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The role of HDAC3 in
inflammation: mechanisms
and therapeutic implications
Noah Watson, Sivaraman Kuppuswamy, William Luke Ledford
and Sangeetha Sukumari-Ramesh*

Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University,
Augusta, GA, United States
Histone deacetylases (HDACs) are critical regulators of inflammatory gene

expression, and the efficacy of pan-HDAC inhibitors has been implicated in

various disease conditions. However, it remains largely unclear how HDACs

precisely regulate inflammation. To this end, evaluating the isoform-specific

function of HDACs is critical, and the isoform-specific targeting could also

circumvent the off-target effects of pan-HDAC inhibitors. This review provides

an overview of the roles of HDAC3, a class I HDAC isoform, in modulating

inflammatory responses and discusses the molecular mechanisms by which

HDAC3 regulates inflammation associated with brain pathology, arthritis,

cardiovascular diseases, lung pathology, allergic conditions, and kidney

disorders. The articles also identify knowledge gaps in the field for future

studies. Despite some conflicting reports, the selective inhibition of HDAC3

has been demonstrated to play a beneficial role in various inflammatory

pathologies. Exploring the potential of HDAC3 inhibition to improve disease

prognosis is a promising avenue requiring further investigation.
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Introduction

Histone acetylation is a post-translational histone modification that regulates diverse

functions, such as protein-protein interactions, DNA recognition, protein stability, and

gene expression (1, 2). The interplay between histone acetyltransferases (HATs) and

histone deacetylases (HDACs) dynamically modulates the acetylation status of histones,

resulting in structural changes to chromatin and thus transcriptional regulation (1, 2).

Enhanced HAT activity facilitates chromatin relaxation and gene transcription (3–5),

whereas HDACs remove acetyl groups from histones, causing chromatin condensation and

gene repression (6). In line with this, the inhibition of HDAC activity causes histone

hyperacetylation and transcriptional activation of genes. DNA expression microarrays
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indicate that the effect of HDAC inhibitors [HDACi (s)] on gene

expression is not global but rather limited to a subset of genes (1–

7%) (7–11).

HDACs are a family of proteins, with 18 HDAC isoforms

currently identified in humans (12). Based on the sequence

homology, HDACs are classified into class I (HDAC1, 2, 3 and

8), class IIa (HDAC4, 5, 7 and 9), class IIb (HDAC6 and 10), class

III (SIRT1–7) and class IV (HDAC11). The enzymatic activity of

class I, II, and IV HDACs requires zinc metal, whereas sirtuins

or class III require nicotine adenine dinucleotide as a co-factor (13).

Class I HDACs are primarily nuclear and play an important role in

cell survival, apoptosis, proliferation, and differentiation (14, 15).

Class II HDACs are found in the nucleus and cytoplasm (16, 17).

Besides deacetylating histones, HDACs can modulate the

acetylation status of nuclear, cytosolic, and mitochondrial non-

histone proteins (18), including transcription factors, affecting their

structure, stability, interactions, function, and signaling. Hence,

HDACs can regulate a wide range of cellular processes.

HDACs have earned much attention in the field of

immunology, as they are implicated in various innate and

adaptive immune responses, including the synthesis and release of

cytokines (19, 20). To this end, the acetylation status of histones and

non-histone proteins can affect the expression of inflammatory

genes. Also, broad-spectrum HDAC inhibitors exert anti-

inflammatory effects and reduce inflammation and disease

severity in a wide range of conditions (21). Though HDACs are

attractive targets due to the existing clinical applicability of HDAC

inhibitors in various disorders (22–24), the use of pan-HDAC

inhibitors in clinical trials is associated with several adverse

effects, such as fatigue, nausea/vomiting, and diarrhea (25). To

alleviate the unwanted side effects of pan-HDAC inhibition,

emerging research focuses on targeting individual isoforms of

HDACs. The selective targeting of isoforms will also help

elucidate the precise mechanism by which HDACs regulate

diverse disease processes, which remains largely unclear

and controversial.

Histone deacetylase 3 (HDAC3), a class I HDAC isoform, is

unique among class I HDACs as it carries nuclear export and

localization signals and can shuttle between the nucleus and

cytoplasm (26). Owing partly to its non-nuclear localization,

HDAC3 acts beyond as a co-repressor (27). Also, HDAC3 exerts

enzymatic and non-enzymatic functions. The enzymatic activity of

HDAC3 is an important mechanism regulating gene transcription.

