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Exosome-derived microRNAs:
emerging players in vitiligo
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Exosome-derived microRNAs (miRNAs) are biomacromolecules and nanoscale

extracellular vesicles originating from intracellular compartments that are

secreted by most cells into the extracellular space. This review examines the

formation and function of exosomal miRNAs in biological information transfer,

explores the pathogenesis of vitiligo, and highlights the relationship between

exosomal miRNAs and vitiligo. The aim is to deepen the understanding of how

exosomal miRNAs influence immune imbalance, oxidative stress damage,

melanocyte-keratinocyte interactions, and melanogenesis disorders in the

development of vitiligo. This enhanced understanding may contribute to the

development of potential diagnostic and therapeutic options for vitiligo.
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1 Introduction

Vitiligo is recognized as an autoimmune disorder characterized by the progressive

destruction of epidermal melanocytes (1, 2). It occurs due to a dynamic interaction between

genetic and environmental factors, leading to autoimmune destruction of melanocytes.

Defects in melanocyte adhesion and increased oxidative stress further augment the

immune response in vitiligo (3).

Exosomes are extracellular vesicles found in various biofluids and tissues, ranging in

diameter from 40 to 160 nm (averaging 100 nm).They are released by all cells as part of

normal physiology and in response to abnormalities (4). Exosomes deliver bioactive

cargoes, such as proteins, mRNAs, miRNAs, and lipids, to recipient cells (5–7).

Exosomes are involved in regulating various physiological and pathological processes,

such as immune regulation, cell growth, and differentiation (8, 9). Increasing research

indicates that exosomes play a significant role in vitiligo (10).

MicroRNAs (miRNAs) are small non-coding RNAmolecules (about 22 54 nucleotides)

that are essential in regulating various biological processes (11, 12). Cells can selectively

package miRNAs into exosomes, which are then secreted to nearby or distant targets (13).

Evidence suggests that changes in the profiles of miRNAs delivered by exosomes are closely

linked to the progression of vitiligo (10, 14). This feature renders miRNAs as highly
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interesting therapeutic tools to restore cell functions altered as part

of a vitiligo phenotype (15). The present review aims to provide a

deep insight into the relationship between exosome-delivered

mRNAs and vitiligo and highlight the role of exosomes in

immune regulation, oxidative stress, melanocyte-keratinocyte

interactions, and melanogenesis. Further understanding of the

role of exosomes in vitiligo may contribute to the development of

potential diagnostic markers and therapeutic options for vitiligo.
2 Exosome-derived miRNAs

2.1 Biological functions of exosome

Exosomes are extracellular vesicles characterized by vesicle-like

structures with a diameter of 30 ~ 150 nm, wrapped by a

phospholipid bilayer (10, 16, 17). They are present in almost all

types of prokaryotic and eukaryotic cells (18). Initially recognized in

parasitic cells as debris and “cellular dust” in human platelets, they

were believed to have no significant role in biology (19). Later, their

role as carriers of bioactive substances was discovered (20).

Previously, intercellular communication was thought to be

mediated through soluble substances, including cytokines and

interleukins. However, an increasing number of studies now

suggest that exosomes are the primary channel for long-distance

communication between various cell types (4, 21). Exosomes are

thought to originate from multivesicular bodies (MVBs),which

form intraluminal vesicles through dual invaginations of the

plasma membrane (22). The plasma membrane primarily

invaginates to form disc-shaped structures called early sorting

endosomes, which contain phagocytic proteins and genetic

material from the cytoplasm as well as cytosolic proteins

produced by membrane invagination. Early sorting endosomes

then mature into late sorting endosomes, which eventually form

MVBs through secondary fusion of endosome-restricted

membranes. The resulting MVBs are either degraded by

autophagosomes or lysosomes, or are released as exosomes into

the extracellular space after fusing with the plasma membrane

(18, 23).

Exosomes have been reported to carry signaling molecules such

as proteins, DNA, RNA, enzymes, and even organelles (24–27).

They are present in a variety of biological fluids, including blood,

urine, saliva, and breast milk (27, 28). Exosomes contain two types

of proteins: conserved proteins and exosome-specific proteins (10).

Conserved proteins are similar proteins that appear in each

exosome and include cluster of differentiation (CD) 36, CD81,

CD9, CD82 (29, 30). Heat shock protein (Hsp) 500, Hsp70, Hsp90,

ALIX, and tumor susceptibility gene 101 (TSG101) (31–33),which

serve as pan-markers for the common detection of exosomes (34).

