COL1A1 for fibroblasts, PECAM1 and CLDN5 for endothelial

cells, and various others for immune cell types including T-cells,

NK-cells, B-cells, and mast cells (Figure 1A). Sophisticated

visualization methods, like heatmaps (Figure 1B) and t-SNE plots

(Figure 1C), effectively demonstrated the unique expression

patterns of these markers, highlighting the considerable

heterogeneity among the cells present. The deployment of scType

software further refined the classification of immune cells,

providing deeper insights into the intricacies of the tumor’s

cellular composition. Notably, these cell types were present in

nearly all patients, albeit in differing proportions (Figure 1D).

Tumor cells predominated, exhibiting elevated levels of

transcripts and copy number variations, indicative of their

malignant nature. Among immune cells, T-cells were most

prevalent, with a notable reduction in B cells, myeloid cells, and

mast cells in primary tumors compared to metastatic samples.

Conversely, stromal cells were significantly diminished in the

tumor microenvironment of metastatic samples, likely due to the

expansion of tumor cells.
3.2 Heterogeneity through spatial
transcriptomic expression profiling

We applied the inferCNV software to evaluate copy number

variations (CNVs) across eight designated spots within each sample.

To dissect the cellular composition of the spatial transcriptomic

data, we implemented the CARD algorithm. Spots explicitly

identified as tumor cells were categorized accordingly, with

remaining cells labeled as non-tumor. For a representative sample

(SP1), we showcased a range of visualizations, including

hematoxylin and eosin (H&E) staining, CNV score distribution,

cellular composition, and clustering results for both tumor and
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non-tumor cells (Figure 2A). SP1, SP4, SP7, and SP8, linked to

suboptimal or partial chemotherapy responses, exhibited a

predominant tumor cell presence (data not displayed). Further

analysis involved segregating spots into tumor and non-tumor

groups, followed by dimensional reduction and clustering. The

tumor cells were classified into six subgroups, with each

subgroup ’s composition, CNV status, and marker genes

elucidated on a tSNE plot (Figure 2B). Non-tumor cells were

divided into four subgroups (Figure 2C). A comparative heatmap

analysis between samples showing poor responses and those with
Frontiers in Immunology 05
better or partial responses highlighted a greater prevalence of tumor

cells in the former and an increased presence of non-tumor cells,

such as fibroblasts, in the latter (Figures 2D, E).
3.3 High heterogeneity of neoplastic cells

Neoplastic (NEO) cells were segregated and subjected to

dimensionality reduction and clustering, unveiling five unique

subgroups (Figure 3A). A bar graph delineated the cell
A

B

D

C

FIGURE 1

Heterogeneity through single-cell expression profiling. (A) tSNE plot categorizing single-cell data by clusters and cell types. (B) Heatmap displaying
the expression levels of marker genes in different cell types. (C) tSNE plot illustrating the expression patterns of various marker genes across different
cell types. (D) Composite plot showing the composition of cell sources, patient composition, number of cells, number of transcripts detected, and
copy number variation (CNV) status for different cell types.
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composition from varied origins, highlighting KRT14+ NEO cells in

primary samples and COL14A1+ NEO cells in metastatic

counterparts (Figure 3B). Transcription factor (TF) profiles for

each subgroup were analyzed, with a heatmap illustrating

the enrichment of specific TFs, such as the heightened

activity of FOSL1 in KRT14+ NEO cells indicative of an

immunomodulatory phenotype. FOSB and JUNB were notably

active in COL14A1+ NEO cells, implicating their roles in

differentiation, proliferation, and apoptosis (Figure 3C). Cellular

trajectory analysis, using primary cells as a reference, depicted
Frontiers in Immunology 06
multiple developmental pathways within metastatic samples,

indicating subtype diversity (Figure 3D). These pathways

culminated in branches rich in CHODL+ NEO cells .