HDAC3 has often been purified as part of a complex that contains a

co-repressor, NCoR1 (nuclear receptor co-repressor), or its

homolog NCoR2 (SMRT; silencing mediator of retinoic and

thyroid receptors) (28–30). HDAC3 is the prominent HDAC

associated with NCoR1 and SMRT (31, 32), which regulates

transcriptional repression. Hence, HDAC3 could have distinct

functions compared to other class I HDACs. HDAC3 requires

interaction with the deacetylase activating domain (DAD) within

SMRT or NCoR1 for its enzymatic activity (33). It has been

documented that inositol tetraphosphate facilitates the interaction

between HDAC3 and DAD (34). Binding to inositol tetraphosphate

and DAD triggers a conformational change in HDAC3, allowing

substrates to access the catalytic site (34, 35). Global deletion of
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HDAC3 is embryonically lethal, but mice with mutations in the

DAD of both NCoR1 and SMRT live to adulthood despite

undetectable deacetylase activity in the embryo (36, 37)

suggesting that non-enzymatic activity of HDAC3 drives the

growth or survival of embryos.

There is a strong body of research connecting HDAC3 to the

inflammatory response. Therefore, evaluating the therapeutic

efficacy of HDAC3 inhibition in various inflammatory disease

contexts is an ongoing and emerging area of research interest.

Functionally, HDAC3 is crucial for the induction of pro-

inflammatory gene expression in macrophages in response

to inflammatory stimulus, lipopolysaccharide (38). The anti-

inflammatory cytokine-mediated stimulation of macrophages into

alternate activation involves epigenetic mechanisms (39, 40), and

macrophages lacking HDAC3 are phenotypically similar to IL-4-

induced alternatively activated macrophages (39). Also, HDAC3 is

demonstrated to mediate mitochondrial adaptations to drive IL-1b
dependent inflammation in macrophages through non-histone

deacetylation (41). Besides, HDAC3 expression was found to be

upregulated during various inflammatory settings (38, 42, 43), and

selective HDAC3 inhibition modulates inflammation in multiple

pathologies. Herein, we provide an overview of the functional roles

of HDAC3 regarding inflammation associated with various

disease conditions.
HDAC3 in neuroinflammation

Neuroinflammation, the inflammatory response in the CNS, is

characterized by glial activation, and upregulation, and secretion of

inflammatory mediators such as cytokines, chemokines, and

reactive oxygen species. The degree of neuroinflammation

depends on the type, duration, and severity of insult or injury. In

the uninjured brain, microglia, the inflammatory cells of the CNS,

actively survey the brain microenvironment for non-functional

neurons and serve as the sentinels of infection. Upon a brain

insult or injury, microglia undergo activation, resulting in

transcriptional and phenotypical changes with the release of

various cytokines, chemokines, and reactive oxygen species.

Activated microglia/macrophages polarize to a pro-inflammatory

M1 phenotype or an anti-inflammatory M2 phenotype (44) and

exhibit migratory and phagocytic potential, contributing to disease

progression or repair. Microglia respond to both systemic and brain

pathologies. Neuroinflammation also often results in the

recruitment of peripheral cells to the brain, further aggravating or

alleviating the neuroinflammatory cascade depending on the stage

or type of neuropathological condition. In general, the microglia-

mediated immune response or the transient activation of microglia

is regarded as an intrinsic mechanism to protect or repair the brain.

However, neuropathological conditions often result in chronic

activation of microglia, culminating in neuronal death,

neurodegeneration, and neurological and cognitive decline.

Growing evidence suggests that HDAC3 could be a potential target

to modulate neuroinflammation. For instance, the use of a broad-

spectrum HDAC inhibitor, valproic acid, modulated microglial

polarization towards M2 phenotype and improved outcomes post-
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traumatic spinal cord injury (45). Valproic acid-mediated

neuroprotection was associated with the inhibition of HDAC3

expression and activity in the lesioned spinal cord as well as

upregulation of STAT1 - NF-kB P65 interaction, thereby attenuating

NF-kB P65 DNA binding (45). As per the study, HDAC3 could serve

as a critical modulator of STAT1 - NF-kB P65 interaction and

neuroinflammation by regulating the acetylation status of both

STAT1 and NF-kB P65 (45). Also, in ischemia/reperfusion-induced

brain injury, HDAC3-mediated regulation of NF-kB p65 acetylation in

microglia has been demonstrated to play a role in neuroinflammation

(46). Mechanistically, it was demonstrated that HDAC3-mediated

cGAS transcription and neuroinflammation in ischemia/reperfusion-

induced brain injury were associated with NF-kB p65 deacetylation

(46). Furthermore, a pan-HDAC inhibitor, Belinostat, attenuated

neuroinflammation in an experimental model of autoimmune

encephalomyelitis by increasing the acetylation status of NF-kB P65

with a reduction in the expression of HDAC3 (47). In line with this

observation, a selective inhibitor of HDAC3, RGFP966, reduced

demyelination in a cuprizone-induced demyelination model and

improved neurological behavior (48). The study also showed that

RGFP966 significantly reduced M1-like microglia/macrophage

activation and the levels of proinflammatory cytokines, such as TNF-

a, IL-1b, and iNOS. The neuroprotection conferred by RFGP966 in the
mouse model of cuprizone was attributed to modulating P2X7R/