The composition of exosome-specific proteins depends on the

cellular origin of the exosome and may change depending on the

physiological changes and stimuli acting on the cell; for example,

exosomes derived from mesenchymal stem cells or stromal cells

(MSC) are endowed with immunosuppressive and tumor-homing

capabilities (18).
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Notably, exosomes are not only involved in a variety

of physiological processes such as inflammatory responses

(35, 36)、skin trauma repair (37)、angiogenesis (38)、immune

responses (39, 40) and immune surveillance (41), but also play an

important role in the pathological state of several diseases. For

example, exosomes are believed to contribute to skin immunity and

melanogenesis, thereby supporting the maintenance of skin

homeostasis (41, 42). In addition, they enhance the function of

regulatory T cells and suppress the activity of CD8+ cells and

natural killer (NK) cells (43, 44). They are closely associated with

the pathogenesis of other diseases as well, such as autoimmune

diseases (45) and skin diseases (4, 46). Also, the contents carried by

exosomes reflect the physiological or pathological condition of their

cellular origin. Many studies have reported that the RNA profile of

exosomes of disease origin or pathological cells differs from that of

exosomes of healthy cellular origin (47–49). Exosomal RNA has

been used or has the potential to be used in the diagnosis and

treatment of multiple diseases (50, 51). For example, a multicenter

cohort study showed that a small RNA was specifically enriched in

salivary exosomes, tissues and cells of patients with pancreatic

ductal adenocarcinoma, and detection of a double signal

composed of these small RNAs was able to diagnose patients with

pancreatic ductal adenocarcinoma with high sensitivity (90.50%)

and specificity (94.20%) (52). In melanoma patients, the levels of

circulating exosomal PD-L1 are positively correlated with the levels

of IFN-g, and exosomal PD-L1 is also a marker of immune

activation after the initiation of treatment with PD-1-blocking

antibodies, (53, 54). The analysis of exosomes contributes to a

better understanding of the biological mechanisms of disease and

helps to develop new diagnostic and therapeutic approaches.

Table 1 summarizes the role of exosomes in autoimmune diseases.
2.2 MiRNAs

MiRNAs are 18-25 nucleotide non-coding RNAs generated by

nearly all cells in the body and primarily transcribed by RNA

polymerase (64). They are initially transcribed into large precursors

called primary miRNAs (pri-miRNAs), which are then transcribed

in the nucleus by RNA polymerase II or RNA polymerase III and

cleaved into pre-miRNAs by Drosha and its cofactors (65). These

pre-miRNAs are exported to the cytoplasm and processed by Dicer

to produce mature miRNA products (66, 67). MiRNAs have been

shown to play various roles in numerous diseases and physiological

states, both in vitro and in vivo, through their functional transfer via

exosomes. They primarily regulate gene expression by recognizing

homologous sequences and interfering with transcriptional,

translational, or epigenetic processes (68). MiRNAs are highly

conserved during evolution and participate in essential biological

processes such as cell proliferation, differentiation, metabolism,

apoptosis, development, and aging processes (66). Over 2600

mature human miRNAs have been reported to date (69) and are

expressed in distinct spatial and temporal patterns during

embryonic and postnatal development, as well as in adult

tissues (70).
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2.3 Exosome-derived miRNAs

Exosomes offer a unique mode of intercellular communication,

where miRNAs produced and released by one cell are taken up by

distant cells, affecting gene expression in health and disease (71–73).

Exosome-derived miRNAs have several advantages over

intracellular and cell-free blood sources of miRNA (74). For

instance, exosomes can protect miRNAs from degradation in vivo

and enable superior systemic retention compared to liposomes,

allowing miRNAs to function at distant sites (75). Moreover, the

miRNA profiles derived from exosomes differ significantly from

those originating from their cells of origin, indicating that

numerous miRNA species are selectively encapsulated into

exosomes (76).

Currently, various attempts have been made to elucidate the

mechanisms of loading and sorting miRNA into exosomes. Several

pathways for loading miRNAs into exosomes have been described.

