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Vaccines have historically played a pivotal role in controlling epidemics. Effective

vaccines for viruses causing significant human disease, e.g., Ebola, Lassa fever, or

Crimean Congo hemorrhagic fever virus, would be invaluable to public health

strategies and counter-measure development missions. Here, we propose

coverage metrics to quantify vaccine-induced CD8+ T cell-mediated immune

protection, as well as metrics to characterize immuno-dominant epitopes, in

light of human genetic heterogeneity and viral evolution. Proof-of-principle of

our approach and methods are demonstrated for Ebola virus, SARS-CoV-2, and

Burkholderia pseudomallei (vaccine) proteins.
KEYWORDS

HLA class I, vaccine, epitope, CD8 + T cell, immune response, correlate of protection,
immuno-dominant, coverage metric
1 Introduction

Vaccines exploit the exceptional ability of the adaptive immune system to respond to, and

remember, encounters with pathogens (1). Novel vaccine technologies (e.g., viral vector,

DNA, or RNA) enable a “plug and play” approach to immunogen (part of the pathogen that

can be recognized by the immune system) design (2). These technical advances inherently

raise a number of challenges in vaccine immunology. First, the genetic diversity of highly

variable pathogens makes it difficult to identify an immunogen that can be used in a vaccine

to protect against infection. Second, in addition to targeting the genetic diversity of the

pathogen, the most effective route to vaccine efficacy and protection is to engage multiple
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arms of the immune system (1). Thus, a first challenge is: given a

pathogen, how to optimize the choice of immunogens.

A second challenge relates to the (molecular or cellular)

mechanisms that mediate immune protection after vaccination or

infection. Finding an immune response that correlates with

protection can accelerate the development of new vaccines (3).

Unfortunately, there exist significant gaps in our immunological

knowledge of correlates of (vaccine- or infection-mediated)

protection. Most current vaccine strategies aim to confer protection

through antibodies (humoral response), which are produced by B

cells. Yet, there exists substantial evidence of protective cellular

immunity correlated with CD8+ T cell-mediated responses to

conserved regions of the genome of HIV-1 (4), Lassa virus (5),

SARS-CoV-2 (6, 7), pandemic influenza (8), and Ebola virus (9).

Hence, a third challenge is to quantify the potential of CD8+ T cells to

induce vaccine-mediated immune responses, and if possible, to

identify viral immuno-dominant epitopes in these responses. CD8+

T cells (or cytotoxic T cells that kill infected cells) express a unique

receptor on their surface: the T cell receptor (TCR). The binding of

TCRs to immunogens on the surface of infected cells initiates an

immune response (see Figure 1). In the case of CD8+ T cells, the

immunogen is a bi-molecular complex composed of a viral peptide (a

short protein fragment) bound to a major histocompatibility complex
Frontiers in Immunology 02
(MHC) class I molecule, referred to as a pMHC complex. In humans,

theMHCmolecule is also called human leukocyte antigen (HLA) (11,

12). This constitutes theMHC-restriction of TCR immunogen pMHC

recognition. MHC-restriction brings additional challenges to the

study of CD8+ T cell responses, since the HLA locus is the most

polymorphic gene cluster of the entire human genome (11), and

genome-wide association studies of host and virus genomes have

shown that different HLA alleles exert selective pressure, driving in

vivo viral evolution (e.g., hepatitis C virus (12, 13) and HIV-1 (14)).

Our objective in this manuscript is to define novel metrics to quantify

CD8+ T cell-mediated vaccine protein coverage, in light of human

HLA heterogeneity, viral evolution, and immuno-dominant epitopes.

This objective is rather pressing since we currently do not have

accurate assays to link CD8+ T cell ex vivo or in vitro function

measurements to in vivo responses (15–17). This knowledge is

essential to improve our predictions of immune outcomes in

response to pathogenic infection or vaccines (18, 19). Technology-

driven advances combining highthroughput single-cell RNA-

sequencing, paired TCRab-sequencing and high-dimensional flow

cytometry have been essential to improve our understanding of CD8+

T cell sensitivity and specificity (20, 21). Current challenges include

the detection and quantification of antigen-specific CD8+ T cell

responses and TCR diversity, as well as CD8+ T cell function, and
FIGURE 1

MHC-restriction in T cell receptor recognition of peptide-MHC complexes. T cell receptors are cross-reactive: they can bind to many different viral
pMHCs. Figure reproduced from Ref (10, Figure 1) with permission under the terms and conditions of the Creative Commons Attribution license CC
BY 4.0.
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single-cell resolution methods (16). Part of this challenge includes

dissecting the signals [including antigen (signal 1), co-stimulation

(signal 2), and pro-inflammatory cytokines (signal 3)] that control

CD8+ T cell memory formation and re-activation to improve

vaccination (22), as well as identifying the different CD8+ T-cell

subsets which mediate immune protection and quantifying their

heterogeneity, functions, and therapeutic potential (23, 24).

Desirable in a vaccine-induced CD8+ T cell immune response

(25) is for it to be broad and directed against several immunogens,

ideally from conserved genome regions, to reduce the possibility of

selecting viral escape variants, and to make it more difficult for the

virus to exhaust that response. We hypothesize that the problem to

i) optimize CD8+ T cell-mediated vaccine coverage across the

human population, while ii) minimizing viral escape, is best, and

naturally, posed in terms of a multi-partite graph, given the HLA

genetic heterogeneity, the bi-molecular (pMHC) nature of T cell

immunogens, and that immunogen recognition by TCRs is

inherently cross-reactive (see Figure 1). Thus, we propose to

represent CD8+ T cell viral immunogen (pMHC) recognition as a

multi-partite graph, G, with four different sets of nodes (see

Figure 2). The first set, R, corresponds to eleven geographical

regions covering the world’s human population (26), so that R =

r1, r2,…, rKf g (K = 11); the second set, A, to M different HLA

alleles in the human population (of a given region), so that A =

a1, a2,…, aMf g; the third set, P, to N different peptides (9 amino

acids long derived from the vaccine protein of interest), so that P =

p1, p2,…, pNf g; and the fourth set, T , to D different possible TCR

molecular structures, so that T = t1, t2,…, tDf g. Edges between

nodes (from different sets) are as follows: i) an edge between a

geographical region and an HLA allele encodes the frequency of

that allele in the region (see section 2.1.1), i.e., f (1)3 is the frequency

in r1 of allele a3; ii) an edge between an HLA allele and a peptide

encodes the binding score of the HLA allele to the peptide and thus,

represents both the affinity of this interaction and the stability of the

pMHC complex (see section 2.1.2), i.e., s51 is the binding score of

allele a5 to peptide p1; and iii) an edge between a peptide and a TCR

encodes the binding score of the peptide to the TCR and thus,

represents the immunogenicity of the peptide (see section 2.1.3),

i.e., g41 is the immunogenicity of peptide p4 as measured by TCR t1
(see Figure 2). This novel graph approach allows us to address the

above challenges: 1) viral genetic diversity of the pathogen is

represented in the set of peptides, P, so that wild type and all

circulating (or predicted) variants can be analyzed, 2) HLA

variability is considered with regard to geographical regions R,

HLA alleles A, and their frequencies within each region, and 3)

TCR recognition variability and the strength of the interaction with

a peptide is accounted for by peptide immunogenicity (27). Finally,

the entire multi-partite graph, G, straightforwardly provides a

metric to quantify vaccine coverage (see section 2.2), and the

framework to characterize immuno-dominant peptides

(experimentally identified) and to predict viral immune escape

from CD8+ T cell recognition (28) (see section 4). Our methods

will be applied to Ebola virus, SARS-CoV-2, and Burkholderia

pseudomallei vaccine proteins.
Frontiers in Immunology 03
A wide range of extremely valuable computational tools have

already been developed to accelerate T cell epitope discovery and

vaccine design, e.g., Predivac-3.0, a proteome-wide bioinformatics

tool (29), Epigraph, a graph-based algorithm to optimize potential T

cell epitope coverage (30), OptiTope, a web server for the selection of

an optimal set of peptides for epitope-based vaccines (31, 32), or

PEPVAC, a web server for multi-epitope vaccine development based

on the prediction of MHC supertype ligands (33). Our interest and

objective is slightly different from those of previous studies; we want

to capture the contributions of human HLA class I heterogeneity,

petide:TCR interaction, and the more often studied HLA allele:

peptide interaction, to the magnitude and diversity of CD8+ T cell

responses to vaccine proteins. We note that immunogenicity of a

peptide as defined in Refs (29, 31, 32) is based on MHC class I

binding affinity prediction methods, but not on the contribution of T

cell receptor binding as considered in this manuscript (27) (see

section 2.1.3). Furthermore, PEPVAC’s predictions of promiscuous

epitopes are focused on five HLA I supertypes (HLA-A and HLA-B

genes) (33), while we are interested in individual HLA class I allele

frequencies in a given human population. Thus, in this paper we

present a framework to characterize CD8+ T cell immunogen

recognition, based on a multi-partite graph representation (see

Figure 2), which can account for geographical variation in HLA

class I allele frequencies (for each HLA allele type), HLA allele and

peptide interaction, as well as peptide and T cell receptor interaction.

The paper is organized as follows. Section 2 describes our methods

and approaches; in particular, it presents the details of data

acquisition, definition of the coverage metrics, regional and

individual, to quantify HLA-driven variability of CD8+ T cell

responses, as well as metrics to characterize and compare immuno-

dominant CD8+ T cell epitopes. Results are presented in Section 3,

where we focus our attention to the North America region. We have

analyzed all regions and those results are included as Supplementary

Material. We conclude with a discussion and plans for future work.
2 Materials and methods

2.1 Data acquisition

The generation of the multi-partite graph,  G, requires the

following steps. Step I: make use of existing databases, such as

Allele Frequency Net Database, to obtain HLA class I allele

frequencies for the eleven different geographical regions (see

section 2.1.1): Australia, Europe, North Africa, North America,

North-East Asia, Oceania, South and Central America, South Asia,

South-East Asia, Sub-Saharan Africa, and Western Asia. This will

determine the elements in sets R and A, as well as the edges

between them. Step II: choose a vaccine protein and make use of the

database, Immune Epitope Database, to obtain binding scores for

pairs of HLA class I alleles and 9-mer peptides (or nonamers) (see

section 2.1.2 ). This determines the elements in set P, as well as the
edges between elements of A and P. Step III: compute the

immunogenicity of elements in the set P making use of methods
frontiersin.org
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described in (27) (see section 2.1.3). In this way, we obtain the edges

between elements of P and a representative element of T . We now

describe in greater detail these steps, in particular how we collect

data directly from databases (see sections 2.1.1 and 2.1.2), and how

mean immunogenicity is computed based on the approach from Ref

(27) (see section 2.1.3).

2.1.1 HLA class I allele frequencies
Every individual has a total of six (classical) HLA class I alleles:

two HLA-A, two HLA-B, and two HLA-C alleles (11). Here, we are

interested in defining coverage metrics for each HLA type, i.e., A, B,

or C, so that they can be compared. Thus, in what follows we

consider each allele type (A, B, or C) separately.