Pseudotemporal analysis positioned KRT14+ NEO cells at the

onset, whereas COL14A1+ NEO cells were intermediate, with the

bulk of cells at the trajectory’s end (Figures 3E, F). A scatter plot

illustrated the pseudotemporal evolution of six genes (MITF, KIT,

VIM, CCL2, C1R, STAT3), with a heatmap showcasing gene

expressions linked to pseudotemporal progression (Figures 3G,

H). This analysis revealed a loss of the immune-related molecule
A

B

D E

C

FIGURE 2

Heterogeneity through spatial transcriptomic expression profiling. (A) H&E staining image, distribution of CNV scores, cellular composition of the
tumor sample, tumor or non-tumor classification, clustering results of tumor cells, and clustering results of non-tumor cells in representative SP2
sample. (B) Heatmap showing marker expression of tumor cell subgroups on the left, and tSNE plot illustrating the composition, CNV score, and
patient distribution of tumor cell subgroups on the right. (C) Heatmap showing marker expression of non-tumor cell subgroups on the left, and tSNE
plot illustrating the composition, CNV score, and patient distribution of non-tumor cell subgroups on the right. (D) Heatmap depicting the cellular
composition differences in poor_response samples. (E) Heatmap illustrating the cellular composition differences in good_response/
partial_response samples.
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CCL2 over time, contributing to a “cold” tumor microenvironment,

and an increase in metastasis-associated molecules like MITF, KIT,

and VIM, suggesting a potential transition to a mesenchymal

phenotype. CNVs were distinct across cell types and origins

(Figure 3I). Metastatic NEO cells, especially those expressing

COL14A1, not analyzed in primary samples due to their

exclusivity to metastatic sites, displayed a more malignant profile

than their primary counterparts, with CHODL+ NEO cells at the

developmental culmination exhibiting the highest CNV levels.
Frontiers in Immunology 07
3.4 Functional analysis of endpoint cells
(CHODL+ NEO cells)

In our comparative analysis of primary and metastatic tumor

samples, we noted a markedly higher prevalence of CHODL+ NEO

cells in metastatic specimens (Supplementary Figure S1A). A

heatmap delineating gene expression differences between

CHODL+ NEO cells and their counterparts underscored the

upregulation of genes associated with lipid metabolism in the
A B

D

E

F

G I

H

C

FIGURE 3

Subtyping analysis of tumor cells. (A) Cell communication network map of two cell groups. (B, C) Cell communication scatterplot depicting
intercellular interactions between two cell groups. (D) Chord diagram illustrating the signaling pathways of MK. (E) Chord diagram depicting the
signaling pathways of GALECTIN. (F) Spatial expression maps showing the distribution of LGALS9_CD44 in representative samples. (G) Spatial
expression maps showing the distribution of LGALS9_HAVCR2 in representative samples.
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former group (Supplementary Figure S1B). We further explored

lipid metabolism pathways, computing signature scores for both cell

populations and illustrating the disparities through heatmap

visualization, which highlighted distinct variations in the

FATTY_ACID_BETA_OXIDATION pathway (Supplementary

Figure S1C). Additionally, SMAD4 was identified as a

significantly enriched transcription factor in CHODL+ NEO cells,

with its expression profile analyzed within a control dataset. We

examined the distribution of FATTY_ACID_BETA_OXIDATION

pathway scores in patients SP1 and SP6, categorizing cells based on

SMAD4 expression with the mean as a threshold (Supplementary

Figure S1D). Violin plots underscored significant disparities in

pathway scores between the two groups (Supplementary Figures

S1E, F), underscoring the unique metabolic phenotype of CHODL+

NEO cells.
3.5 The anti-tumor immune function of
metastatic samples was impaired

T and B cells were isolated from the sample and subjected to

dimensionality reduction clustering analysis, which identified nine

distinct cell clusters (Figure 4A). Differential gene expression

analysis was then performed for each cluster, visually represented

as a volcano plot (Figure 4B). To validate cell subtypes, t-SNE plots

were utilized to illustrate the expression patterns of subtype-specific

marker genes (Figure 4C). The distribution of cells within each

cluster was graphically depicted using a bar chart (Figure 4D).

Notably, metastatic samples exhibited a significant decrease in C0

(CD8A+ NKT) cells and a significant increase in most B-cells and

CD4+ T cells compared to primary samples. Hallmark gene set

scores were computed for each cluster and visualized in another

heatmap (Figure 4E), indicating stronger activation levels in C6 and

C7. Furthermore, immune-related gene expression profiles across

different clusters were elucidated through an additional heatmap

(Figure 4F). In metastatic samples, there was a notable increase in

cells with immunosuppressive effects and a significant loss of cells

with cytotoxic functions. To further assess CD8+ cells, cytotoxicity

and exhaustion values were determined, revealing notable

differences among different CD8+ cell subgroups (Figure 4G).