The first pathway originates from the inherent structure of miRNA

with a 3′ end adenylation and uridylation, which is essential for

recognition by AGO2.miRNAs with an adenylated 3′ end are

predominantly found in cells, while miRNAs with a uridylated 3′
end are sorted into exosomes, as demonstrated in RNA sequencing

research on human B cells and their associated exosomes (77). The

second sorting pathway involves sphingomyelinase 2-dependency,
Frontiers in Immunology 03
which is the first molecule identified to be associated with miRNA

loading into exosomes. Overexpression of sphingomyelinase 2

promotes miRNA sorting into exosomes, while its inhibition

produces the opposite result (78). The third sorting pathway

involves the miRNA-induced silencing complex (miRISC)

association. The miRISC mainly consists of miRNA, miRNA-

repressible mRNA, GW182, and AGO2. The RNA-binding

protein mediates the final sorting pathway. SYNCRIP selectively

sorts miRNAs and has a 4-nucleotide motif near the 3′ end,

independently of hnRNPA2B1 (79). The fourth pathway is the

sumoylated heterogeneous nuclear ribonucleoprotein (hnRNP;

primarily including hnRNPA2B1, hnRNPA1, and hnRNPC)-

dependent pathway, which binds to miRNAs and facilitates their

loading into exosomes (80). Y-box protein 1 can selectively sort

miR-223 into exosomes in HEK-293T cells (81). Additionally, a

growing number of studies clarify the mechanisms by which

miRNA sorting occurs in exosomes or cells. Accumulating

research evidence demonstrates that miRNAs possess sorting

sequences that determine their exosomal secretion or cellular

retention, and different cell types, including endothelium, brown

and white adipocytes, muscle, and liver, preferentially use specific

sorting sequences, thus determining the exosomal miRNA profile of

that cell type. Insertion or knockdown of these CELLmotifs or

EXOmotifs into a miRNA alters their retention in the cells that

produce or secrete them into exosomes. Two RNA-binding

proteins, Fus and Alyref, are involved in the export of miRNAs

carrying one of the strongest EXOmotifs, CGGGAG. Increased

miRNA delivery mediated by EXOmotifs leads to enhanced

inhibition of receptor genes in distant cells (82, 83).

Following intracellular loading of miRNA into exosomes,

binding to their target cells’ membrane regions, and through

plasma membrane fusion, miRNA-containing exosomes are

eventually released. Six possible methods of exosome miRNA

uptake have been documented, and are illustrated in Figure 1: 1)

Receptor-Mediated Endocytosis. Mechanisms involving clathrin- or

caveolae-regulated endocytosis, phagocytosis, or macropinocytosis

(84). 2) Clathrin-Coated Pits (CCPs).CCPs form as a result of the

AP2 complex recognizing membrane and cargo, subsequently

recruiting clathrin triskelia (85, 86). 3) Lipid Rafts. The role of

lipid rafts in the intracellular mechanism of exosome entry has been

investigated. Studies show that disrupting dendritic cell lipid rafts

significantly reduces and blocks exosome uptake, indicating that

lipid rafts are involved in this process. However, the precise

mechanism of this pathway remains to be elucidated (85). 4)

Receptor signaling. MiRNAs docked in exosomes can be

assimilated by recipient cells by directly targeting corresponding

cell membrane receptors, generating intracellular signaling, and

subsequently activating or inhibiting related pathways such as the

Ca2+/MEK/ERK signaling pathway (87, 88). 5) Direct Fusion.

Targeting the recipient cells’ surface immediately and fusing with

the cell membrane (89). 6) Caveolae. Exosomes have been shown to

follow a different endocytic pathway than liposomes through

caveolae internalization (90). Co-localization studies between

fluorescently labeled extracellular vesicles (EVs) and cholera toxin

B exhibit poor co-localization in recipient cells, suggesting that EVs

utilize independent caveolin (91).
TABLE 1 The role of exosomes in autoimmune diseases.

Functions Mechanism
Impact
on

Vitiligo
Ref

Regulation of
Immune Response

Elicit adaptive and
innate immune
reactions, delivering
DNA, manipulating gene
expression via miRNA.

Presenting
antigens and
manipulating
immune
cell activity

(4, 55)

Antigen
Presentation

Directly present peptide
antigens to specific T cell

present
melanocyte
antigens to
immune cells

(4, 56)

Innate
Immune Response

Exosomes can limit
complement-mediated
lysis, trigger myeloid-
derived suppressor cell
activation, and induce an
immunosuppressive
macrophage phenotype.

Influence
innate
immune
responses

(57, 58)

Oxidative stress

The delivery of
antioxidant enzymes,

induction of antioxidant
response, regulation of
cellular redox balance

Related to the
dysfunction

of
melanocytes

(59–61)

Immunoregulatory
Molecules

Exosomes can present
PD-L1, suppressing
T cell function. Mast
cell-derived exosomes
can induce B and T
cell proliferation.