Allele frequency data were obtained from the Allele Frequency

Net Database (34, 35). We have restricted our analysis to studies

with a gold or silver population standard 1, and have considered

HLA class I alleles with two sets of digits, e.g., HLA-B∗35:05. This
nomenclature indicates the HLA molecule of gene B, with the first

two numbers representing the serologic assignment, and the last

two, the unique sequence (36). No allele suffix has been included in

our results to indicate its expression status (37). It is out of the scope

of this paper to consider differences in expression levels of the

different HLA types (A, B, or C) (38). The HLA database divides its
1 A data set is gold standard if allele frequency sums to 1, sample size is

greater than 50, and it has four digit resolution. A data set is silver standard if

allele frequency sums to 1, sample size is any, and it has mixed two/four or

more digits [37].

2 The number of locations is different for each region.

Frontiers in Immunology 04
data into eleven geographical regions (34, 35), and each of these

regions is subdivided into a number of locations 2. Independent

studies (from peer-reviewed publications, HLA and immuno-

genetics workshops, individual laboratories, and short publication

reports in collaboration with theHuman Immunology journal) were

conducted to determine allele frequencies at each location. The

database contains local (at the location of the study) allele

frequencies, calculated using the following equation

f i,‘ =
copies of  ai
2� n‘

 , (1)

where fi,ℓ is the frequency of allele ai at location ℓ, “copies of ai”

refers to the total number of copies of allele ai in the population

sample at the given location, and nℓ to the sample size of the

population in the local study (at location ℓ). The factor two is

required since humans are diploids, and thus, there are two alleles

for each gene (11). We note that Equation 1 will be used for each

HLA type (A, B, or C). To compute the regional allele frequency

based on the frequency data provided for each location, we take the

weighted average of the local frequencies; that is, if we denote by

R = r1,…, rKf g, with K = 11, the different regions, the frequency of

allele ai in rk, f
(k)
i , with 1 ≤ k ≤ K, is given by

f (k)i = o
N k
‘=1f i,‘ n‘

oN k
‘0=1n‘0

 , (2)

whereN k is the total number of study locations in region rk, f i,‘ the

frequency of allele ai at location ‘ (defined in Equation 1), and ℓ the

sample size at location ℓ. We note that once the regional frequency

of each allele is calculated, the sum (over alleles) of their regional
FIGURE 2

CD8+ T cell immunogen (pMHC) recognition as a multi-partite graph, G, to account for geographical HLA allele variation. The set is composed of
eleven geographical regions covering the world’s human population: R = r1, r2,…, rKf g (K = 11). The set A   is composed of the different M HLA class I
alleles in the human population: A = a1, a2,…, aMf g. The set P is composed of the N different peptides (9 amino acids long derived from the vaccine
protein of interest): P = p1,p2,…,pNf g. The set T   is composed of the D possible TCR molecular structures, so that T = t1, t2,…, tDf g. An edge

between a region (rk) and an allele (ai) indicates the human population of that region expresses the given allele, with frequency f (k)i . An edge between
an allele (ai) and a viral peptide (pj) indicates they can form a pMHC complex, with binding score sij. Finally, an edge between a viral peptide (pj) and a
T cell receptor (tn) indicates the peptide is a TCR immunogen (or epitope), with immunogenicity gjn. Only a subset of the edges is shown for clarity.
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frequencies is close to one, but not necessarily equal to one (39).

Therefore, we define

f̂ (k)i =
f (k)i

oMk
i0=1f

(k)
i0

=
f (k)i

zk
 , (3)

where f̂ (k)i is the normalized frequency of allele ai in region rk, Mk

the number of different unique alleles found in region rk, and we

have introduced the variable zk =oMk
i=1 f

(k)
i , the sum of the regional

frequencies of all alleles in region rk. We note that both Mk and zk
depend on the region under consideration, and thus, our choice of

notation includes this fact (as a lower index). Table 1 provides the

values ofMk and zk for each region and allele type (HLA-A, HLA-B,

and HLA-C).
2.1.2 Binding scores of HLA class I alleles
to 9-mer peptides

The next step is to choose a protein, under consideration for use

in a vaccine, and analyze all its (linear) 9-mer (9 amino acids long)

peptides (or nonamers), which can be potential CD8+ T cell

epitopes. We note that if the protein is P amino acids long, there

will be a total of P −9 + 1(= P −8) 9-mer peptides. For the protein of

interest, we denote the set of such nonamers by P = p1,…, pNf g
with N = P − 8. HLA class I allele binding scores (for each HLA

type) to CD8+ T cell epitopes can be generated with the Immune

Epitope Database (IEDB) (40). Let us consider HLA class I allele ai
and epitope pj (from a vaccine protein). Given ai and pj, the IEDB

database provides a binding score, sij, for the pair (ai, pj). The

predictions are made with the NetMHCpan-4.1 method (41).

Binding scores range from 0 to 1, with higher scores correlating

with greater affinity (or inverse dissociation equilibrium constant)

of the interaction between the HLA class I allele ai and the peptide

pj. Thus, for a given peptide pj, we will obtain binding scores for

each of the HLA class I alleles: type A, B, and C.
Frontiers in Immunology 05
2.1.3 Immunogenicity of CD8+ T cell epitopes
We now discuss the concept of immunogenicity: a variable to

quantify the likelihood that a CD8+ T cell receptor will recognize a

viral peptide (or nonamer) (27). The authors of Ref (27) argue that a

given pMHC complex is only a TCR epitope if it is the target of a

specific T cell immune response. Thus, it is important to distinguish

between pMHC complexes which are non-epitopes and those which

are epitopes, for the purposes of vaccine development. They then

propose a theoretical approach to quantify this difference, what they

call peptide immunogenicity, and describe how experimental

determination via peptide-immunization assays informs and

validates their methods. In particular, peptide immunogenicity as

proposed in Ref (27) is calculated based on the preference that T cell

receptors have for certain amino acids (or enrichment score), and

the positions of those amino acids within the nonamer peptide

chain. Enrichment scores, as provided in Ref (27) correspond to

logarithmic enrichment values per amino acid, which we denote by

qb, with 1 ≤ b ≤ 20. Since our aim is to define a non-negative vaccine

coverage metric, it is useful to convert such amino acid logarithmic

enrichment scores into non-negative and normalized enrichment

scores, q̂b , with q̂b = eqb

o20
d=1e

qd
. Table 2 provides both the set of

values qb
� �20

b=1 and q̂b
� �20

b=1. A second contribution to the mean

TCR immunogenicity of a 9-mer peptide comes from the specific

positions of its amino acids within the nonamer chain. Ref (27)

provides the relative weight (or importance) of position a in the

nonamer chain, wa, with 1 ≤ a ≤  9. Again, since we are interested

in defining a non-negative vaccine coverage metric and the binding

scores belong to the interval [0,1] (see section 2.1.2), it is

appropriate to normalize these weights. We, thus, introduce ŵa =

wa

o9
g =1wg

. Table 3 provides both the set of values waf g9a=1 and

ŵaf g9a=1. We note that amino acids in positions 1, 2 or 9 do not

contribute to the immunogenicity of the nonamer, since these
frontiersin.o
TABLE 1 Values of Mk and zk for every region and HLA class I type.

Region
HLA-A HLA-B HLA-C

Mk zk Mk zk Mk zk

Australia 26 1.03 59 1.08 22 1.06

Europe 1088 1.00 1381 0.95 1011 1.03

North Africa 712 1.00 1224 1.12 460 1.02

North America 646 1.40 587 0.73 356 1.41

North-East Asia 204 1.10 390 1.10 96 1.07

Oceania 129 1.04 197 1.56 55 1.20

South and Central America 131 1.59 279 1.94 79 1.51

South Asia 112 1.14 139 1.50 73 1.27

South-East Asia 336 1.22 607 1.24 194 1.15

Sub-Saharan Africa 118 1.31 268 1.43 116 1.33

Western Asia 302 1.34 554 1.27 133 1.43
These values were used to compute the normalized regional allele frequencies (see
section 2.1.1).
TABLE 2 Logarithmic (q) and normalized (q̂ ) amino acid
enrichment scores.

Logarithmic enrichment scores qb
� �20

b=1

A 0.127 G 0.110 M -0.570 S -0.537

C -0.175 H 0.105 N -0.021 T 0.126

D 0.072 I 0.432 P -0.036 V 0.134

E 0.325 K -0.700 Q -0.376 W 0.719

F 0.380 L -0.036 R 0.168 Y -0.012

Normalized enrichment scores q̂ b
� �20

b=1

A 0.053 G 0.052 M 0.026 S 0.027

C 0.039 H 0.052 N 0.046 T 0.053

D 0.050 I 0.072 P 0.045 V 0.053

E 0.065 K 0.023 Q 0.032 W 0.096

F 0.068 L 0.045 R 0.055 Y 0.046
rg
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positions are anchor residues, which interact with the MHC

molecule. We now can define the immunogenicity of a nonamer

(27). The immunogenicity, gj, of nonamer pj, with 1 ≤ j ≤ N , is

given by

gj = o
9

a=1
ŵa q̂ j,a  , (4)

where q̂ j,a is the normalized enrichment score of the amino acid of

peptide pj in position a, with 1 ≤ a ≤ 9 and 1 ≤ j ≤ N , and ŵa is

given in Table 3.

We conclude this section with a few observations. The

normalizations proposed ensure that the immunogenicity of a

viral peptide is positive definite, as is the case for the binding

scores presented in the previous section. Its values range from 0.023

(when the epitope consists of lysine only) to 0.096 (when the

nonamer consists of tryptophan only). We have made use of the

concept of immunogenicity as introduced by Ref (27). More

recently Bravi et al. have developed a sequence-based approach

using transfer learning and Restricted Boltzmann Machines (RBM)

to predict antigen immunogenicity and specificity (42). Their

proposed method, diffRBM encodes molecular features of

immunogenicity with HLA-specific strategies. Finally, we note

that current estimates of the human TCR diversity in a given

individual are of the order of 107 −108 (43–45), and thus, we do

not have precise knowledge of specific TCR sequences; that is, for a

given individual, we cannot enumerate the set T = t1, t2,…, tDf g.
Without this enumeration we are unable to define edges elements in

the sets P and T , and the best we can do is to compute the

immunogenicity of an element in P. It is, then, out of the scope of
this paper to consider these edges in the multi-partite graph (see

Figure 2). Our analysis will proceed on the basis of a multi-partite

graph with sets R, A, and P, with mean immunogenicity of a

peptide pj to a representative T cell receptor as a proxy for the edges

to elements in the set T .
2.2 Coverage metric to quantify HLA-
driven variability of CD8+ T cell responses

We now have all the ingredients to define a coverage metric to

quantify HLA-driven variability of CD8+ T cell responses to a

(vaccine) protein. We first introduce a mean regional coverage

metric, and then we propose, since an individual only expresses

two alleles of a given HLA class I, an individual regional coverage

metric and a correspondingmean individual regional coverage metric.
Frontiers in Immunology 06
2.2.1 Mean regional coverage metric: a definition
We define, for a given (vaccine) protein, its mean regional

coverage metric in region rk, Ck, as follows

Ck =
1
M

1
N oM

i=1oN
j=1 f̂

(k)
i sijgj 

1
MoM

i0=1 f̂
(k)
i0  

= o
M
i=1 f̂

(k)
i si 

oM
i0=1 f̂

(k)
i0  

 , with 1 ≤ k ≤ K  , (5)

where M is the number of alleles considered (M = 25 in what

follows, and we note thatM ≠Mk, see section 3), index i and index i0

sum over alleles, f̂ (k)i is the normalized frequency of allele ai in

region rk (defined in Equation 3), N is the total number of nonamer

(linear) epitopes that can be formed from the (vaccine) protein

under consideration, index j sums over nonamers, sij is the binding

score of the interaction between allele ai and nonamer pj (defined in

section 2.1.2), and gj is the immunogenicity of pj (defined in

Equation 4). We have introduced si, for 1 ≤ j ≤ M, defined by

si =
1
No

N

j=1
sijgj , (6)

and which measures how well (on average) allele ai binds to the

nonamers from the vaccine protein of interest, with binding score

weighted by nonamer immunogenicity to CD8+ T cell receptors.