Additionally, the expression distributions of four immune-related

genes (GZMB, GZMH, PRF1, GNLY) within CD8+ cells (C0 and

C5) were visualized (Figure 4H). Comparing the proportions of C0

in primary and metastatic samples, a significantly higher content

was observed in the primary samples (Figure 4I). Importantly, our

analysis unveiled a correlation between the diminished abundance

of C0 (CD8A+ NKT) cells and poorer survival outcomes in the

TCGA-OV cohort (Figure 4J).
3.6 Decreased CCL3-secreting M1
macrophages accelerate metastasis

Through isolation and dimensionality reduction clustering, we

delineated seven myeloid cell subtypes, illustrated in Figure 5A. A
Frontiers in Immunology 08
volcano plot highlighted differentially expressed genes across these

subgroups (Figure 5B). t-SNE visualizations confirmed our

classifications, showcasing gene expression through subtype-

specific markers (Figure 5C). A pie chart detailed the composition

of primary versus metastatic subgroups (Figure 5D), revealing

notable shifts: a decrease in C4 (CCL3+) cells, and an increase in

C2 (CCL22+), C3 (TOP2A+), and C5 (ART3+) within metastatic

samples. Hallmark pathway activation levels were analyzed, with C4

and C5 showing heightened activity (Figure 5E). Macrophage

trajectory analysis from primary cells (C0+C4+C6) unveiled a

unique differentiation pathway (Figure 5F), and a heatmap of

immune gene expression within macrophage clusters underscored

an active immune function in C4 (Figure 5G). Violin plots further

elucidated significant differences between subgroups (Figures 5H,

I), suggesting C4 as pro-inflammatory M1 macrophages, C0 as M2

macrophages, and C6 as undifferentiated M0 macrophages.
3.7 Subtyping analysis of stroma cells

We isolated stromal cells and subjected them to dimensionality

reduction clustering analysis, which enabled us to identify 14

different cell subtypes and determine their corresponding cellular

origins (Figures 6A, B). To ensure the accuracy of our findings, we

employed marker genes specific to each subtype and visualized their

expression patterns using t-SNE plots (Figure 6C). Notably, we

observed that myoCAF, iCAF, and endothelial cells were clustered

separately. Subsequently, we performed differential gene expression

analysis within each subgroup and presented the results in a

differential heatmap (Figure 6D). To gain further insight into the

characteristics of each subgroup, we evaluated the Hallmark gene

set scores and generated a corresponding heatmap (Figure 6E).

Interestingly there was a positive correlation between endothelial

and fibroblast expression (Figure 6F). Moreover, we investigated the

abundance of fibroblasts and endothelial cells across the spatial

transcriptomic samples and found that the content of fibroblasts

was higher than that of endothelial cells (Figure 6G).
3.8 Cell communication analysis

We conducted an in-depth analysis of cellular communication in

both primary and metastatic cells. This analysis allowed for a

comprehensive comparison of the results, enabling us to generate

informative network graphs (Figure 7A) and scatter plots (Figures 7B,

C) that visually depict the intricate patterns of cellular communication.

To further investigate this phenomenon, we carefully examined the

chord diagrams representing the MK and GALECTIN signal

pathways. As a result, we constructed compelling statistical bar

charts (Figures 7D, E) that effectively illustrate the ligand-dependent

receptor signaling dynamics. Additionally, we quantified the

expression of LGALS9_CD44 and LGALS9_HAVCR2 (Figures 7F,

G) in spatial transcriptomic samples. Notably, our findings clearly

demonstrated a significantly higher expression level of LGALS9_CD44

compared to LGALS9_HAVCR2.
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3.9 Experimental validation of CHODL

Given the higher risk coefficient of CHODL, we examined the

tumor tissues from HGSOC patients, and found that the expression

of CHODL was higher in the metastasis tissues compared to that of

primary tissues (Figure 8A). Furthermore, high expression of
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CHODL was associated with worse prognosis (Figure 8B). We

selected CHODL for the experimental validation. As shown in

Figure 8C, CHODL protein expression was relatively high in the

A2780 cell line. Therefore, we knocked down the gene in A2780 cell

line (Figure 8D) to further determine its biological significance.