Potentially
affecting
immune

evasion and
response

to
melanocytes

(61–63)
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3 Pathogenesis of vitiligo

Vitiligo is an autoimmune disease (92), and its exact

pathogenesis is not fully understood. Two main biological process

have been reported to explain its pathogenesis.
3.1 Autoimmune

The immune system attacks and destroys melanocytes, leading

to the development of white patches. A cross-sectional study by Gill

L et al. showed that about 20% of vitiligo patients have at least one

autoimmune disease in combination throughout the disease

progression, suggesting that vitiligo’s occurrence is likely related

to immune mechanisms (93). Immunosuppressive agents have

shown better results in vitiligo treatment, further suggesting that

autoimmunity can influence vitiligo development (94, 95). The

immunological mechanism of vitiligo development is closely

related to humoral and cellular immunity, especially cellular

immunity, where many cytokines have been found to play a

direct or indirect regulatory role. In cellular immunology, the

main influences on vitiligo development are helper T cells (Th),

cytotoxic T cells (CTL), and regulatory T cells (Treg). In the whole

process of vitiligo disease, cellular immune function regulation is

mainly acted upon by Th1 and Th17 cells, and interleukin-17A (IL-
Frontiers in Immunology 04
17A) is significantly increased in the cellular expression level of

patients’ serum when Th1 and Th17 cells’ levels significantly

increase in the peripheral blood (96).

CD8 cytotoxic T cells occupy a crucial position among the

whole T lymphocytes and are capable of toxic killing of cells. These

cells can specifically target and destroy melanocytes. As their

numbers increase, their ability to kill melanocytes intensifies,

leading to a greater extent of skin lesions in patients (97, 98).

Activated CD8+ T cells secrete various cytokines, such as IFN-g and
TNF-a. These cytokines have multiple effects, including inducing

melanocyte apoptosis, inhibiting melanocyte proliferation, and

reducing pigment production (99).

Recent studies increasingly suggest that dysfunction of Treg cells

significantly contributes to the onset of vitiligo (100, 101). In the

lesional skin of vitiligo patients, a reduction in the number of Tregs is

often observed. Similarly, flow cytometry analysis of circulating Tregs

shows that the number of Tregs in the blood of vitiligo patients is

reduced compared to healthy individuals (102–105). Treg cells are a

subpopulation of T cells with tolerance to self-antigens, and they help

prevent autoimmune diseases. When the number of Treg cells

decreases or their function is impaired, they fail to inhibit the

proliferation of CD8 and CD4 T cells. The increase in CD8 T cells

may destroymelanocytes via the granzyme B or perforin pathways, or

by releasing cytokines that promote melanocyte destruction. This

ultimately leads to the loss of melanocytes through apoptosis (101,
FIGURE 1

The brief mechanism of exosomal miRNA and uptake by recipient cells. The biogenesis of miRNA involves transcription of a pri-miRNA, formation of
pre-miRNA, translocation to the cytoplasm, and maturation of the miRNA. miRNAs containing different RNA motifs can be loaded into MVBs via
various RNA-binding proteins. MVBs can either follow a degradation pathway by fusing with lysosomes or release the intraluminal vesicles as
exosomes into the extracellular space. Recipient cells can uptake exosomal miRNAs through six pathways: receptor-mediated endocytosis, clathrin-
coated pit, lipid raft, receptor signaling, direct fusion, and caveola. MVBs, multivesicular bodies.
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102). Currently, studies based on single-cell RNA sequencing of

human vitiligo patients indicate that CCL5-CCR5 cytokine

signaling acts as a connecting axis between effector CD8 T cells

and Treg cells (106).

Additionally, the differential ability of fibroblasts in various

parts of the patient to respond to gamma interferon determines not

only their capacity to recruit CD8+ T cells but also the preferred

locations for vitiligo onset. This recruitment mechanism in vitiligo

pathogenesis coordinates the accumulation of CD8+ T cells at

damaged skin junctions. As a result, these cells can continuously

attack melanocytes in healthy areas, causing a progressive

expansion of depigmented regions (107). Secretion of interferon-g
(IFN-g) by natural killer (NK) cells and innate lymphocytes (ILC)

induces the expression of C-X-C motif chemokine receptor (CXCR)

3B on the melanocyte surface and the release of C-X-C motif

chemokine ligand 9 (CXCL9), C-X-C motif chemokine ligand 10

from keratinocytes and melanocytes (CXCL10), and C-X-C motif

chemokine ligand 11 (CXCL11). CXCL10 then activates CXCR3B

and triggers apoptosis of melanocytes (108).
3.2 Oxidative stress

Multiple factors and mechanisms have been proposed for the

etiopathogenesis of vitiligo, among which oxidative stress has been

widely accepted as a key factor in initiating melanocyte loss.