Equation 5 and Equation 6 will be used for each HLA class I allele

type separately; that is, for a given region and vaccine protein, we

will obtain three different values for HLA-A, HLA-B, and HLA-C

alleles. We note that our choice for M is discussed in section 3.

2.2.2 Individual regional coverage metric:
two definitions

We note that Ck, as defined by Equation 5, does not consider the

fact that an individual only presents two alleles of each type, and not

M. In order to properly account for this fact, we now turn to define

an individual regional coverage metric. To this end, each individual

in a region will be described by an allele pair (for each type), drawn

out of the M different alleles in the region. For the purposes of this

study, we have chosen M = 25 for each region and allele type (see

section 3). This implies that we confine our analysis to individuals

whose alleles are drawn from a list of the top M (most frequent)

alleles (of each type) in their region. We note that for each allele

type (A, B, or C), there are a total ofQ = M(M+1)
2 different allele pairs,

each of them representing an individual in region rk. We define the

individual regional coverage metric, I (k)
q , for an individual of region

rk and where 1 ≤ q ≤ Q, with allele pair q = (ai, ai0 ), as follows

I (k)
q =

1
2
 (si + si0 ) , (7)

where we have assumed that each of the alleles in the pair q, drawn

from region rk, contributes equally and linearly (in the variable s) to
the individual coverage metric (see Supplementary Material for a

discussion on different possible and educated choices for I (k)
q ).

Next, making use of the regional frequencies for each allele (see

section 2.1.1), we compute the regional frequency of each

individual; that is, the regional frequency of each allele pair (for a

given type). Let r(k)q represent the regional frequency (in region rk)

of an individual with allele pair q. If the individual has two copies of
TABLE 3 Weights of each position in the nonamer: not normalized (w)
and normalized (ŵ ).

Weight
Amino acid position

1 2 3 4 5 6 7 8 9

wa 0 0 0.100 0.310 0.300 0.290 0.260 0.180 0

ŵ a 0 0 0.069 0.215 0.208 0.201 0.181 0.125 0
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a given allele, q = (ai, ai), with 1 ≤ i ≤ M, then we have r(k)
q = f̂ (k)2i .

If the two alleles are different, q = (ai, ai0 ), with 1 ≤ i, i0 ≤ M, and

i ≠ i0, then we have r(k)q = 2� f̂ (k)i f̂ (k)i0 , since an individual with

allele pair (ai, ai0 ) is equivalent to one with allele pair (ai0 , ai). We

note that this analysis does not account for potential correlations

between HLA alleles, or allele associations (see Supplementary

Material for a discussion on allele associations, and how they can

be incorporated in our analysis). With these considerations, we can

now define the mean individual regional coverage metric, I k, in

region rk as the weighted average of the coverage metric for each

individual in the population; that is, we can write

I k =
1
QoQ

q=1r
(k)
q I (k)

q

1
QoQ

q0=1r
(k)
q0

= o
Q
q=1r

(k)
q I (k)

q

oQ
q0=1r

(k)
q0

= o
Q
q=1r

(k)
q I (k)

q

Zk
 , (8)

where we have introduced the variable Zk =oQ
q=1 r

(k)
q , which is the

sum of the frequencies of allele pairs, and a measure of the fraction

of allele pairs represented in the different M alleles for a given

region. We show in the Supplementary Material that with the

definition (and choice) of Equation 7 for I (k)
q , in the absence and

presence of correlations between HLA alleles, the mean regional

and the mean individual regional coverage metrics are the same;

that is, with the choice of Equation 7, one has I k = Ck, even when

there exist associations between HLA alleles. We note that Equation

7 corresponds to an individual coverage metric, I (k)
q , with equal and

linear contributions (si and si0 ) from each allele in the pair (ai and

ai0 ), and thus, the process of averaging over the different allele pairs

(see Equation 8), with frequencies r(k)
q , will erase any trace of

potential allele correlations.

From now on, we will compute Ck for the different regions, HLA
alleles, and vaccine proteins of interest, since it is simpler than I k, and

we have shown that I k is equal to Ck, under the assumption of no HLA

allele associations and a choice for I (k)
q . Were we to be provided with

true allele pair frequencies, then those could be directly introduced in

Equation 8 to obtain I k. It is interesting to observe that the difference

between Ck and I k will encode inherent HLA allele associations, and

thus, it is a measure of such correlations (12). In the Supplementary

Material we provide further quantitative details on how allele

associations will modify I k for two different choices of the individual

regional coverage metric, I (k)
q .
2.3 Metrics to characterize and compare
immuno-dominant CD8+ T cell epitopes

In the previous section we have defined two coverage metrics

(mean regional and mean individual regional) to quantify CD8+ T cell

responses to (vaccine) proteins and their linear 9-mer peptides, as well

as their HLA class I heterogeneity based on regional allele frequency

differences. As described and reviewed in Ref (11) not only is the

quality of a CD8+ T cell response a strong correlate of immune

protection, but the relative contribution from the different potential

9-mer peptides (derived from a single protein) can be important to
Frontiers in Immunology 07
identify immune protection. In fact, it is well known that CD8+ T cell

responses are generally characterized by an immuno-dominance

hierarchy of the different nonamers (11), which leads to CD8+ T cell

responses focused on a small subset of epitopes. A wide range of factors

regulate these hierarchies for a given (vaccine) protein: from antigen

processing and presentation, to the affinity of the nonamer for MHC

class I molecules and the stability of these pMHC complexes, the

expression levels of MHCmolecules, the affinity of the pMHC complex

for TCRmolecules and the stability of these complexes, and to CD8+ T

cell competition (11, 12, 38). It is clearly out of the scope of this

manuscript to consider all of these factors. Our aim here is to

investigate i) the contribution of known immuno-dominant epitopes

to the coverage metrics defined earlier, and ii) where the known

immuno-dominant epitopes fall in suitably defined distributions. In

what follows we restrict our study to the SARS-CoV-2 spike protein

and Ebola glycoprotein (GP) immuno-dominant nonamers found in

Refs (46, 47), respectively. SARS-CoV-2 spike protein immuno-

dominant nonamers [obtained from Table 2 of Ref (46)] are

presented in Table 4 and those for Ebola GP protein [obtained from

Table 2 of Ref (47)] in Table 5.

We notice that different viral strains have a different number, h, of
immuno-dominant epitopes. We have h = 6, 5, 5, 6, 6, 12, 3 for SARS-

CoV-2 Wuhan-Hu-1, SARS-CoV-2 Delta AY.4, SARS-CoV-2

Omicron BA.1, SARS-CoV-2 Omicron BA.2, SARS-CoV-2 Omicron

BA.5 spike, Ebola (Zaire) GP, and Ebola (Sudan) GP, respectively. We

first evaluate the contribution of known immuno-dominant epitopes to

the coverage metrics defined earlier, by defining (for a given protein)

the immuno-dominant mean regional coverage metric, Ck,D, as follows

Ck,D =
1
M

1
NoM

i=1oh
j=1 f̂

(k)
i sijgj 

1
MoM

i=1 f̂
(k)
i

=
h
NoM

i=1 f̂
(k)
i si,D 

oM
i=1 f̂

(k)
i  

 , with 1 ≤ k ≤ K   : (9)

We are, in fact, interested in the ratio

F k =
Ck,D
Ck

= o
M
i=1oh

j=1 f̂
(k)
i sijgj 

oM
i=1oN

j=1 f̂
(k)
i sijgj 

=
h
N
oM

i=1 f̂
(k)
i si,D 

oM
i=1 f̂

(k)
i si 

 , with 1 ≤ k ≤ K  , (10)

where we have introduced the notation si,D = 1
h oh

j=1sijgj, which is

the contribution to si from the immuno-dominant epitopes. The

previous approach can be (easily) extended to the individual regional

coverage metric, to evaluate the contribution to this variable from the

subset of immuno-dominant epitopes. Let us define for an allele pair

q (see notation in section 2.2.2), I (k)
q,D, as follow

I (k)
q,D =

1
2o

2

i=1
si,D  : (11)

We now introduce the immuno-dominant mean individual regional

coverage metric, I k,D, given by

I k,D =
h
N
oQ

q=1r
(k)
q I (k)

q,D

oQ
q=1r

(k)
q

 , (12)
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and the ratio Hk, with 1 ≤ k ≤ K , defined as

Hk =
I k,D

I k
  : (13)

We note that I k,D = Ck,D, and Hk = F k, since we have assumed no

HLA allele associations. Yet, we point out that if frequencies of allele

pairs were available, it would be valuable to compute I k,D andHk to

characterize and quantify the role of HLA allele correlations in the

contribution of the immuno-dominant CD8+ T cell epitopes to the

mean individual regional coverage. The contribution of immuno-

dominant nonamers to the mean regional coverage metric is

presented in section 3.4.

We now turn to show that the known immuno-dominant epitopes

(for the vaccine proteins considered in this section) belong to the tail of

suitably defined distributions (these results are provided in section 3).