Transwell assays demonstrated that knockdown of CHODL
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FIGURE 4

Subtyping analysis of T/B cells. (A) tSNE plot showing subgroups of T cells and B cells. (B) Volcano plot depicting differentially expressed genes in each
subgroup. (C) tSNE plot illustrating the expression of immune cell markers. (D) Bar graph displaying the distribution of T cell and B cell subgroups across
different samples. (E) Heatmap showing the scores of Hallmark gene sets in each subgroup. (F) Heatmap demonstrating the expression of immune-related
genes in each subgroup. (G) Violin plot comparing the Cytotoxicity and Exhausted values of different subgroups of CD8+ T cells. (H) Ridge plot showing
the expression levels of four immune-related genes (GZMB, GZMH, PRF1, GNLY) in CD8+ T cell subgroups. (I) Bar graph representing the proportion of C0
subgroup in primary and metastatic samples. (J) Survival analysis results of C0 (CD8A+NKT) cell content in the TCGA-OV cohort.
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strongly inhibited cell migration and invasion in A2780

cells (Figure 8E).
4 Discussion

80% of HGSOC patients present abdominal metastasis initially,

which is a foothold for subsequent tumor recurrence and

unfavorable prognosis. In this comprehensive investigation, we
Frontiers in Immunology 10
meticulously analyze the intricate landscape of HGSOC using

single-cell and spatial transcriptomic analyses. We aim to discern

the transcriptome landscape of the tumor/immune interactions in

primary or metastatic HGSOC tissues across spatial and temporal

dimensions. Our findings reveal pronounced inter- and intra-tumor

heterogeneity in HGSOC, accompanied by a highly suppressive

TME and intricate cell-cell communications, particularly in

metastatic HGSOC. Notably, CHODL+NEO and CD8A+ NKT

cells correlate closely with metastasis and poorer prognosis
A B D
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FIGURE 5

Subtyping analysis of myeloid cells. (A) tSNE plot of subpopulations of myeloid cells. (B) Volcano plots showing differentially expressed genes among
each subpopulation. (C) tSNE plot of marker expression levels in myeloid cells. (D) Pie charts depicting the composition of subpopulations in primary
and metastatic samples. (E) Heatmaps displaying scores of hallmark gene sets in each subpopulation. (F) Cell trajectory analysis plot of macrophages.
(G) Heatmaps displaying expression levels of immune-related genes in macrophage subpopulations. (H) Violin plots showing differential M1 score
among subpopulations of macrophages. (I) Violin plots showing differential M2 score among subpopulations of macrophages.
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among HGSOC patients. Further clinical analysis and experiments

support CHODL’s potential role as a pivotal regulatory factor in

HGSOC metastasis, making it a promising therapeutic target.

We highlighted the considerable intratumoral and intertumoral

variability in HGSOC, presenting formidable challenges in the realms

of treatment efficacy and prognostication. Through the identification

of distinct cellular populations at both primary and metastatic sites,

our study elucidates the evolutionary trajectory of tumor cells,

shedding light on the metastatic cascade. This diversity spans not
Frontiers in Immunology 11
only the tumor cells but also the stromal and immune constituents

within the TME, all contributing to the tumor’s adaptive resilience.

Notably, the identification of specific subpopulations, such as

CHODL+ NEO cells, associated with adverse outcomes and a

propensity for metastasis, provides critical insights into the cellular

mechanisms underpinning HGSOC dissemination. This concept of

cell subclusters driving metastasis resonates with findings in

melanoma, where specific cell states are linked to tumor

advancement (22, 23). Chondrolectin (CHODL) has emerged as a
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FIGURE 6

Subtyping analysis of stroma cells. (A) tSNE plot of subpopulations of stromal cells. (B) Bar chart showing the proportion of each subpopulation in
different samples. (C) tSNE plot of marker expression levels in stromal cell subpopulations. (D) Heatmap displaying differentially expressed genes
among each subpopulation. (E) Heatmap displaying scores of hallmark gene sets in each subpopulation. (F) Scatterplot showing correlation between
content of endothelial cells and fibroblasts. (G) Spatial distribution of content of fibroblasts and endothelial cells in different tumor samples.
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significant molecular player in the realm of cancer research,

particularly in colorectal cancer (CRC) (24) and non-small cell

lung cancer (NSCLC) (25). The aberrant hypermethylation of CpG

islands is a hallmark of CRC, and CHODL has been identified as a

novel gene preferentially methylated in human CRC. Notably, the

downregulation of CHODL in CRC, driven by promoter

hypermethylation, has been associated with poor survival rates,

especially in patients with early-stage CRC (24). Moreover, the

expression of CHODL, screened through a comprehensive analysis

of gene transactivation in lung cancers, has been correlated with the

clinicopathologic significance in patient tissues. The strong positivity
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of CHODL protein is linked with shorter survival rates in NSCLC

patients, underscoring its potential as an independent prognostic

factor (25). Given the relatively high-risk coefficient of CHODL in the

model, we further validated this gene in cellular models of HGSOC.