Oxidative stress is a reaction process caused by the accumulation of

free radicals induced by an altered environment, including

inflammation and mitochondrial dysfunction (109). Excessive

reactive oxygen species (ROS) have been identified as essential free

radicals that exacerbate oxidative stress and aggravate tissue

dysfunction (110). However, when ROS production severely

exceeds clearance capacity, ROS can accumulate and affect cells,

leading to DNA damage, protein misfolding and chromosome

instability (111). This theory suggests that increased oxidative stress

caused by factors such as sun exposure, hormonal imbalance, or

certain chemicals damages melanocytes and leads to vitiligo. The

imbalance in redox status caused by oxidative stress, including

excessive production of ROS and reduced activity of the

antioxidant system in the skin, reduce the resistance of melanocytes

to exogenous or endogenous stimuli, ultimately impairing normal

defense mechanisms and leading to melanocyte deficiency (112). Low

levels of catalase (CAT), glutathione peroxidase (GPx), glucose-6-

phosphate dehydrogenase (G6PD), and superoxide dismutase (SOD)

have been demonstrated in the epidermis and blood of vitiligo

patients (113). These enzymes are closely associated with a state of

chronic oxidative stress (OS), which may lead to melanocytes being

programmed to become “senescent melanocytes.” They recruit

immune cells to kill senescent cells by expressing various cytokines

(114). In addition, excessive accumulation of reactive oxygen species

(ROS) induces the production of damage-associated molecular

patterns (DAMPs) and the release of melanosomal antigens that

activate innate immunity (98).

There is mounting evidence revealing an association between

oxidative stress and autoimmunity (115–117). ROS can activate

immune macrophages and dendritic cells, leading to these cells
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releasing more cytokines (such as TNF-a, IL-6, IL-1b), thereby
affecting melanogenesis (114, 118). Autoimmune responses can

further exacerbate oxidative stress. For example, when T cells

attack melanocytes, they produce more ROS, worsening the local

oxidative stress environment (119).

Additionally, MiRNA plays a crucial role in immune regulation

and oxidative stress in vitiligo, contributing to the process of

melanocyte death (14). For example, the increased expression of

miR-25 promotes melanocyte dysfunction and oxidative stress-

induced damage (120). MiR-211 inhibits UVB-induced

human melanocyte migration by suppressing MMP9 (matrix

metalloproteinase 9) and p53 (121). Figure 2 depicts the abnormally

expressed miRNAs involved in melanocyte destruction (adapted from

reference (14)).
4 Roles of exosomal miRNAs in vitiligo

The vital role of miRNAs encapsulated in exosomes in vitiligo is

increasingly recognized. High-throughput sequencing of clinical

samples has shown that the exosomal miRNA expression profiles

differ between patients with vitiligo and healthy individuals, with

increased expression of miR-493-3p, miR-370-3p, and miR-143-5p,

and decreased expression of miR-885-5p, miR-16-5p, miR-92a-3p,

and miR-92b-3p (96). In addition, exosome MiR-200c released

from keratinocytes in vitiligo patients was significantly

downregulated (122). However, the expression of Exosomal MiR-

493-3p was significantly increased in the blood and surrounding

tissues of vitiligo patients (123). Table 2 summarizes the reported

exosomal miRNAs that may be associated with vitiligo pathogenesis

and their potential mechanisms of action.

Exosomal miRNAs play multiple roles in the pathogenesis of

vitiligo, influencing the development and progression of the disease

through various mechanisms such as regulating immune responses,

participating in oxidative stress, and affecting melanogenesis. The

following will detail the roles of exosomal miRNAs in the

pathogenesis of vitiligo.
4.1 Immune imbalance

The immunomodulatory function of exosomal miRNAs has

been widely reported (136, 137). Exosomes of immune cell origin

(e.g., T cells, B cells, macrophages, etc.) have been shown to induce

suppressive or active immune responses and to participate in

immune regulation and immune stimulation (138). Studies have

shown that antigen-presenting exosomes secreted by cells such as

dendritic cells and T lymphocytes are enriched with co-stimulatory

molecules, antigenic peptide-MHC class I, and antigenic peptide

class II molecular complexes, which are presented to the

corresponding T cells to activate the immune response (139).

Researchers have also found that exosomes from normal immune,

non-immune, or pathological cell types can influence immune

homeostasis. For example, exosomes from dendritic cells express

stimulatory molecules of MHC class I and class II T cells in tumor

peptide culture, which subsequently activate CD8+ cytotoxic cells
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and produce cytotoxicity against mouse tumor cells (140). In

addition, exosomes may induce the differentiation of type 1 T

helper cells into type 2 T helper cells and reduce T cell

differentiation into type 2 T helper cells. They also reduce T cell

differentiation to interleukin 17-producing effector T cells (Th17

cells) and increase the number of Treg cells and the level of

cytotoxic T lymphocyte-associated proteins (141). Thus, exosomal

miRNAs, as intercellular mediators, are likely to be involved in the

regulation of immune homeostasis.