We, thus, define for any pj ∈ P, the following variables (averaging over
the top M alleles in a given region)

3:

Sj =
1
Mo

M

i=1

sij  ,  (14)

fj = gj
1
Mo

M

i=1

sij = gjSj  ,  (15)

and gj given by Equation 4, with 1 ≤ j ≤ N. We call Sj the mean

MHC-binding score of peptide pj, and fj, its mean TCR-MHC

combined immunogenicity. We note that gj only depends on the

vaccine protein of interest and is independent of the geographical

region considered. On the other hand, Sj and fj depend on the

geographical region considered, since the sum over alleles is

different for each region, and on HLA class I allele type. Thus,

for a given vaccine protein, we have generated the probability

distributions for the variables gj
� �N

j=1, Sj
� �N

j=1, and fj
� �N

j=1, and

evaluated where in these distributions the corresponding

immuno-dominant epitopes fall (see section 3.5).
3 We also note that the set depends on the choice of pathogen; for

instance, the set for Ebola (Sudan) GP protein is different from that of Ebola

(Zaire) GP. The same is true for each of the five different SARS-CoV-2 spike

variants considered here.
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3 Results

As a demonstration of the methods introduced and discussed in

Section 2, we apply them to exemplar pathogens and corresponding

proteins. We chose one bacterium (Burkholderia pseudomallei) and two

viruses (a widespread virus, SARS-CoV-2, and a geographically

restricted one, Ebola) to explore different and interesting cases.

Specifically, we will analyze the following proteins: i) Burkholderia

pseudomallei Hcp1 (A5PM44), ii) Ebola (Zaire) GP (Q05320), iii)

Ebola (Sudan) GP (Q7T9D9), iv) Ebola (Zaire) NP (P18272), v) Ebola

(Sudan) NP (A0A6M2Y086), vi) SARS-CoV-2 Wuhan-Hu-1 spike

(EPI_ISL_402124), vii) SARS-CoV-2 Delta AY.4 spike

(EPI_ISL_1758376), vii i) SARS-CoV-2 Omicron BA.1

spike (EPI_ISL_6795848), ix) SARS-CoV-2 Omicron BA.2 spike

(EPI_ISL_8135710), and x) SARSCoV-2 Omicron BA.5 spike

(EPI_ISL_411542604). In brackets we have provided UniProt

accession numbers for the first five proteins, and GISAID accession

numbers for the last five. The values of P (see section 2.1.2) are given by

P = 169, 676, 676, 739, 738, 1273, 1271, 1270, 1270, and 1268,

respectively. In our HLA analysis, we have chosen M to be equal to

25 (the top 25 most frequent alleles per region) for all regions and HLA

class I types, except for HLA-C in Australia, where M = 22, since that

was the total number of alleles available in the database. The values ofMk

and zk are provided in Table 1. The top 25 alleles per region and per
TABLE 4 SARS-CoV-2 spike protein immuno-dominant epitopes from Table 2 of Ref (46) and their presence (or absence) in five different SARS-CoV-
2 strains.

Epitope
Epitope position

Wuhan-Hu-1 Delta AY.4 Omicron BA.1 Omicron BA.2 Omicron BA.5

GVYFASTEK 89-97 – – 86-94 84-92

TLDSKTQSL 109-117 109-117 107-115 106-114 104-112

YLQPRTFLL 269-277 267-275 266-274 266-274 264-272

QIYKTPPIK 787-795 785-793 784-792 784-792 782-790

RLQSLQTYV 1000-1008 998-1006 997-1005 997-1005 995-1003

NLNESLIDL 1192-1200 1190-1198 1189-1197 1189-1197 1187-1195
TABLE 5 Ebola GP protein immuno-dominant epitopes from Table 2 of
Ref (47) and their presence (or absence) in two different Ebola strains
(Sudan and Zaire).

Epitope

Epitope
position Epitope

Epitope
position

Sudan Zaire Sudan Zaire

ATDVPSATK – 76-84 DTTIGEWAF – 282-290

TDVPSATKR – 77-85 TTIGEWAFW – 283-291

GFRSGVPPK 87-95 87-95 NQDGLICGL – 550-558

AENCYNLEI 105-113 105-113 TELRTFSIL – 577-585

RLASTVIYR 164-172 164-172 ALFCICKFV – 667-675

TEDPSSGYY – 206-214 LFCICKFVF – 668-676
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TABLE 6 Top 25 most frequent HLA-A alleles for the eleven regions considered, in order of decreasing frequency.

Australia Europe North Africa North America North-East Asia Oceania

HLA-A*34:01 HLA-A*02:01 HLA-A*02:01 HLA-A*02:01 HLA-A*24:02 HLA-A*24:02

HLA-A*24:02 HLA-A*01:01 HLA-A*23:01 HLA-A*01:01 HLA-A*02:01 HLA-A*11:01

HLA-A*02:01 HLA-A*03:01 HLA-A*30:01 HLA-A*24:02 HLA-A*33:03 HLA-A*34:01

HLA-A*11:01 HLA-A*24:02 HLA-A*01:01 HLA-A*03:01 HLA-A*11:01 HLA-A*26:03

HLA-A*01:01 HLA-A*11:01 HLA-A*03:01 HLA-A*31:29 HLA-A*02:06 HLA-A*02:06

HLA-A*03:01 HLA-A*32:01 HLA-A*68:02 HLA-A*11:01 HLA-A*31:01 HLA-A*24:07

HLA-A*32:01 HLA-A*68:01 HLA-A*24:02 HLA-A*03:27 HLA-A*26:01 HLA-A*11:02

HLA-A*68:01 HLA-A*26:01 HLA-A*30:02 HLA-A*24:41 HLA-A*02:07 HLA-A*02:01

HLA-A*29:02 HLA-A*25:01 HLA-A*29:02 HLA-A*29:25 HLA-A*25:01 HLA-A*26:01

HLA-A*24:13 HLA-A*31:01 HLA-A*32:01 HLA-A*29:50 HLA-A*29:10 HLA-A*01:01

HLA-A*26:01 HLA-A*29:02 HLA-A*33:03 HLA-A*68:01 HLA-A*26:03 HLA-A*02:05

HLA-A*25:01 HLA-A*23:01 HLA-A*33:01 HLA-A*23:01 HLA-A*26:02 HLA-A*24:08

HLA-A*23:01 HLA-A*30:01 HLA-A*02:05 HLA-A*33:03 HLA-A*03:01 HLA-A*02:12

HLA-A*24:06 HLA-A*33:01 HLA-A*30:04 HLA-A*29:02 HLA-A*01:01 HLA-A*02:07

HLA-A*68:02 HLA-A*02:05 HLA-A*34:02 HLA-A*31:01 HLA-A*30:01 HLA-A*24:10

HLA-A*30:01 HLA-A*68:02 HLA-A*68:01 HLA-A*26:01 HLA-A*24:20 HLA-A*68:01

HLA-A*30:02 HLA-A*30:02 HLA-A*02:02 HLA-A*32:01 HLA-A*02:46 HLA-A*33:03

HLA-A*02:07 HLA-A*66:01 HLA-A*11:01 HLA-A*02:240 HLA-A*01:134 HLA-A*68:03

HLA-A*02:05 HLA-A*33:03 HLA-A*31:01 HLA-A*30:01 HLA-A*23:01 HLA-A*66:01

HLA-A*33:03 HLA-A*29:01 HLA-A*26:01 HLA-A*30:02 HLA-A*02:10 HLA-A*24:04

HLA-A*30:04 HLA-A*03:02 HLA-A*03:02 HLA-A*24:143 HLA-A*02:04 HLA-A*31:01

HLA-A*29:01 HLA-A*02:06 HLA-A*74:01 HLA-A*68:02 HLA-A*68:02 HLA-A*02:119

HLA-A*26:03 HLA-A*24:03 HLA-A*66:01 HLA-A*24:242 HLA-A*32:01 HLA-A*03:01

HLA-A*24:10 HLA-A*30:04 HLA-A*80:01 HLA-A*02:06 HLA-A*30:04 HLA-A*02:10

HLA-A*02:06 HLA-A*23:02 HLA-A*30:10 HLA-A*25:01 HLA-A*01:28 HLA-A*30:02

South and Central America South-East Asia South Asia Sub-
Saharan Africa

Western Asia

HLA-A*24:02 HLA-A*24:02 HLA-A*11:01 HLA-A*02:01 HLA-A*01:01

HLA-A*02:01 HLA-A*11:01 HLA-A*24:02 HLA-A*23:01 HLA-A*02:01

HLA-A*02:12 HLA-A*01:01 HLA-A*02:01 HLA-A*68:02 HLA-A*03:02

HLA-A*31:01 HLA-A*33:03 HLA-A*02:07 HLA-A*30:02 HLA-A*26:01

HLA-A*68:01 HLA-A*02:11 HLA-A*33:03 HLA-A*30:01 HLA-A*24:02

HLA-A*03:01 HLA-A*03:01 HLA-A*02:03 HLA-A*01:01 HLA-A*31:03

HLA-A*01:01 HLA-A*68:01 HLA-A*11:02 HLA-A*29:02 HLA-A*11:01

HLA-A*02:19 HLA-A*02:01 HLA-A*02:06 HLA-A*74:01 HLA-A*02:02

HLA-A*11:01 HLA-A*26:01 HLA-A*26:01 HLA-A*03:01 HLA-A*31:08

HLA-A*23:01 HLA-A*31:01 HLA-A*30:01 HLA-A*02:02 HLA-A*32:01

HLA-A*29:02 HLA-A*32:01 HLA-A*31:01 HLA-A*23:17 HLA-A*23:01

HLA-A*02:22 HLA-A*31:08 HLA-A*33:19 HLA-A*66:01 HLA-A*02:52

(Continued)
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HLA class I type are provided in Table 6 for HLA-A, Table 7 for HLA-B,

and Table 8 for HLA-C, respectively.
3.1 Mean regional coverage metric

We compute the mean regional coverage metric, Ck, shown in

Figure 3, grouped by region and for the chosen ten different vaccine

proteins. The top panel corresponds to HLA-A, middle one to

HLA-B, and bottom to HLA-C alleles, respectively. From left to

right, the bars for each region represent Ebola GP (Zaire), Ebola GP

(Sudan), Ebola NP (Zaire), Ebola NP (Sudan), SARS-CoV-2 spike

(Wuhan-Hu-1), SARS-CoV-2 spike (Delta AY.4), SARS-CoV-2

spike (Omicron BA.1), SARS-CoV-2 spike (Omicron BA.2),

SARS-CoV-2 spike (Omicron BA.5), and Burkholderia Hcp1. We

observe that HLA-C values are (overall) lower than those for HLA-

A and HLA-B alleles; this implies that for the studied proteins CD8+

T cell responses will be dominated (on average) by T cell receptors

binding to HLA-A or HLA-B pMHC complexes. If we now turn our

attention to HLA-A alleles (top panel), for almost all regions, the

largest values correspond to SARS-CoV-2 spike (Omicron BA.1),

SARS-CoV-2 spike (Omicron BA.2), and SARS-CoV-2 spike

(Omicron BA.5), followed by SARS-CoV-2 spike (Wuhan-Hu-1)

and SARS-CoV-2 spike (Delta AY.4), and then Burkholderia Hcp1.