STAT3/NF-kB p65/NLRP3 signaling pathways (48). Another study

documented an increased HDAC3 expression in microglia/

macrophages in a mouse model of ischemic stroke and RGFP966-

mediated reduction in brain damage by attenuating AIM2 expression,

possibly via modulating STAT1 acetylation (49). Though RGFP966 is

being widely used for selectively targeting HDAC3, a study used

BRD3308 to selectively inhibit HDAC3 in a mouse model after

intraventricular hemorrhage. BRD3308 reduced neuroinflammation

and microglial pyroptosis, with the modulation of the PPARg/NLRP3/
GSDMD pathway after intraventricular hemorrhage (50).

Consistent with the role of HDAC3 in neuroinflammatory

responses, HDAC3 inhibition attenuated the expression of

proinflammatory cytokines in repeatedly LPS-challenged human

monocytes and M1 macrophages (51). Also, HDAC3 inhibition

using RGFP966 reduced LPS-induced primary microglial activation

(52). In the presence of LPS, RGFP966 modulated the expression of

proteins involved in the TLR pathway and the phosphorylation of

STAT3 and STAT5 in primary microglia (52). Taken together, the

data indicate a crucial role for HDAC3 in regulating the acetylation

status of transcription factors such as NF-kB p65, STAT1, and

STAT3 and, hence, neuroinflammation.
HDAC3 in arthritic inflammation

Rheumatoid arthritis (RA) is an autoimmune disease

characterized by a chronic state of unknown etiology and

progressive damage to the cartilage that can lead to lifelong

disability (53). Dysregulated immune function is a contributing

factor in RA pathogenesis and disease progression. Both local and
Frontiers in Immunology 03
systemic immune abnormalities occur in association with RA (54).

During the course of the disease, fibroblast-like synoviocytes (FLS)

exhibit abnormal activation, which is associated with altered

expression of major histocompatibility complex (MHC)-II, pro-

inflammatory cytokines, adhesion molecules, proangiogenic factors,

and matrix-degrading enzymes (55–57), contributing to synovial

inflammation and joint damage (58). Furthermore, the

pathogenesis of RA is closely related to the abnormal activation

of FLS (59).

Histone deacetylases play roles in RA progression, and HDAC

inhibitors exhibited therapeutic efficacy and anti-inflammatory effects

in animal models of RA (60–65). A study showed that the pan-HDAC

inhibitors, Trichostatin A and ITF2357, suppressed IL-6 production

induced by IL-1b, TNF-a, and TLR ligands in RA-FLS (66). Moreover,

a class I HDAC inhibitor, MS-275, and a pan HDAC inhibitor,

Suberoylanilide Hydroxamic Acid, attenuated the inflammatory

response in LPS-induced human RA synovial fibroblastic E11 cells

(67). Notably, the effects of pan-HDAC inhibitors in reducing

inflammatory gene expression in RA-FLS were recapitulated by

HDAC3 inhibition (68). It has been demonstrated that STAT1 and

phosphorylated STAT1 levels are elevated in RA-FLS, contributing to

inflammation (69, 70). Also, STAT1 hyperacetylation is a prerequisite

for STAT1 dephosphorylation and inactivation (71). Notably, the

genetic inhibition of HDAC3 attenuated IL-1b-induced STAT1

phosphorylation in RA-FLS, implicating a critical role of HDAC3 in

RA-FLS activation and associated inflammation (68). However, the

inhibition of HDAC3/6 did not affect the acetylation status of STAT1

in the presence of IL-1b in RA-FLS (68), suggesting a novel mechanism

by which HDAC3 regulates STAT1 phosphorylation, warranting

investigation.