Vitiligo and immune imbalance are closely related. The

immune imbalance in vitiligo involves two main aspects of the

adaptive immune response:
Fron
1) Role of CD8+ T cells. Activated CD8+ cytotoxic T

lymphocytes (CTL) exhibit a strong skin-homing ability

and cytotoxic effect; they kill melanocytes by secreting

granzyme B and perforin, leading to skin pigmentation

deficiency (142). Current studies have found that IFN-g
reduces mRNA levels of TYR, tyrosinase-related protein 1

(TRP1), and microphthalmia-associated transcription

factor (MITF), inhibits melanocyte production, and

reduces their number around skin lesions. IFN-g is

mainly derived from NK cells, CD4+ T lymphocytes, and

activated CD8+ CTL; however, the main source of IFN-g in
vitiligo patients is CD8+ CTL (143, 144). In conclusion,

CD8+ T cells not only kill melanocytes directly but also

inhibit melanocyte function by secreting IFN-g.
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2) Imbalance between effector T cells. An imbalance occurs

between Treg cells (reduced) and CD8+ CTL (significantly

elevated) around the skin lesions of vitiligo patients. This

imbalance leads to massive secretion of IFN-g to kill

melanocytes (145, 146). Notably, this imbalance is

associated with the secretion of pro-inflammatory factors

IL-17, IL-6, and TNF-a by differentiated Th17 cells from

CD4+ T cells. These cytokines actively regulate inflammatory

and autoimmune responses in vivo. Among them, IL-6 acts

as a hub between Treg and Th17 cells (147, 148). Currently,

miRNA regulation of transcription factor expression, thereby

affecting the Treg/Th17 balance, is the most extensively

studied aspect of the Treg/Teff balance (149). For example,

miR-155 and miR-221-5p target SOCS1, inhibiting the

activation of STAT5 (150, 151). SOCS3, a negative

regulator of STAT3 activation, is a target of miR-384 and

miR-206 (152, 153). In addition to Treg/Th17, the Treg/Th1

and Treg/Th2 balance can also be regulated by various

miRNAs. For instance, miR-23a-3p and miR-155 disrupt

the Th1/Treg balance by targeting Sirt17 (154, 155).
Exosomes are necessary for the regulation of CD8+ T, and Th17

cells (10). The immunosuppressive effect of exosomal miRNAs on

CD8+ T cells has been frequently described in tumor lesions.

Exosomes from malignant or immune cells can be taken up by

tumor-infiltrating CD8+ T cells and modulate the tumor

microenvironment to produce anti-tumor effects (156). Dokyung
FIGURE 2

Abnormally expressed miRNAs affect melanin production. Abnormal expression of miRNAs reduces skin melanin through four processes:
melanocyte apoptosis, melanocyte proliferation, melanin synthesis, and melanocyte migration. Each process may be influenced by several
abnormally expressed miRNAs, and the same abnormally expressed miRNA may be involved in more than one process.
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Jung generated interleukin-2-tethered sEVs (IL2-sEVs) from

engineered Jurkat T cells expressing IL2 at the plasma membrane

via a flexible linker to induce an autocrine effect. IL2-sEVs increased

the anti-cancer ability of CD8+ T cells without affecting Treg and

down-regulated cellular and exosomal PD-L1 expression in

melanoma cells, causing their increased sensitivity to CD8+ T

cell-mediated cytotoxicity. Its effect on CD8+ T and melanoma

cells was mediated by several IL2-sEV-resident miRNAs, whose

expressions were upregulated by the autocrine effects of IL2. Among

the miRNAs, miR-181a-3p and miR-223-3p notably reduced the

PD-L1 protein levels in melanoma cells. Interestingly, miR-181a-3p

increased the activity of CD8+ T cells while suppressing Treg cell

activity (137). In addition, exosomal miRNAs can also induce

suppressors of CD8+ T cell activity; tumor-derived exosomes lead

to a significant loss of CD27/CD28 and thus induce suppressors of

CD8+ T cells (74).