Our findings suggest that CHODL is a metastasis-related gene that

promotes HGSOC cell migration and invasion, and its high

expression in the tumor tissues is associated with poor prognosis.

However, the mechanism and the participated signaling pathway of

CHODL in HGSOC remains to be further investigated, and the

possibility of CHODL as a therapeutic target will be further explored

in our subsequent study.
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FIGURE 7

Cell communication analysis. (A) Cell communication network map of two cell groups. (B) Cell communication scatterplot depicting intercellular
interactions between two cell groups. (C) Chord diagram illustrating the signaling pathways of MK. (D) Chord diagram depicting the signaling
pathways of GALECTIN. (E) Spatial expression maps showing the distribution of LGALS9_CD44 in representative samples. (F) Spatial expression maps
showing the distribution of LGALS9_HAVCR2 in representative samples.
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We further elucidate the tumor’s metastatic potential through

the lens of cellular pathways exploitation, notably those regulated

by SMAD4. The augmented activation of lipid metabolism

pathways, potentially mediated by SMAD4 in CHODL+ NEO

cells, underscores the complexity of cancer progression

mechanisms. SMAD4’s role as a central mediator in the TGF-b
signaling pathway, regulating key cellular processes such as

proliferation, differentiation, and apoptosis, is well-documented,

with its involvement in cancer highlighting its potential as a

therapeutic target. SMAD4, a central mediator in the TGF-b
signaling pathway (26), plays a pivotal role in the regulation of

cellular processes such as proliferation, differentiation, and

apoptosis (27). SMAD4’s presence was found to impart

vulnerability to ferroptosis, a form of regulated cell death, in

highly invasive tumor cells induced by TGF-b1 (28). Ferroptosis is
distinct from other forms of cell death, such as apoptosis, and is

characterized by the accumulation of iron-dependent lipid

peroxides (29). The implication of SMAD4 in ferroptosis

suggests a nuanced role in cancer cell survival and death,
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offering potential therapeutic avenues to exploit this

vulnerability in SMAD4-positive cancers.

The highly immunosuppressive TME observed in HGSOC,

particularly in tumors with distant metastases, underscores the

challenges in harnessing the immune system for therapeutic

benefit. The increase in exhausted cells, alongside a decrease in

CD8A+ NKT cells in tumors with metastatic involvement, paints a

picture of a TME adept at evading immune surveillance. The

decrease in CD8A+ NKT cells, known for their potent anti-tumor

activity (30), in metastatic tumors highlights a potential mechanism

by which HGSOC evades immune-mediated destruction. This

finding is particularly intriguing given the emerging role of NKT

cells in cancer immunotherapy (31). Research has shown that

CD8A+ NKT-like cells not only possess cytotoxic granules,

indicative of their potential to directly engage and destroy tumor

cells, but also secrete high levels of interferon-gamma (IFN-g) when
stimulated by TCR-matched antigens (32). The secretion of IFN-g is
particularly noteworthy as it plays a crucial role in antitumor

immunity by activating other immune cells and increasing the
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FIGURE 8

CHODL regulates migration and invasion in HGSOC cells. (A) Immunohistochemical analysis of CHODL expression in 52 paired samples from
primary and metastatic HGSOC tissues. (B) The survival data analysis of 119 HGSOC patients. (C) Immunoblot depicting the expression of CHODL
protein in 6 common HGSOC cell lines. (D) Immunoblot demonstrating CHODL expression levels in A2780 cells following CHODL gene knockdown.
(E) Transwell assays evaluating the effects of CHODL on the invasion capabilities of A2780 cells. Scale bar represents 200 mm. Statistical analysis of
transwell assays is presented in the right. The data are presented as the mean ± s.d. values; t-test, **p < 0.01; n = 3.
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immunogenicity of cancer cells. Further insights into the distinct

populations and functional specializations of NKT cells, including

CD8A+ NKT-like cells, highlight the complexity of the immune

system’s interaction with cancer (33). These cells’ unconventional

lifestyles and roles in tumor immunity underscore the potential for

novel therapeutic strategies that harness their unique capabilities.