Lower values correspond to Ebola GP (Zaire), Ebola GP (Sudan),

Ebola NP (Zaire), and Ebola NP (Sudan), with a small overall

dominance of Ebola NP (Zaire). Europe does not follow this precise

pattern with a large value for Burkholderia Hcp1. It is also

interesting to note that HLA-A Ebola GP (Zaire) is comparable

to, or even larger than, Ebola NP (Zaire) in Australia, North-East

Asia, Oceania, South and Central America, South Asia, and South-

East Asia. For HLA-B alleles, coverage values are dominated by

Ebola NP (Sudan), followed closely by Ebola NP (Zaire), followed
Frontiers in Immunology 10
by Burkholderia Hcp1, then the five different SARS-CoV-2 spike

proteins (with similar magnitude), with lowest values for Ebola GP

(Sudan) and Ebola GP (Zaire). We note that Ebola NP

(nucleoprotein) is not a surface protein, as is the case of GP or

SARS-CoV-2 spike. We also note the rather large value of Hcp1 for

North America for HLA-B (middle panel).

We next show in Figure 4 the mean regional coverage metric, Ck,
grouped by pathogen and for eleven different regions. We observe

that for HLA-A and HLA-B alleles, Australia has the largest values,

but that is not the case for HLA-C, with North Africa, North-East

Asia and South Asia dominating the scores. For HLA-B alleles,

Oceania and South-East Asia have overall second largest scores, but

for this HLA type the patterns of dominance depend on the specific

protein under consideration. For instance, for Burkholderia Hcp1

North America clearly dominates, but that is not the case for SARS-

CoV-2 spike (overall for the different variants), where Oceania takes

the lead. It is interesting to note that for HLA-B the largest values

overall are obtained for Ebola NP (Sudan). The results for HLA-C

(bottom panel) for a given vaccine protein do not show great

variation between geographical regions. North Africa tends to

dominate, followed closely by North-East Asia and South Asia. It is

interesting to observe that this pattern is broken for Hcp1, where

North-East Asia, Oceania, and South and Central America take

the lead.
3.2 Dissecting the mean regional
coverage metric

We now want to dissect the results from the previous section by

evaluating the contribution to the mean regional coverage metric

from allele frequencies on the one hand, and from HLA allele-

peptide binding and peptide immunogenicity, on the other (see
TABLE 6 Continued

South and Central America South-East Asia South Asia Sub-
Saharan Africa

Western Asia

HLA-A*68:02 HLA-A*02:06 HLA-A*24:94 HLA-A*02:05 HLA-A*68:02

HLA-A*68:47 HLA-A*01:06 HLA-A*33:01 HLA-A*34:02 HLA-A*33:01

HLA-A*02:64 HLA-A*24:07 HLA-A*01:01 HLA-A*33:03 HLA-A*29:01

HLA-A*68:03 HLA-A*30:01 HLA-A*03:01 HLA-A*36:01 HLA-A*30:01

HLA-A*68:17 HLA-A*26:03 HLA-A*11:12 HLA-A*68:01 HLA-A*03:01

HLA-A*30:02 HLA-A*02:03 HLA-A*24:07 HLA-A*24:02 HLA-A*30:02

HLA-A*33:01 HLA-A*29:01 HLA-A*32:01 HLA-A*32:01 HLA-A*02:34

HLA-A*30:01 HLA-A*66:01 HLA-A*11:10 HLA-A*11:01 HLA-A*02:17

HLA-A*26:01 HLA-A*02:02 HLA-A*24:20 HLA-A*29:11 HLA-A*25:01

HLA-A*33:18 HLA-A*03:02 HLA-A*03:08 HLA-A*24:23 HLA-A*02:61

HLA-A*32:01 HLA-A*32:04 HLA-A*29:01 HLA-A*30:10 HLA-A*02:48

HLA-A*02:13 HLA-A*24:33 HLA-A*31:18 HLA-A*26:01 HLA-A*01:03

HLA-A*24:03 HLA-A*68:02 HLA-A*01:26 HLA-A*32:106 HLA-A*69:01
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TABLE 7 Top 25 most frequent HLA-B alleles for the eleven regions considered, in order of decreasing frequency.

Australia Europe North Africa North America North-East Asia Oceania

HLA-B*13:01 HLA-B*07:02 HLA-B*35:01 HLA-B*07:02 HLA-B*52:01 HLA-B*40:02

HLA-B*40:02 HLA-B*08:01 HLA-B*50:01 HLA-B*08:01 HLA-B*51:01 HLA-B*35:01

HLA-B*56:01 HLA-B*44:02 HLA-B*51:01 HLA-B*35:01 HLA-B*15:01 HLA-B*56:01

HLA-B*40:01 HLA-B*15:01 HLA-B*08:01 HLA-B*15:01 HLA-B*35:01 HLA-B*15:06

HLA-B*15:21 HLA-B*35:01 HLA-B*53:01 HLA-B*40:01 HLA-B*40:02 HLA-B*40:01

HLA-B*56:02 HLA-B*51:01 HLA-B*45:01 HLA-B*18:01 HLA-B*44:03 HLA-B*13:01

HLA-B*08:01 HLA-B*40:01 HLA-B*52:01 HLA-B*13:38 HLA-B*54:01 HLA-B*15:02

HLA-B*07:02 HLA-B*18:01 HLA-B*15:03 HLA-B*14:02 HLA-B*07:02 HLA-B*59:01

HLA-B*15:25 HLA-B*44:03 HLA-B*42:01 HLA-B*27:05 HLA-B*40:01 HLA-B*27:04

HLA-B*44:02 HLA-B*27:05 HLA-B*44:02 HLA-B*40:02 HLA-B*46:01 HLA-B*55:02

HLA-B*15:01 HLA-B*13:02 HLA-B*07:02 HLA-B*13:02 HLA-B*40:06 HLA-B*39:01

HLA-B*58:01 HLA-B*35:03 HLA-B*18:01 HLA-B*35:61 HLA-B*39:01 HLA-B*15:13

HLA-B*39:01 HLA-B*38:01 HLA-B*49:01 HLA-B*35:03 HLA-B*48:01 HLA-B*54:01

HLA-B*51:01 HLA-B*14:02 HLA-B*58:01 HLA-B*38:01 HLA-B*55:02 HLA-B*56:02

HLA-B*35:01 HLA-B*40:02 HLA-B*41:01 HLA-B*15:03 HLA-B*59:01 HLA-B*40:10

HLA-B*27:05 HLA-B*55:01 HLA-B*14:02 HLA-B*07:105 HLA-B*58:01 HLA-B*48:01

HLA-B*18:01 HLA-B*39:01 HLA-B*41:02 HLA-B*37:01 HLA-B*15:18 HLA-B*48:03

HLA-B*44:03 HLA-B*37:01 HLA-B*38:01 HLA-B*39:01 HLA-B*13:01 HLA-B*15:21

HLA-B*38:01 HLA-B*49:01 HLA-B*78:01 HLA-B*40:06 HLA-B*67:01 HLA-B*58:01

HLA-B*35:03 HLA-B*50:01 HLA-B*13:02 HLA-B*35:02 HLA-B*13:02 HLA-B*35:05

HLA-B*55:01 HLA-B*52:01 HLA-B*51:33 HLA-B*15:231 HLA-B*15:11 HLA-B*08:01

HLA-B*14:01 HLA-B*35:02 HLA-B*39:10 HLA-B*14:01 HLA-B*35:03 HLA-B*15:31

HLA-B*39:06 HLA-B*27:02 HLA-B*44:03 HLA-B*07:05 HLA-B*35:02 HLA-B*15:35

HLA-B*14:02 HLA-B*14:01 HLA-B*82:02 HLA-B*15:02 HLA-B*44:02 HLA-B*15:18

HLA-B*57:01 HLA-B*35:08 HLA-B*15:10 HLA-B*39:06 HLA-B*27:02 HLA-B*55:04

South and Central America South-East Asia South Asia Sub-
Saharan Africa

Western Asia

HLA-B*35:99 HLA-B*40:06 HLA-B*40:01 HLA-B*53:01 HLA-B*38:01

HLA-B*40:02 HLA-B*57:01 HLA-B*46:01 HLA-B*58:02 HLA-B*35:08

HLA-B*35:43 HLA-B*51:01 HLA-B*58:01 HLA-B*15:03 HLA-B*44:03

HLA-B*35:19 HLA-B*52:01 HLA-B*13:01 HLA-B*58:01 HLA-B*18:01

HLA-B*35:01 HLA-B*35:03 HLA-B*15:02 HLA-B*45:01 HLA-B*14:02

HLA-B*48:03 HLA-B*44:03 HLA-B*38:02 HLA-B*42:01 HLA-B*35:01

HLA-B*51:01 HLA-B*58:01 HLA-B*51:01 HLA-B*07:02 HLA-B*52:01

HLA-B*44:03 HLA-B*35:01 HLA-B*15:01 HLA-B*35:01 HLA-B*13:02

HLA-B*35:05 HLA-B*44:06 HLA-B*54:01 HLA-B*15:10 HLA-B*35:27

HLA-B*07:02 HLA-B*37:01 HLA-B*55:02 HLA-B*44:03 HLA-B*08:01

HLA-B*44:02 HLA-B*07:02 HLA-B*27:04 HLA-B*08:01 HLA-B*49:01

HLA-B*39:05 HLA-B*07:05 HLA-B*13:02 HLA-B*18:01 HLA-B*41:01

HLA-B*14:02 HLA-B*14:05 HLA-B*35:01 HLA-B*49:01 HLA-B*51:01

(Continued)
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TABLE 7 Continued

South and Central America South-East Asia South Asia Sub-
Saharan Africa

Western Asia

HLA-B*18:01 HLA-B*18:07 HLA-B*39:01 HLA-B*44:10 HLA-B*07:02

HLA-B*35:102 HLA-B*08:01 HLA-B*35:89 HLA-B*57:03 HLA-B*50:01

HLA-B*35:12 HLA-B*51:10 HLA-B*40:02 HLA-B*81:01 HLA-B*15:17

HLA-B*08:01 HLA-B*55:01 HLA-B*52:12 HLA-B*51:01 HLA-B*57:01

HLA-B*35:48 HLA-B*56:03 HLA-B*40:06 HLA-B*14:02 HLA-B*35:02

HLA-B*39:03 HLA-B*53:03 HLA-B*48:01 HLA-B*41:01 HLA-B*55:01

HLA-B*40:10 HLA-B*42:01 HLA-B*52:01 HLA-B*40:06 HLA-B*53:01

HLA-B*40:64 HLA-B*13:01 HLA-B*51:02 HLA-B*52:01 HLA-B*58:01

HLA-B*39:09 HLA-B*44:04 HLA-B*44:03 HLA-B*13:02 HLA-B*49:02

HLA-B*15:01 HLA-B*15:18 HLA-B*15:11 HLA-B*47:03 HLA-B*44:02

HLA-B*49:01 HLA-B*15:02 HLA-B*15:32 HLA-B*13:01 HLA-B*07:05

HLA-B*08:50 HLA-B*15:01 HLA-B*56:01 HLA-B*27:03 HLA-B*40:46
F
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TABLE 8 Top 25 most frequent HLA-C alleles for the eleven regions considered, in order of decreasing frequency.