Moreover, exosomes have an important role in the regulation of

Treg cells. For example, human umbilical cord MSC-derived

exosomes increased the proportion of CD4+CD25+Foxp3+ Treg

cells and decreased the proportion of CD4+IL17A+ T cells (Th17

cells) (10). A study showed that MSC-derived exosomes have the

capacity to decrease Th17/Treg imbalance in aplastic anemia

through sphingosine kinase isoenzyme 1 (SphK1)-mediated

exosomal sphingosine 1-phosphate enrichment (S1P) in both in

vivo and in vitro experiments (157). In addition, bone marrow-
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derived mesenchymal stem cell (BMSC)-derived exosome miR-

181a is essential for the maintenance of immune tolerance. It

induced CD3+CD1+FOXP3+ Treg cells production via SIRT4/

acetylation/FOXP3 (158). BMSC-derived exosomes can partially

transfer miR-17a-6p to suppress IL-23 expression and thereby

balance the Th17/Treg ratio in aplastic anemia (159).

Exosomes secreted by multiple immune cells can act on

different types of immune cells and alter their functions (160).

First, the unidirectional transfer of T cell exosomal miRNAs to

antigen-presenting cells (APCs) plays a genetic regulatory role

during immune synapse formation (161). In addition, it has been

reported that Treg cells transfer miRNAs to various immune cells,

including helper T cell 1 (Th1) cells, via exosomes to inhibit Th1 cell

proliferation and cytokine secretion. The mechanism lies in the fact

that miRNA-containing exosomes mediate the silencing of Th1 cell

genes by Treg cells through non-cell-autonomous gene regulation.

Exosomal miRNAs may cooperate with other Treg cell mechanisms

to achieve optimal inhibition (162). This may be one of the reasons

for the ability of Treg cells to regulate immunity. B cells release

more exosomes upon stimulation with CD40 and IL-4 antigens, and

these exosomes initiate dendritic cells (DCs) through transfer,

which together with CD4+ T cells activate CD8+ T cells to trigger

the killing response of CD8+ T cells (139). Immunosuppressive

effects of B-cell-derived exosomes have also been reported, inducing

apoptosis of CD4+ T cells (163). Classically activated macrophages
TABLE 2 Exosomal miRNAs in vitiligo.

miRNA Sample
Target

and expression
Observation/impact of miRNA Ref

miR-2478 Milk Exosome-Derived Rap1a↓ Inhibition of melanogenesis through the Akt-GSK3b pathway (124)

miR-200c
Normal human

epidermal keratinocytes
↓ Regulate the activation of b-catenin in melanocytes by mediating SOX1 (122)

miR-
330-5p

Keratinocytes ↑
Downregulating TYR in melanocytes inhibits melanin pigmentation

of melanocytes
(125)

miR-675
Normal human
skin keratinocytes

MITF↑
It inhibits the level of stem cell factor (SCF) and basic fibroblast growth factor

(bFGF) in keratinocytes
(126,
127)

miR-
493-3p

Serum in the
coculture system

↑
Resulted in a significant increase in ROS and melanocyte apoptosis, as well as a

decrease in melanocyte proliferation and melanin synthesis
(123,
128)

miR-
375-3p

Plasma
X-linked inhibitor of
apoptosis protein↓

Induced keratinocyte cell death (129)

miR-3196 Caucasian keratinocytes MITF-M↑ Rab27a↓ Regulation of melanin synthesis through TYR (130)

miR-
181a-5p

Human amniotic stem cells MITF Inhibition of downstream melanogenic genes (tyrosinase, TRP1, and TRP2) (131)

miR-199a Human amniotic stem cells mTOR↓ Degradation of melanosome (131)

miR-
21-5p

Peripheral Blood of
Vitiligo Patients

Targeting special AT-rich
sequence binding protein-1

Inhibited melanocytes melanogenesis (132)

miR-
487b-3p

Serum of vitiligo patients ↓
It may accelerate the catabolism of melanocytes and cause their damage in

progressive vitiligo
(133)

miR-
143-5p

Serum of vitiligo patients/
Mouse melanocytes

MITF↑ Melanocytes upon blocking miR-143
(123,
134)

miR-211
Serum of vitiligo

patients/keratinocytes
Sirtuin1↑ Protecting vitiligo epidermis from UV-mediated DNA damage

(125,
135)
frontie
*↓down-expression, ↑over-expression.
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secrete exosomes that deliver inflammatory signals to immature

macrophages and DCs, stimulating cellular inflammation and

releasing more Th1 cytokines (164).