Extracellular cold-inducible RNA-binding protein (CIRP) is a

novel pro-inflammatory molecule involved in various inflammatory

diseases. In patients with RA, increased CIRP levels are found in the

serum and synovial fluid, and elevated CIRP levels in the synovial

fluid correlate with disease activity (72). A recent study has reported

that human CIRP induced the proliferation, migration, and

invasion of RA-FLS and released IL-1b and IL-33 from RA-FLS

(73). Moreover, the inhibition of CIRP significantly reduced the

abnormal activation of RA-FLS and arthritis severity in adjuvant

arthritis in rats (73). Per the same study, the knockdown of TLR4

inhibited extracellular CIRP-induced RA-FLS activation and

HDAC3 expression in RA-FLS, suggesting a role of CIRP-TLR4-

HDAC3 signaling in RA-associated synovial inflammation. Also,

both genetic and pharmacological inhibition of HDAC3 suppressed

extracellular CIRP-induced abnormal activation of RA-FLS in vitro

and RGFP966 treatment attenuated arthritis severity of adjuvant

arthritis in rats (73), implicating a crucial role of HDAC3 in RA-

associated synovial inflammation. Therefore, further studies are

highly warranted to establish the precise role of HDAC3 in RA

pathology and the mechanism by which HDAC3 regulates synovial

inflammation in RA.

Apart from RA-FLS, the other cell type that plays a crucial role

in the RA pathophysiology is peripheral blood mononuclear cells

(PBMC), which could release abnormal levels of inflammatory
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cytokines (74). A recent study postulated that before the

development of synovitis in RA patients, systemic autoimmunity

is initiated, resulting in cells such as monocytes from the peripheral

blood infiltrating into the synovial tissue or joint fluid, causing

inflammation (75). Also, the cytokines released from PBMCs can

induce the differentiation of helper T cells towards Th1, Th2, Th17,

and Treg cells, thereby modulating inflammation in RA (76).

Consistent with the emerging role of epigenetic mechanisms in

regulating cytokine release in RA (77), changes in HDAC activity in

PBMCs from RA have been reported. However, there are

inconsistencies between studies. For instance, a global increase in

HDAC activity in PBMCs in RA and the efficacy of selective

inhibition of HDAC3 in attenuating IL-6 release from RA PBMCs

have been reported (78). On the contrary, another study reported a

reduction in total HDAC activity and HDAC3 activity with an

increase in total histone H3 acetylation in PBMCs from RA patients

compared to healthy subjects (79). Despite these conflicting

observations, the balance between HDAC and HAT activity was

significantly altered in RA PBMCs, implicating further a potential

role of histone acetylation in the pathophysiology of RA (79).

Therefore, additional investigation is highly required to establish

the precise functional role of HDAC3 and epigenetic mechanisms in

PBMC-associated pathology in RA.

Osteoarthritis (OA) is another common form of arthritis in

which HDAC3 plays a role. The expression of HDAC3 was shown

to be higher in degraded cartilage compared to non-degraded

cartilage. Furthermore, HDAC3 expression increased when

primary human chondrocytes (PHCs) were stimulated with IL-1b
(80), and the genetic inhibition of HDAC3 in PHCs augmented

cartilage-specific genes and reduced the expression of a

hypertrophy-related gene (80).

Overall, HDAC3 could be an efficient target to improve

outcomes after RA and OA. However, further studies are highly

warranted to elucidate the efficacy of selective HDAC3 inhibition

and the mechanism by which HDAC3 regulates the development

and progression of RA and OA.
HDAC3 in cardiovascular inflammation

Atherosclerosis is the major underlying pathology of

cardiovascular diseases (CVD), the leading cause of morbidity

and mortality globally (81). Atherosclerosis is a chronic

inflammatory disease arising from an imbalance in lipid

metabolism and a maladaptive immune response. Macrophages

play a key role in the progression and regression of atherosclerotic

cardiovascular disease (82). Increased expression of pro-

inflammatory cytokines, such as IL-1b, could regulate the

expression of cholesterol efflux protein ABCA1 in macrophages,

thereby promoting foam cell formation and development of

atherosclerosis (83). Several studies have explored the therapeutic

potential of HDAC inhibitors in CVD. Interestingly, myeloid-

specific conditional deletion of HDAC3 shifted macrophages to

an anti-inflammatory phenotype with improved lipid accumulation
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and plaque stability in a mouse model of atherosclerosis (84). Apart

from regulating macrophage phenotype, HDAC3 plays an

important role in regulating the adhesion of monocytes to the

sites of inflammation (85). To this end, knockdown to HDAC3

attenuated TNF-a–mediated VCAM-1 expression in human

primary endothelial cells (Human Umbilical Vein Endothelial

Cells; HUVECs) and monocyte adhesion to the activated

HUVECs. Also, in humans, HDAC3 was the sole HDAC

upregulated in ruptured lesions and its expression inversely

correlated with plaque-stabilizing TGF-b (84).