Australia Europe North Africa North America North-East Asia Oceania

HLA-C*04:01 HLA-C*07:01 HLA-C*06:02 HLA-C*01:57 HLA-C*01:02 HLA-C*01:02

HLA-C*01:02 HLA-C*07:02 HLA-C*04:01 HLA-C*04:01 HLA-C*07:02 HLA-C*04:03

HLA-C*15:02 HLA-C*04:01 HLA-C*07:01 HLA-C*07:02 HLA-C*03:03 HLA-C*07:02

HLA-C*04:03 HLA-C*06:02 HLA-C*16:01 HLA-C*07:01 HLA-C*03:04 HLA-C*04:01

HLA-C*07:02 HLA-C*03:04 HLA-C*12:03 HLA-C*06:02 HLA-C*12:02 HLA-C*03:04

HLA-C*03:03 HLA-C*05:01 HLA-C*02:02 HLA-C*04:43 HLA-C*08:01 HLA-C*03:03

HLA-C*07:01 HLA-C*12:03 HLA-C*17:01 HLA-C*03:135 HLA-C*14:03 HLA-C*15:02

HLA-C*12:03 HLA-C*03:03 HLA-C*08:02 HLA-C*03:04 HLA-C*14:02 HLA-C*08:01

HLA-C*05:01 HLA-C*02:02 HLA-C*07:02 HLA-C*05:01 HLA-C*04:01 HLA-C*14:02

HLA-C*06:02 HLA-C*01:02 HLA-C*05:01 HLA-C*01:02 HLA-C*15:02 HLA-C*12:02

HLA-C*03:04 HLA-C*08:02 HLA-C*15:02 HLA-C*02:02 HLA-C*17:03 HLA-C*03:07

HLA-C*08:02 HLA-C*15:02 HLA-C*17:03 HLA-C*16:01 HLA-C*06:02 HLA-C*12:03

HLA-C*07:04 HLA-C*16:01 HLA-C*12:02 HLA-C*03:03 HLA-C*08:03 HLA-C*07:04

HLA-C*16:01 HLA-C*07:04 HLA-C*03:04 HLA-C*12:03 HLA-C*07:01 HLA-C*05:01

HLA-C*08:01 HLA-C*14:02 HLA-C*15:05 HLA-C*08:02 HLA-C*07:04 HLA-C*15:07

HLA-C*02:02 HLA-C*17:03 HLA-C*14:02 HLA-C*15:02 HLA-C*03:02 HLA-C*06:02

HLA-C*16:02 HLA-C*02:09 HLA-C*16:02 HLA-C*17:01 HLA-C*03:05 HLA-C*14:03

HLA-C*14:02 HLA-C*17:01 HLA-C*18:01 HLA-C*14:02 HLA-C*12:03 HLA-C*07:01

HLA-C*03:02 HLA-C*12:02 HLA-C*02:10 HLA-C*08:01 HLA-C*05:01 HLA-C*04:07

HLA-C*15:05 HLA-C*16:02 HLA-C*18:02 HLA-C*12:02 HLA-C*08:22 HLA-C*01:03

HLA-C*12:02 HLA-C*03:02 HLA-C*16:09 HLA-C*03:02 HLA-C*02:02 HLA-C*15:05

HLA-C*17:01 HLA-C*15:05 HLA-C*07:04 HLA-C*07:270 HLA-C*16:02 HLA-C*08:02

HLA-C*07:18 HLA-C*04:04 HLA-C*07:04 HLA-C*16:01 HLA-C*15:08

(Continued)
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Equation 5). To that end, we focus on North America, and provide

plots of the contributions to Ck from the normalized allele

frequencies and from the binding scores and peptide

immunogenicity, as encoded in the variable si (see Equation 6).

Figures 5, 6 show on the x axis individual alleles (top panel

represents HLA-A, middle one HLA-B, and bottom one HLA-C

alleles, respectively), on the left y axis normalized regional

frequencies, and on the right y axis the si value of each allele, for

Ebola GP and NP (Sudan and Zaire), SARS-CoV-2 spike (five

different variants), and Burkholderia Hcp1 proteins.

Figures 5, 6 show that only one allele per type, HLA-A*02:01,

HLA-B*07:02, HLA-C*01:57, has a frequency greater than 10%. For

Ebola proteins, Figure 5 shows that si values are largest (overall) for
HLA-B, then HLA-A, and HLA-C. This implies that CD8+ T cell

responses to Ebola GP or NP proteins will be dominated by HLA-B
Frontiers in Immunology 13
restricted TCRs. Alleles HLA-A*68:01, HLA-A*30:01, HLA-A*68:02

and HLA-A*02:06 dominate the si values. For HLA-A*68:01 and

Ebola GP Zaire, its si value is much larger than those of the other three

Ebola proteins. In the case of HLA-B alleles, HLA-B*13:38, HLA-

B*13:02 and HLA-B*15:03 have the largest si values, followed by HLA-
B*15:02 and HLA-B*39:06, for NP proteins (Sudan and Zaire).

In the case of SARS-CoV-2 spike protein, Figure 7 shows, as was

the case for Ebola, that CD8+ T cell responses will be dominated by

HLA-B restricted TCRs. HLA-A*68:01 for Wuhan-Hu-1 has a

larger si value when compared to the other variants, and HLA-

A*02:06 dominates the si values for all five variants. The observed
trend for HLA-B in Figure 5 seems to be repeated for SARS-CoV-2,

with HLAB*13:38, HLA-B*13:02 and HLA-B*15:03 having the

largest si values, followed by HLA-B*15:02 and HLA-B*39:06.

Contrary to HLA-A*68:01, it is now the Omicron variants that
TABLE 8 Continued

Australia Europe North Africa North America North-East Asia Oceania

HLA-C*16:04 HLA-C*16:04 HLA-C*07:248 HLA-C*16:74 HLA-C*15:03

HLA-C*07:03 HLA-C*03:03 HLA-C*15:05 HLA-C*02:08 HLA-C*02:02

South and Central America South-East Asia South Asia Sub-Saharan Africa Western Asia

HLA-C*04:03 HLA-C*06:02 HLA-C*07:02 HLA-C*06:02 HLA-C*05:09

HLA-C*04:01 HLA-C*07:02 HLA-C*01:02 HLA-C*04:01 HLA-C*04:01

HLA-C*07:02 HLA-C*04:01 HLA-C*08:01 HLA-C*07:01 HLA-C*06:02

HLA-C*01:02 HLA-C*15:02 HLA-C*03:04 HLA-C*17:01 HLA-C*07:01

HLA-C*07:01 HLA-C*07:01 HLA-C*03:02 HLA-C*16:01 HLA-C*07:02

HLA-C*03:04 HLA-C*12:02 HLA-C*04:01 HLA-C*02:02 HLA-C*12:03

HLA-C*03:05 HLA-C*14:02 HLA-C*03:03 HLA-C*03:04 HLA-C*15:02

HLA-C*06:02 HLA-C*03:02 HLA-C*06:02 HLA-C*02:10 HLA-C*02:03

HLA-C*05:01 HLA-C*12:03 HLA-C*07:17 HLA-C*07:02 HLA-C*12:02

HLA-C*16:01 HLA-C*01:02 HLA-C*14:02 HLA-C*08:02 HLA-C*08:02

HLA-C*08:02 HLA-C*05:09 HLA-C*12:02 HLA-C*07:04 HLA-C*02:02

HLA-C*15:02 HLA-C*07:06 HLA-C*15:02 HLA-C*18:01 HLA-C*03:02

HLA-C*12:03 HLA-C*16:02 HLA-C*04:03 HLA-C*03:02 HLA-C*17:01

HLA-C*02:02 HLA-C*07:04 HLA-C*12:03 HLA-C*07:18 HLA-C*07:18

HLA-C*02:07 HLA-C*03:06 HLA-C*07:01 HLA-C*18:02 HLA-C*15:05

HLA-C*03:57 HLA-C*08:01 HLA-C*07:04 HLA-C*07:06 HLA-C*03:03

HLA-C*03:03 HLA-C*03:04 HLA-C*07:03 HLA-C*12:03 HLA-C*05:01

HLA-C*02:10 HLA-C*04:03 HLA-C*15:05 HLA-C*07:328 HLA-C*16:02

HLA-C*01:06 HLA-C*15:08 HLA-C*03:16 HLA-C*05:01 HLA-C*08:01

HLA-C*07:08 HLA-C*08:06 HLA-C*06:06 HLA-C*04:07 HLA-C*14:02

HLA-C*15:03 HLA-C*03:03 HLA-C*07:06 HLA-C*15:02 HLA-C*08:13

HLA-C*17:01 HLA-C*15:03 HLA-C*08:03 HLA-C*03:03 HLA-C*01:02

HLA-C*08:01 HLA-C*18:01 HLA-C*01:03 HLA-C*14:03 HLA-C*16:04

HLA-C*07:14 HLA-C*03:19 HLA-C*03:09 HLA-C*08:04 HLA-C*16:01

HLA-C*03:02 HLA-C*04:07 HLA-C*08:22 HLA-C*15:07 HLA-C*07:04
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FIGURE 3

Mean regional coverage metric, Ck, grouped by region and for ten different proteins. The top panel corresponds to HLA-A, middle one to HLA-B,
and bottom to HLA-C alleles, respectively. From left to right, the bars for each region represent Ebola GP (Zaire), Ebola GP (Sudan), Ebola NP (Zaire),
Ebola NP (Sudan), SARS-CoV-2 spike (Wuhan-Hu-1), SARS-CoV-2 spike (Delta AY.4), SARS-CoV-2 spike (Omicron BA.1), SARS-CoV-2 spike
(Omicron BA.2), SARS-CoV-2 spike (Omicron BA.5), and Burkholderia Hcp1.
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FIGURE 4

Mean regional coverage metric, Ck, grouped by pathogen and for eleven different regions. The top panel corresponds to HLA-A, middle one to HLA-
B, and bottom to HLA-C alleles, respectively. From left to right, the bars for each protein represent Australia, Europe, North Africa, North America,
North-East Asia, Oceania, South and Central America, South Asia, South-East Asia, Sub-Saharan Africa, and Western Asia.
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dominate the values. For HLA-C, it is HLA-C*03:02 that has the

largest si values, from lowest to highest as SARS-CoV-2 evolved

from Wuhan-Hu-1 to Omicron BA.5.