The complex cell-cell communications unveiled in our study,

especially pronounced in tumors with distant metastases, reveal a

sophisticated network of interactions that facilitate tumor

progression. The dialogues between stromal, tumor, and immune

cells underscore the collaborative nature of the TME in promoting

tumor growth and evasion from immune surveillance. This

complexity is further exemplified by the role of metabolic

reprogramming, particularly the shift towards lipid metabolism in

facilitating metastasis. One of the key findings in this area is the

discovery of various mechanisms through which lipid metabolism

promotes tumor growth and survival, many of which operate

independently of traditional cellular bioenergetics. For example,

the reprogramming of lipid metabolism in cancer cells can lead to

the accumulation of specific lipid species that contribute to the

malignant phenotype, influencing processes such as ferroptotic-

mediated cell death, tumor metastasis, and interactions with

immune cells within the tumor microenvironment (34). Lipid

droplets, in particular, have been identified as crucial players in

cancer, acting as reservoirs for energy storage and sources of

signaling molecules that can protect cancer cells under stressful

conditions, such as hypoxia or nutrient deprivation (35). The

therapeutic potential of targeting the lipid metabolism pathway,

as demonstrated by the efficacy of etomoxir in suppressing

metastasis, opens new avenues for intervention (36). This

approach aligns with the growing interest in targeting metabolic

pathways as a means to thwart cancer progression.

Utilizing single-cell sequencing technology, we have been able

to thoroughly analyze the transcriptomic characteristics of different

cell subsets in tumor tissues. single-cell sequencing has enabled us

to deeply explore cellular heterogeneity and microenvironment

characteristics, identify rare cell subpopulations, examine cell-cell

interactions, and uncover potential therapeutic targets that

traditional methods could not achieve. New sequencing

techniques with spatial resolution deepen our understanding of

the relationship between a cell’s genotype or gene expression and its

morphology and interactions with the local environment, thus

advancing knowledge in HGSOC development and progression.

While our study provides significant insights into the cellular and

molecular underpinnings of HGSOC metastasis, several limitations

warrant consideration. The heterogeneity among patients and the

limited sample size pose challenges in generalizing our findings. The

dynamic nature of cancer biology means that our findings are only a

snapshot of time, which may not fully cover the complexity of tumor

heterogeneity and the dynamics of TME. Addressing the limitations

noted, future studies should aim to include larger and more diverse

cohorts. This expansion would allow for a broader generalization of

our findings and enable a more detailed validation of the observed

phenomena. Additionally, investigating the common mechanisms of

metastasis in HGSOC could significantly enhance our understanding

of the disease process and potentially unveil novel therapeutic targets.
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Moreover, advancing beyond the two-dimensional spatial analyses

employed in our current study, future research should incorporate

three-dimensional imaging techniques. Such approaches will provide

a more comprehensive view of the tumor architecture, improving our

understanding of how the three-dimensional environment influences

cellular interactions and tumor progression. This could lead to

breakthroughs in how we approach the prevention and

intervention of metastasis in HGSOC.

In conclusion, our study sheds light on the intricate tapestry of

cellular heterogeneity, immune evasion, and metabolic

reprogramming in HGSOC, particularly in the context of distant

metastasis. By unraveling the complex interplay between tumor

cells and their microenvironment, we pave the way for novel

therapeutic strategies aimed at disrupting these interactions.
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SUPPLEMENTARY FIGURE 1

Functional Analysis of CHODL+NEO. (A) Bar graph depicting the proportion
of CHODL+NEO cells in different sample sources. (B) Heatmap showing the

differential gene expression between CHODL+NEO cells and non-CHODL

+NEO cells. (C) Heatmap displaying the signature scores of lipid metabolism-
related pathways in CHODL+NEO cells and non-CHODL+NEO cells. (D)
Representative spatial expression maps illustrating the scores of SMAD4 and
FATTY ACID BETA OXIDATION. (E) Violin plots demonstrating the differences

in FATTY ACID BETA OXIDATION scores in SP1. (F) Violin plots demonstrating
the differences in FATTY ACID BETA OXIDATION scores in SP6.
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