HDAC3 regulates endothelial function in normal physiology

and pathology. Lentiviral-mediated knockdown of HDAC3 in

endothelial cells reduced cell survival, suggesting that HDAC3

plays a critical role in endothelial cell survival in vitro (86). In a

mouse model of type 2 diabetes mellitus (T2DM), HDAC3 activity,

but not protein expression, was found to be increased in endothelial

cells (87). Moreover, treatment with RGFP966 alleviated T2DM-

associated endothelial dysfunction and the knockdown of Nrf2

abolished HDAC3 inhibition-induced endothelial protection in

T2DM both in vitro and in vivo (87). Also, HDAC3 has been

shown to regulate the expression of immune modulator galectin-9

in HUVECs (88). Notably, HDAC3 knockdown in endothelial cells

reduced IFN-g-induced expression of galectin-9, whereas

overexpression of HDAC3 induced the interaction between IFN

response factor 3 (IRF3) and phosphoinositol 3-kinase (PI3K)

leading to IRF3 phosphorylation and galectin-9 expression (88).

Evidence suggested that HDAC3 could serve as a scaffold protein

facilitating PI3K/IRF3 interaction and regulating galectin-9

expression in endothelial cells (88).

Endothelial to mesenchymal transition (EndMT) contributes to

multiple vasculopathies, including atherosclerosis, and facilitates

the transition from vascular inflammation to plaque formation (89,

90). Of note, HDAC3 expression was upregulated in atherosclerotic

plaque in a mouse model of atherosclerosis and regulated the

induction of EndMT (91). Functionally, the pharmacological

inhibition of HDAC3 in a mouse model of atherosclerosis

reduced atherosclerotic lesions and inhibited EndMT, whereas the

genetic overexpression of HDAC3 induced EndMT in HUVECs

(91). Also, HDAC3 modulated the gene expression of IL-6, ICAM-

1, and MCP-1 in HUVECs and the number of monocytes attached

to HUVECs in the presence of inflammatory stimuli (91). These

findings suggest a critical role of HDAC3 in vascular inflammation

and the induction of EndMT.

Myocardial infarction (MI) is a common and life-threatening

condition in which a blockage in the coronary artery leads to oxygen

deprivation, injury, and cell death. The cell death can cause a high

degree of inflammation as macrophages are recruited to the injury.

In a rat model of ischemia-reperfusion injury, treatment with

RGFP966 alleviated inflammatory response, oxidative stress, and

injury in myocardial tissue, possibly by reducing the levels of cyclin-

dependent kinase-2 (92), further implicating the efficacy of HDAC3

inhibition in reducing inflammation.

Though the aforementioned studies point out the potential of

HDAC3 inhibition in alleviating cardiovascular inflammation, a
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contradictory finding documents an inverse association between the

expression of HDAC3 and NF-kB/p65 in ox-LDL-induced HUVECs

(93). As per the study, the overexpression of HDAC3 attenuated the

levels of TNF-a and IL-1b in the arterial tissue in a mouse model of

atherosclerosis (93). Due to this discrepancy between observations,

additional investigation is necessary to validate the efficacy of HDAC3

inhibition for cardiovascular diseases.
HDAC3 in pulmonary inflammation

While many studies reported a reduct ion in the

proinflammatory response when HDAC3 was inhibited, some

studies have indicated the inhibition of HDAC3 can augment

inflammation. For instance, in chronic obstructive pulmonary

disease (COPD), a pathological condition resulting from

inhalation of air pollutants and cigarette smoke, pulmonary

macrophages secrete a large and varied number of inflammatory

factors. Using a model of human alveolar macrophages, it has been

shown that acute cigarette smoke exposure is associated with

reduced total nuclear HDAC activity and nuclear HDAC3 protein

expression (94). Also, siRNA-mediated knockdown of HDAC3 in

the in vitromodel of alveolar macrophages augmented LPS-induced

release of IL-1b and IL-8, possibly implicating a negative regulatory

role of HDAC3 in inflammation, but mechanistic studies are yet to

be conducted. Given the role of HDAC3 in modulating the

acetylation status and the nuclear export of NF-kB, the study

postulated that NF-kB signaling could be a possible mechanism

by which HDAC3 regulates pulmonary inflammation (94). Also,

Ergosterol treatment switched macrophage polarization to M2

phenotype with an increase in HDAC3 expression and a

reduction in acetyl NF-kB/p65 in COPD models (95), suggesting

that ergosterol-mediated protection of COPD is associated with

HDAC3-mediated deacetylation.

Acute lung injury is characterized by damage to alveolar

epithelial cells and capillary endothelial cells, causing refractory

hypoxemia and acute respiratory distress syndrome. Nimbolide, a

chemical constituent of Azadirachta indica, improved endotoxin-

induced acute respiratory distress syndrome by inhibiting TNF-a
mediated nuclear translocation of both NF-kB and HDAC3 (96).