Finally, Figure 6 shows that HLA-A and HLA-B Burkholderia

si values are comparable, with HLA-C a bit lower (overall). Those
Frontiers in Immunology 16
alleles (A, B, or C) identified for their large si values in Figure 5 and

Figure 7 dominate as well in the case of Burkholderia Hcp1. It is,

thus, interesting to observe that rather different proteins (from two

viruses and one bacterium) seem to be binding better to a subset of

HLA class I alleles.
FIGURE 5

Normalized regional frequencies (left y axis), f̂ (4)i , and Ebola si values (right y axis) for the top 25 most frequent alleles of each type in North America
(x axis). The top panel represents HLA-A, the middle HLA-B, and the bottom HLA-C alleles, respectively.
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3.3 Dissecting the individual regional
coverage metric: allele pair analysis

We now turn our attention to the individual regional coverage

metric for allele pairs. Figure 8 shows the frequency and individual

regional coverage score, I (k)
q , for each allele pair (see Equation 7) in
Frontiers in Immunology 17
North America. The top row corresponds to allele frequencies

(HLA-A, HLA-B, and HLA-C), the second, third, fourth and fifth

to I (k)
q for Ebola GP Zaire, Ebola GP Sudan, Ebola NP Zaire, and

Ebola NP Sudan, respectively. Each column thus corresponds to one

HLA class I type, HLA-A (left), HLA-B (middle) and HLA-C

(right). We observe that overall smaller coverage scores are
FIGURE 6

Normalized regional frequencies (left y axis), f̂ (4)i , and Burkholderia si values (right y axis) for the top 25 most frequent alleles of each type in North
America (x axis). The top panel represents HLA-A, the middle HLA-B, and the bottom HLA-C alleles, respectively.
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obtained for HLA-C allele pairs, and that NP proteins and HLA-B

allele pairs lead to the largest values, for both Sudan and Zaire

variants. For HLA-A, similar coverage scores are obtained for GP

and NP proteins, with a slight preference for Zaire versus Sudan.

The HLA-B alleles identified in the previous section, HLA-B*13:38,
Frontiers in Immunology 18
HLA-B*13:02 and HLA-B*15:03, if paired with each other, lead to

the largest scores.

Figure 9 shows the frequency and individual regional coverage

score, I (k)
q , for each allele pair (see Equation 7) in North America.

The top row corresponds to allele frequencies (HLA-A, HLA-B, and
FIGURE 7

Normalized regional frequencies (left y axis), f̂ (4)i , and SARS-CoV-2 si values (right y axis) for the top 25 most frequent alleles of each type in North
America (x axis). The top panel represents HLA-A, the middle HLA-B, and the bottom HLA-C alleles, respectively.
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HLA-C), the second and third to I (k)
q for SARS-CoV-2 spike

Wuhan-Hu-1 and Delta AY.4, respectively. Each column thus

corresponds to one HLA class I type, HLA-A (left), HLA-B

(middle) and HLA-C (right). We observe that overall smaller
Frontiers in Immunology 19
coverage scores are obtained for HLA-C allele pairs, followed by

HLA-A, and then HLA-B. There is hardly any difference between

the two variants, Wuhan-Hu-1 and Delta AY.4. The HLA-B alleles

identified in the previous section, HLA-B*13:38, HLA-B*13:02 and
FIGURE 8

Frequency and individual regional coverage score, I (k)
q , for each allele pair (see Equation 7) in North America. The top row corresponds to allele

frequencies (HLA-A, HLA-B, and HLA-C), the second, third, fourth and fifth to I (k)
q for Ebola GP Zaire, Ebola GP Sudan, Ebola NP Zaire, and Ebola NP

Sudan, respectively. Left column corresponds to HLA-A alleles, middle to HLA-B, and right to HLA-C. The sum of the individual frequencies for each
allele type is indicated on the panels in the top row.
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HLA-B*15:03, if paired with each other, lead to the largest scores,

which are lower when compared to those in Figure 8.

Figure 10 shows the frequency and individual regional coverage

score, I (k)
q , for each allele pair (see Equation 7) in North America.

The top row corresponds to allele frequencies (HLA-A, HLA-B, and

HLA-C), the second, third, and fourth to I (k)
q for SARS-CoV-2

spike Omicro BA.1, BA.2, and BA.5, respectively. Each column thus

corresponds to one HLA class I type, HLA-A (left), HLA-B (middle)

and HLA-C (right). No significant differences can be found between

this figure and Figure 9, indicating, in agreement with the results of

Ref (48) that CD8+ T cell responses elicited by the SARS-CoV-2

spike vaccine (Wuhan ancestral sequence) will be protective and

cross-reactive against Omicron variants.

Figure 11 shows the frequency and individual regional coverage

score, I (k)
q , for each allele pair (see Equation 7) in North America.

The top row corresponds to allele frequencies (HLA-A, HLA-B, and

HLA-C), and the bottom to I (k)
q for Burkholderia Hcp1 protein.

Each column thus corresponds to one HLA class I type, HLA-A
Frontiers in Immunology 20
(left), HLA-B (middle) and HLA-C (right). For the Burkholderia

Hcp1 protein, we observe that the dominant individual coverage

scores correspond to HLA-A, followed by HLA-B, and then HLA-C.

The HLA-B alleles that were identified, both for Ebola NP and for

SARS-CoV-2 spike, with high I (k)
q values, do not play such a

significant role in the case of the Hcp1 protein.
3.4 Contribution of immuno-dominant
epitopes to mean coverage metric

We next analyze the contribution of the immuno-dominant

epitopes to the mean coverage metric, as defined by the ratio F k in

Equation 10. Immuno-dominant epitopes have been identified for

Ebola GP (Zaire and Sudan) and SARS-CoV-2 spike protein in

section 2.3.

Figure 12 displays, per geographical region, the values of F k for

the different proteins considered, and the three different HLA class I
FIGURE 9

Frequency and individual regional coverage score, I (k)
q , for each allele pair (see Equation 7) in North America. The top row corresponds to allele

frequencies (HLA-A, HLA-B, and HLA-C), the second and third to I (k)
q for SARS-CoV-2 spike Wuhan-Hu-1 and Delta AY.4, respectively. Left column

corresponds to HLA-A alleles, middle to HLA-B, and right to HLA-C. The sum of the individual frequencies for each allele type is indicated on the
panels in the top row.
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types, HLA-A (top), HLA-B (middle) and HLA-C (bottom),

respectively. We note that the overall highest contributions from

the immuno-dominant epitopes correspond to HLA-A alleles, with

Ebola GP Zaire leading, for all regions, except for South and Central

America. The contribution for the different SARS-CoV-2 immuno-

dominant epitopes is largest for the Wuhan-Hu-1 variant,

decreasing for Delta AY.4 and Omicron BA.1, and then

increasing for both Omicron BA.2 and BA.5. For HLA-B alleles,

is clearly largest for Ebola GP Zaire (around 6%), and lower for the

SARS-CoV-2 spike immunodominant epitopes and Ebola GP Zaire
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(around 2%). The situation seems reversed for HLA-C alleles, where

the SARS-CoV-2 spike immuno-dominant epitopes lead to the

largest values of F k (around 5%). In this instance, Ebola GP

Zaire is around 1% and much lower for the Ebola GP Sudan.

Figure 13 displays, per pathogen, the values of F k for the

different proteins considered, and the three different HLA class I

types, HLA-A (top), HLA-B (middle) and HLA-C (bottom),

respectively. It is interesting to observe that for HLA-A alleles,

and across proteins, the largest contribution from immuno-

dominant epitopes to the mean regional coverage metric is
FIGURE 10

Frequency and individual regional coverage score, I (k)
q , for each allele pair (see Equation 7) in North America. The top row corresponds to allele

frequencies (HLA-A, HLA-B, and HLA-C), the second, third, and fourth to I (k)
q for SARS-CoV-2 spike Omicron BA.1, BA.2, and BA.5, respectively. Left

column corresponds to HLA-A alleles, middle to HLA-B, and right to HLA-C. The sum of the individual frequencies for each allele type is indicated
on the panels in the top row.
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achieved in Europe. Whereas for HLA-C alleles, the leading region

is Australia, followed closely by South and Central America,

Oceania, and North America.
3.5 Distributions of immuno-
dominant epitopes

We now display the results from the analysis of the probability

distributions for gj and fj (see section 2.3).

Figures 14 and 15 show the gj probability distributions for Ebola

GP and SARS-CoV-2 spike protein, respectively. We have identified

individual values corresponding to the immuno-dominant epitopes.

Our results indicate that the immuno-dominant epitopes do not

have significantly larger immunogenicity values, when compared to

non-immuno-dominant ones.

Figures 16–18 show the probability distributions of the mean

TCR-MHC combined immunogenicity, fj, for Ebola GP Sudan,

Ebola GP Zaire, and SARS-CoV-2 spike proteins, respectively, for

North America, and for the three HLA class I types. We have

identified individual values corresponding to the immuno-

dominant epitopes. Our results indicate that the immuno-

dominant epitopes have a significantly larger fj value, when

compared to non-immuno-dominant ones. For instance,

Figure 16 shows that for HLA-A nonamer RLASTVIYR belongs

to the tail of the distribution, and the same is true for HLA-B

nonamer TELRTFSIL (see Figure 17). In the case of immuno-

dominant epitopes for SARS-CoV-2 spike protein, Figure 18

indicates that nonamer YLQPRTFLL belongs to the tail of the

distribution for HLA-A, as well as HLA-B and HLA-C, and so does

nonamer TLDSKTQSL for HLA-B and HLA-C. These results
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indicate that the immuno-dominance of the nonamers is

determined not so much by their immunogenicity, as defined by

Equation 4, but by their associated binding scores to HLA-class

alleles (see Equation 14). Furthermore, since our results indicate

that immuno-dominant epitopes belong to the tail of certain

probability distributions, they provide an indirect validation of

the methods proposed here to characterize vaccine coverage.
4 Discussion

Sterilizing immunity, provided by (pre-existing) neutralizing

antibodies, has been recognized as the ideal immune response and

primary goal of vaccine design to control pathogens, viruses or

bacteria (49). Important human pathogens such as herpes viruses,

Mycobacterium tuberculosis, malaria, and HIV pose a challenge in

light of antigenic evolution and antibody immune escape, since

vaccines which induce antibody responses (humoral immune

responses) are ineffective against them (49, 50). CD8+ T cells,

elements of the adaptive cellular arm of the immune system (1),

have been shown to mediate protection during infection with these

pathogens, as reviewed in Refs (49, 50). More recently, substantial

evidence has emerged of the protective role of CD8+ T cell-

mediated responses to conserved regions of the genome of HIV-1

(4), Lassa virus (5, 51), SARS-CoV-2 (6, 7), pandemic influenza (8),

and Ebola virus (9). Yet, we still do not have a single metric to define

protective T cell immune responses. This is a huge challenge given

the phenotypic and multi-functional heterogeneity of T cell

responses, and TCR diversity and cross-reactivity (10, 50).