Furthermore, RGFP966 reduced the levels of proinflammatory

cytokines in a model of inflammatory lung disease. Using an in

vitro approach, the study also reported that the anti-inflammatory

effects of RGFP966 are attributed to the modulation of NF-kB
transcriptional activity but not NF-kB p65 acetylation or

localization (97). Furthermore, Th2 cytokine-driven pulmonary

inflammation was limited in mice lacking HDAC3 in

macrophages (39), which implies that inhibition of HDAC3 can

be targeted to attenuate lung inflammation.

Neutrophilic airway inflammation is associated with reduced

total HDAC activity in blood monocytes (98), implicating a possible

role of epigenetic mechanisms in the disease pathology. However,

there was no change in HDAC3 gene expression levels.
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Taken together, the current data implicate opposing roles of

HDAC3 in pulmonary inflammation, with inhibition being either

deleterious or beneficial. Further research using alternate

approaches is necessary to validate the findings and elucidate the

mechanism by which HDAC3 regulates pulmonary pathologies.
HDAC3 in diabetic inflammation

HDAC3 has been implicated in playing a role in diabetic-related

inflammation, which can interfere with insulin signaling and

glucose homeostasis. In-vitro studies have shown that genetic

knock-down of HDAC3 restored glucose-stimulated insulin

secretion and reduced caspase-3 activity in beta cells in the

presence of cytokines (99). Also, HDAC3 inhibition improved

pancreatic b cell function and plasma glucose levels in a rat

model of type 2 diabetes (100). Interestingly, increased HDAC3

activity and mRNA expression were observed in the PBMCs of type

2 diabetic patients in comparison with control subjects and HDAC3

activity positively correlated with proinflammatory markers, fasting

plasma glucose, and insulin resistance (101). These findings suggest

a critical role of HDAC3 in inflammation and other complications

associated with diabetes.

Inflammation and apoptosis are the key mechanisms responsible

for diabetic osteoporosis (102). In a streptozotocin (STZ) model of

diabetes, HDAC 1 and 3 expression in femoral heads was found to be

upregulated (103). Puerarin (PU), an isoflavone, improved STZ-

induced blood glucose levels and osteoporosis with a reduction in

inflammation and apoptosis in rats (103). Also, PU reduced STZ-

mediated upregulation of HDAC1 and 3 expressions in femoral

heads, suggesting a possible mechanism by which Puerarin (PU)

improved diabetes-related complications. In line with this finding,

inhibition of HDAC1/3 attenuated inflammation and cell death in

fructose-treated cells (103). However, further studies need to be

conducted to find which isoform of HDAC, among HDAC1 and 3, is

responsible for PU-mediated effects.

RGFP966 has been shown to have beneficial effects in diabetic

cardiomyopathy (DCM) in mice, causing a reduction in diabetes-

induced cardiac oxidative stress, inflammation, fibrosis,

hypertrophy, and insulin resistance (104). Notably, HDAC3

activity and phosphorylated extracellular regulated kinases 1 and

2 (ERK1/2), an indicator of cardiac hypertrophy, were upregulated

in diabetic hearts (104). Additionally, the level of a nuclear ERK1/2

phosphatase, DUSP5 (dual specificity phosphatase 5), was

decreased in diabetic hearts (104). Mechanistically, RGFP966

treatment augmented DUSP5 expression, modulated ERK1/2

signaling, and prevented DCM in mice (104).

Diabetes enhances the risk of stroke and its recurrence.

RGFP966 treatment conferred protection against cerebral

ischemia/reperfusion injury in diabetic mice by modulating brain

oxidative stress, apoptosis, and autophagy (105). Also, RGFP966

treatment has been shown to have beneficial effects in some liver

pathologies, particularly diabetes-induced liver damage. In diabetic
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mice, RGFP966 treatment reduced hepatic inflammation, fibrosis,

and oxidative stress (106). These protective effects were associated

with enhanced signaling of Nrf2 (106), an antioxidant and anti-

inflammatory transcription factor. However, further studies are

warranted to ensure the safe use of HDAC3 inhibitors for hepatic

pathology, as liver-specific deletion of HDAC3 resulted in fatty liver

in mice (107). Also, HDAC3 genetic deletion rescued palmitate-

induced reduction in the expression of genes related to fatty acid

oxidation in C2C12 myotubes, further implicating the role of

HDAC3 in fatty acid metabolism (108).
HDAC3 in allergic inflammation

Histone acetylation and deacetylation play roles in allergic

inflammation (109). Of note, HDAC3 expression was upregulated

in a mouse model of triphasic cutaneous anaphylaxis (triphasic

cutaneous reaction; TpCR) (110). Moreover, HDAC3 regulated the

expression of monocyte chemoattractant protein 1 (MCP1; a

mediator of monocyte recruitment) and allergic skin

inflammation in vivo (110). Besides, the suppressor of cytokine

signaling 1 (SOCS1), a protein with contradictory roles in

inflammation, regulated the expression of HDAC3 and allergic

inflammation (111). Notably, antigen stimulation enhanced the

expression of SOCS1, HDAC3, and HDAC6, in RBL2H3

basophilic leukemia cells (111). Furthermore, SOCS1 increased

the interaction between high-affinity IgE receptor (FcϵRIb) and

HDAC3 in an antigen-independent manner, implicating a critical

role of SOCS1/HDAC3 signaling in allergic inflammation (111).