In this paper, we aim to develop a novel framework to quantify

the potential of CD8+ T cells to induce vaccine-mediated immune
FIGURE 11

Frequency and individual regional coverage score, I (k)
q , for each allele pair (see Equation 7) in North America. The top row corresponds to allele

frequencies (HLA-A, HLA-B, and HLA-C), and the bottom to I (k)
q for Burkholderia Hcp1 protein. Left column corresponds to HLA-A alleles, middle to

HLA-B, and right to HLA-C. The sum of the individual frequencies for each allele type is indicated on the panels in the top row.
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responses, and in turn, propose such a metric. The MHC-restriction

of T cell receptor antigen recognition brings an additional and

crucial consideration, since the HLA locus is the most polymorphic

gene cluster of the entire human genome (11). Our proposed

solution is based on the hypothesis that a multi-partite graph (see

Figure 2) is the natural framework to consider: 1) viral genetic

diversity of the pathogen as represented in the set of peptides, P, so
that wild type and all circulating (or predicted) variants can be
Frontiers in Immunology 23
analyzed, 2) HLA variability as considered with regard to

geographical regions R, HLA alleles A, and their frequencies

within each region, and 3) TCR recognition variability as

accounted for by peptide immunogenicity (27).

The multi-partite graph, together with HLA class I frequencies

(for HLA-A, HLA-B, and HLA-C types) in eleven different

geographical regions (see section 2.1.1), binding scores of HLA

class I alleles to nonamers (see section 2.1.2), and peptide
FIGURE 12

F k grouped by geographical region for Ebola GP and SARS-CoV-2 spike immuno-dominant epitopes, and for HLA-A (top), HLA-B (middle), and
HLA-C (bottom).
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immunogenicity (27) (see section 2.1.3), allow us to define a mean

regional coverage metric in Equation 5 for a given vaccine protein.

Figures 3 and 4 show our results for the ten different proteins

considered here: Ebola virus (GP and NP, Sudan and Zaire), SARS-

CoV-2 spike (five variants), and Burkholderia pseudomallei Hcp1.

We then argue that the mean regional coverage metric does not

capture the fact that an individual carries two alleles, and not M

different ones. Thus, we propose the individual regional coverage

metric in Equation 7, and the mean individual regional coverage
Frontiers in Immunology 24
metric in Equation 8 to account for this important difference. In the

absence and presence of HLA allele associations, we show that both

metrics, Ck and I k, (as defined in the main text) are the same (see

Supplementary Material, section 1.1 and section 1.2). This result

indicates the need to further study the choice of the individual

regional coverage metric, I (k)
q , for a given allele pair q. To that end,

we propose two new choices for I (k)
q : in section 1.3 (see

Supplementary Material), we adopt the dominance of one allele

as the criterion to determine I (k)
q , and in section 1.4 (see
FIGURE 13

F k grouped by protein for the eleven different geographical regions, and for HLA-A (top), HLA-B (middle), and HLA-C (bottom).
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Supplementary Material), we perform an equilibrium chemical

reaction analysis of the binding between a peptide and a pair of

alleles to argue a second choice for I (k)
q . As shown in the

Supplementary Material, these two new and different choices for

I (k)
q lead to a mean individual regional coverage metric which is

clearly is modified by the presence of HLA allele associations. Thus,

we conclude that were we to obtain true allele pair frequencies,

instead of the individual allele frequencies used here, the mean

individual regional coverage metric would be the true metric for

CD8+ T cell immune responses. Finally, we discuss immuno-

dominance and immuno-dominant epitopes (11), in light of

recent studies for Ebola GP and SARS-CoV-2 spike protein (46,

47). We make use of the immuno-dominant epitopes identified in

these studies (see Tables 4 and 5), together with our approaches, to

calculate the contribution of the immuno-dominant epitopes to the

mean regional coverage metric (see section 3.4), and to show that

for suitably defined probability distributions (see section 2.3) the

immuno-dominant peptides belong to the tail of such distributions.

In fact, Figures 12 and 13 show that the subset of h different

immuno-dominant epitopes make a significant contribution to the
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mean regional coverage metric, which is of the order of 5% for

HLA-A and Ebola GP Zaire and SARS-CoV-2 spike across regions,

as well as for HLA-B and Ebola GP Zaire, and HLA-C and SARS-

CoV-2 spike. We note that for Ebola GP Zaire there are h = 12

different immuno-dominant nonamers, out of a total of P = 676;

that is, the set of immuno-dominant nonamers is less than 2% of the

total nonamer set. In the case of SARS-CoV-2 Wuhan-Hu-1 spike

protein h = 6 and P = 1273, which implies the set of immuno-

dominant nonamers is less than 0.5% of the total nonamer set.

These results and the figures included in section 3.5 provide a first

validation of the metrics defined here, since they capture the

singular nature of the small subset of immuno-dominant epitopes.

There are a number of limitations to our study. First of all, the

multi-partite graph does not include important processes such as

the processing and presentation of CD8+ T cell epitopes, or the

expression levels of different MHC molecules (HLA-A, HLA-B, or

HLA-C). These could be considered in our methods as node

weights; for instance, the level of expression of allele ai (the level

of processing and presentation of peptide pj) could be included in

the graph as a node weight ei (node weight pj). Secondly, and as a
FIGURE 14

Probability distribution for the immunogenicity, gj, of the nonamers of Ebola GP Sudan (top) and Ebola GP Zaire (bottom). Individual values
corresponding to the immuno-dominant epitopes have been identified.
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proxy for TCR diversity, we have made use of the concept of

nonamer immunogenicity (27). We have made use of the concept of

immunogenicity to provide a measure of the binding between a

given epitope and the average T cell receptor (TCR). This is clearly a

huge limitation, and looking forward, one could make use of

cluster-based algorithms, such as GLIPH and TCRdist to

characterize the TCR repertoire into distinct TCR groups based

on sequence similarities. As described by Davis in Ref (16) such

algorithms can help us define rules of TCR specificity, HLA types

from bulk TCR sequences, and identify major T cell targets in

infectious disease or vaccines. The goal is to make use of these

approaches together with high-throughput TCR sequencing (TCR-

seq) technology to identify TCR patterns associated with immune

phenotypes, and ultimately establish T cell correlates of immune

protection. Unfortunately, we still cannot directly translate sequence

into TCR specificity (16). Reverse epitope discovery is a

computational and empirical workflow which relates condition-

associated paired ab TCR sequences and HLA and epitope

associations, and in turn allows for epitope specificity assignment
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of immuno-dominant public TCR clusters (52). This is clearly not

the full story, and methods such as TCRdist (53), together with

single cell, paired a and b TCR sequencing, are providing us with

extremely valuable insights into the identification of public T cell

receptors which mediate protection against SARS-CoV-2 infection

(54). Furthermore, recent work by Chen et al. has shown that TCR

sequences are the most important and quantitative factor

determining both the phenotype and persistence of specific CD8+

T cells against immunogenic viral antigens from SARS-CoV-2,

cytomegalovirus, and influenza virus (55). Thus, our future work

will be along this direction to include the role of the full set T , as

well as the edges between elements of P and T . The metrics

proposed here can be (easily) generalized to account for

TCR diversity.

Looking forward there is a lot of work ahead of us. We will take

advantage of the multi-partite graph approach to evaluate

differences in vaccine platform antigen presentation. To generate

effective CD8+ T cells, the cross-presentation of antigen on the

MHC class I molecule is critical. Generally, cross-presentation
FIGURE 15

Probability distribution for the immunogenicity, gj, of the nonamers of SARS-CoV-2 WuhanHu-1 spike (top) and SARS-CoV-2 Delta AY.4 spike
(bottom). Individual values corresponding to the immuno-dominant epitopes have been identified.
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depends on delivery to lymph nodes, uptake by dendritic cells

(DCs), and the ability to get antigen into the cytosol of antigen

presenting cells (APCs), primarily DCs (56). In a typical antigen

presentation process, proteins in the cytosol of APCs are broken

down into peptides and delivered to the endoplasmic reticulum for

loading and presentation in MHC class I molecules by a transporter

associated with antigen presentation (TAP). To generate cross-

presentation, one must enhance both vacuolar and cytosolic

pathways (56). Here, sequence and conformation of the antigens

and their lifetimes could affect the cross-presentation process.

Along with the chosen adjuvant, a given vaccine platform that is
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used for antigen presentation can influence or alter the efficiency of

these processes. Therefore, we intend to use this model to better

inform us on the ability of a chosen vaccine platform to favor

cross-presentation.

As mentioned above, we want to explore the role of allele

associations and aim to obtain allele pair frequencies to compare the

two metrics proposed (57). We would like to apply our methods to

other pathogens of public health relevance such as Lassa virus and

Crimean Congo hemorrhagic fever virus, with the viral sequences

provided in Refs (58, 59). Another avenue we have failed to explore

is that of immune evasion and the role of MHC-restriction (28) in
FIGURE 16

Mean TCR-MHC combined immunogenicity, fj, probability distribution in North America of the nonamers for Ebola GP Sudan, with HLA-A (top),
HLA-B (middle), and HLA-C (bottom). Individual values corresponding to the immuno-dominant epitopes have been identified.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1420284
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Harris et al. 10.3389/fimmu.2024.1420284
eliciting HLA-mediated selective pressure (12–14). We plan to

make use of the computational methods developed by Hertz et al.

(28) and the approaches adopted here to quantify the potential of a

vaccine protein to exert immune pressure and drive viral evolution

in different human populations, as well as to identify HLA

generalists and specialists (38). Finally, the CD8+ T cell metrics

proposed here do not account for T cell function (cytokine

secretion, proliferative capacity, or cytotoxic killing activity) or T
Frontiers in Immunology 28
cell half-life (of particular relevance for central and effector memory

T cells). We propose to make use of the multi-partite graph

developed here, together with mathematical models of viral and

immune dynamics (60–64), to identify and quantify other potential

correlates of immune protection, such as half-lives of cellular

subsets of interest, as well as their function and phenotype (65).

We conclude with a perspective on how the methods presented

here can be used to drive vaccine development in cases of
FIGURE 17

Mean TCR-MHC combined immunogenicity, fj, probability distribution in North America of the nonamers for Ebola GP Zaire, with HLA-A (top), HLA-
B (middle), and HLA-C (bottom). Individual values corresponding to the immuno-dominant epitopes have been identified.
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pandemics or emerging viruses. An important first step will be to

validate our methods with experimental data on CD8+ T cell

responses to vaccines for different human populations. To that

end, we propose to make use of the methods described in Ref (50)

such as elispot assays, to generate data sets and check whether or

not they correlate with the metrics introduced in this manuscript. A

second step is to address some of the limitations described above,

such as the rather important concept of immunogenicity. Methods
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(diffRBM), such as those developed by Bravi et al., a sequence-based

approach using transfer learning and Restricted Boltzmann

Machines (RBM) to predict antigen immunogenicity and

specificity (42), will be essential to characterize molecular features

of immunogenicity with HLA-specific strategies. The methods and

metrics proposed here can readily be used to inform epitope-based

vaccine design, since they provide a systematic approach to tailor

the desired immune response to individuals (66).
FIGURE 18

Mean TCR-MHC combined immunogenicity, fj, probability distribution in North America of the nonamers for SARS-CoV-2 Wuhan-Hu-1 spike, with
HLA-A (top), HLA-B (middle), and HLA-C (bottom). Individual values corresponding to the immuno-dominant epitopes have been identified.
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