The levels of hyaluronic acid (HA), a major component of the

extracellular matrix, are elevated in allergic reactions in vivo and the

increase in HA correlates with the influx of inflammatory cells

(112). Despite the altered levels of HDAC3 in allergic response, it

was postulated that HDAC3 may regulate allergic inflammation by

modulating the production of low or high-molecular-weight HA

(43). Furthermore, a study examining the role of HDAC3 in allergic

rhinitis (AR) demonstrated decreased levels of multiple pro-

inflammatory cytokines, and reduced allergic responses in mice

upon RGFP966 treatment (113).

Altogether, various studies reveal a crucial role of HDAC3 in

allergic pathologies. However, since the differences in the functional

roles of HA of varying sizes are controversial, further studies are

highly required to elucidate the pro or anti-allergic effects of high

and low-molecular-weight HA and the mechanism by which

HDAC3 regulates HA production and allergic inflammation.
HDAC3 in renal inflammation

Inflammation plays a major role in chronic kidney disease (CKD),

as it can lead to fibrosis and renal damage. It has been demonstrated

that in amouse model of kidney fibrosis, HDAC3 protein expression in

the kidney was elevated and the deletion of HDAC3 via a genetic

approach (CAG-Cre+) reduced the renal expression of TNF-a and
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fibrosis in a mouse model of kidney fibrosis (114). Also, in a rat model

of hyperuricemia-induced fibrosis, the depletion of HDAC3 via a

genetic approach blunted renal fibrosis (115). Altogether, the data

implicate a key role of HDAC3 in renal fibrosis and associated

inflammation. In line with this, treatment with RGFP966 attenuated

kidney fibrosis in mice (114). Though the mechanism by which

HDAC3 regulates fibrosis is yet to be defined, based on in vitro

studies, it was postulated that hyperacetylation at Lys122 could

reduce the transcription activity of NF-kB upon HDAC3 deletion

(114), which further implicates a critical role of NF-kB acetylation in

inflammatory disease conditions.

Acute kidney injury (AKI) and CKD are two distinct

pathologies, but AKI can progress to CKD, characterized by

various pathological events, including inflammation (116).

However, the precise mechanism by which AKI progresses to

CKD is largely unknown. In a mouse model of AKI-CKD,

HDAC3 was found to be elevated in the kidney, and HDAC3

conditional deletion attenuated renal ferroptosis, and fibrosis (117).

Consistent with this finding, RGFP966 treatment reduced renal

ferroptosis and fibrosis in AKI-CKD mice, with a modulation in the

expression of GPX4, a master regulator of ferroptosis, implicating a

key role of HDAC3 in AKI-CKD transition (117).
Conclusions and future directions

HDAC3 has emerged as a pivotal regulator of a wide range of

inflammatory conditions and has been demonstrated to play a role

in immune cell differentiation and inflammatory gene expression.

However, despite the emerging interest in targeting HDAC3 to

modulate inflammation and disease pathologies, the precise

mechanism by which HDAC3 regulates inflammatory gene

expression profiles remains enigmatic. Mechanistic studies mostly

employed in vitro approaches and focused on, and implied, to a

large extent, the role of transcription factors such as NF-kB and

STAT1 and their post-translational modification by HDAC3 in

modulating inflammation (Figure 1). To gain further mechanistic

insights, cell-specific functional studies using transgenic or

conditional knock-out animals and in vivo studies employing

unbiased proteomic and transcriptomic approaches are critical

and required. Analyzing the enzymatic and nonenzymatic

functions of HDAC3 and developing additional selective

inhibitors or activators of HDAC3 could also be helpful in further

defining its role in various pathological conditions. Despite some

conflicting reports, the selective inhibition of HDAC3 has been

demonstrated to play a beneficial role in various inflammatory

pathologies. The selective inhibition of HDACs could also

circumvent the off-target effects of pan-HDAC inhibitors.

Notably, RGFP966 (10 mg/kg) selectively inhibited HDAC3 over

other HDACs in mice (118), and its systemic administration (10

mg/kg) daily for 14 days did not induce significant toxic effects on

the mouse brain and major organs (119), implicating its suitability

for therapeutic purposes. However, clinical studies have yet to be

conducted evaluating its safe use and efficacy in humans. Besides its
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therapeutic potential, HDAC3 activity or expression is altered in

several pathological conditions, implicating its potential to serve as

a diagnostic and prognostic marker of inflammation, warranting

investigation. Overall, continued research into the interplay

between HDAC3 and inflammation holds promise for advancing

our understanding of inflammatory diseases and developing more

effective treatment strategies.
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FIGURE 1

Schematic representation of key mechanisms by which HDAC3 regulates inflammation. Inflammatory stimuli cause the activation of the NF-kB
signaling pathway and HDAC3-mediated NF-kB DNA-binding, resulting in the expression of NF-kB-regulated genes, including inflammatory genes.
HDAC3 regulates STAT signaling by modulating the acetylation status of STAT1 and STAT3. P, Phosphate group; IkBa, I kappa B alpha; Ac, Acetyl
group; CBP, CREB binding protein; TCP45, T cell protein tyrosine phosphatase 45. Created with BioRender.com.
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ABCA1 ATP (Adenosine triphosphate)-Binding Cassette Transporter 1

AIM2 Absent in Melanoma 2

AKI Acute Kidney Injury

AR Allergic Rhinitis

cGAS cyclic GMP-AMP synthase

CIRP Cold-Inducible RNA-binding Protein

CKD Chronic Kidney Disease

CNS Central Nervous System

CVD Cardiovascular Diseases

DAD Deacetylase Activating Domain

DCM Diabetic Cardiomyopathy

DNA Deoxyribonucleic Acid

DUSP5 Dual Specificity Phosphatase 5

EndMT Endothelial to mesenchymal transition

ERK1/2 Extracellular signal-regulated Kinase ½

FLS Fibroblast-like synoviocytes

GSDMD Gasdermin D

HA Hyaluronic acid

HAT Histone Acetyltransferases

HDAC Histone deacetylases

HDAC3 Histone deacetylase 3

HDAC3/
6

Histone deacetylase 3/6

HDACi HDAC inhibitors

HUVECs Human Umbilical Vein Endothelial Cells

IBD Inflammatory Bowel Disease

ICAM-1 Intercellular Adhesion Molecule 1

IFN Interferon

IL1b Interleukin 1b

IL-6 Interleukin 6

IL-8 Interleukin 8

IL-33 Interleukin 33

iNOS Inducible Nitric Oxide Synthase

IRF3 Interferon regulatory factor 3

LPS Lipopolysaccharide

Lys122 Lysine 122

MCP-1 Monocyte Chemoattractant Protein-1

MI Myocardial Infarction

NCoR1 Nuclear receptor co-repressor 1
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NCoR2 Nuclear receptor co-repressor 2

NF-kB Nuclear Factor kappa B

NLRP3 Nucleotide-binding oligomerization domain-like receptor 3

Nrf2 Nuclear factor erythroid 2-related factor 2

OA Osteoarthritis

ox-LDL Oxidized Low-Density Lipoprotein

P2X7R Purinergic Receptor P2X7

PBMC Peripheral Blood Mononuclear Cells

PHCs Primary Human Chondrocytes

PI3K Phosphoinositide 3-kinase

PPARg Peroxisome proliferator-activated receptor g

PU Puerarin

RA-FLS Rheumatoid arthritis Fibroblast-like synoviocytes

RA Rheumatoid arthritis

siRNA Small interfering RNA

SIRT1 Sirtuin 1

SMRT Silencing Mediator of Retinoic and Thyroid receptors

SOCS1 Suppressor of Cytokine Signaling 1

STAT1 Signal transducer and activator of transcription 1

STAT3 Signal transducer and activator of transcription 3

STAT5 Signal transducer and activator of transcription 5

STZ Streptozotocin

T2DM Type 2 Diabetes Mellitus

TGF-b Transforming Growth Factor-b

Th1 T helper type 1

Th17 T helper type 17

Th2 T helper type 2

TLR Toll-like Receptor

TLR4 Toll-like Receptor 4

TNF-a Tumor Necrosis Factor-a

TpCR Triphasic Cutaneous Reaction

Treg Regulatory T cells

VCAM-1 Vascular Cell Adhesion Molecule 1.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1419685
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	The role of HDAC3 in inflammation: mechanisms and therapeutic implications
	Introduction
	HDAC3 in neuroinflammation
	HDAC3 in arthritic inflammation
	HDAC3 in cardiovascular inflammation
	HDAC3 in pulmonary inflammation
	HDAC3 in diabetic inflammation
	HDAC3 in allergic inflammation
	HDAC3 in renal inflammation
	Conclusions and future directions
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