Natural killer (NK) cells secrete exosomal miRNAs that also

regulate T cell immune responses. miR-10b-5p, miR-92a-3p, and

miR-155-5p, found in NK cell exosomes, specifically target molecules

involved in the Th1 response, promote CD4+ T cell activation, and

produce the cytokines IFN-g and IL-2 (165). Increasing evidence

suggests that NK cell-derived exosomes can induce IFN-g secretion

and increased T-bet expression, with exosomal miRNAs associated

with this effect including miR-20a-5p, miR-25-3p, miR-10b-5p, miR-

92a-3p, and miR-155. In addition, NK cell-derived exosomes can drive

CD4+ T cell activation and may enhance antigen presentation and co-

stimulatory abilities by increasing monocyte polarization toward

moDCs. They also indirectly affect T cell responses by upregulating

MHC-II and CD86 expression (165). Therefore, NK cell-derived

exosomes may influence vitiligo development by affecting IFN-g
secretion and CD4+ T cell activation.
4.2 The role of exosomal miRNAs derived
from keratinocytes

Skin color is mainly determined by the content and composition of

melanin in the epidermis, and the development of vitiligo is closely

related to impaired melanin production and transport. Summarizing

the available research results, keratinocytes have two roles in skin tone

formation. On the one hand, they are melanin-receiving cells. Melanin

is synthesized within the melanosomes of melanocytes and transported

from its perinuclear region of origin to the cell periphery, where it will

be further transferred to the adjacent keratinocytes, forming different

skin tones (166). Reportedly, the melanosomes in the keratinocytes in

the lesions of patients with stable vitiligo are single and large; however,

in contrast, the melanosomes in active vitiligo skin are smaller and less

dense (167). Currently, melanin transfer patterns from melanocytes to

keratinocytes are described in four main categories:1) Cytophagy.

where melanosome-containing melanocytes are phagocytosed by

adjacent keratinocytes via dendrites or filamentous pseudopods

(168). 2) Membrane fusion, where melanosomes are transferred

directly through the membrane tunnel formed between the two cells

(169). 3) Shedding and swallowing model, where membrane vesicles

containing individual or aggregated melanosomes are released from

melanocytes and then phagocytosed by keratin-forming cells (169). 4)

Cytosolic-endocytosis. The melanosome membrane fuses with the

plasma membrane and secretes naked melanin from the melanocytes

(170). In addition, the role of vesicles in this mechanism has

been demonstrated, and studies have shown that vesicles containing

melanosomes exiting melanocytes are phagocytosed by keratinocytes

(168, 171). Transport of melanosomes is also regulated by the small

GTPase Rab27a (172), and the role of Rab27 in exosomes has also been

reported (173). Thus, melanin transport may also be associated with

exosomal miRNAs.

On the other hand, keratinocytes not only passively receive

melanosomes transferred from melanocytes but also actively

regulate melanocyte function. According to reports, extracellular

vesicles released by keratinocytes carry miRNAs that target
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melanocytes and regulate their state by altering gene expression

patterns and enzyme activity (125, 174–178). Studies have shown

that exosome protein markers, such as TSG101, Alix, and CD63,

were detected in the culture supernatant of keratinocytes (125, 130).

Moreover, the expression of miRNAs in exosomes was not affected

by RNase intervention in the keratinocyte culture supernatant, as

they were encapsulated within the phospholipid bilayer of the

exosomes (126). The process of exosomes transferring from

keratinocytes to melanocytes has been recently confirmed. The

work by Lo Cicero et al. utilized CD63-GFP to track the

movement of exosomes in keratinocytes. Initially, CD63-positive

regions were detected around the nuclei of keratinocytes, which

then moved towards the plasma membrane. During co-culture with

melanocytes, it was observed that exosome levels in melanocytes

significantly increased after 24 hours of co-culture (130).

Furthermore, exosomes derived from keratinocytes carrying miR-

330-5p resulted in a significant increase in the expression of miR-

330-5p in melanocytes, indicating that nucleic acids from

keratinocytes are delivered to melanocytes via exosomes (125).

Furthermore, Hai-Xia Shi et al. studies showed that miRNAs

were upregulated in EVs from keratinocytes. KEGG pathway

analysis indicated that exosome-derived miRNAs can target one

or more genes and regulate one or more signaling pathways that

affect the biological activity of melanocytes, such as the MAPK

signaling pathway, endocytosis, axon guidance, and neurotrophic

factor signaling pathways. In addition, PKH67, a green fluorescent

dye was used as a marker to study the internalization process of

exosomes. The experimental results showed that scattered green

fluorescent particles could be seen in melanocytes co-cultured with

exosomes derived from keratinocytes. These findings suggest that

exosomes secreted by keratinocytes are transported to melanocytes

through certain pathways. Exosomes from keratinocytes not only

promote the proliferation and dendritic morphology of melanocytes

but also enhance their tyrosinase activity and melanin production

(175). Another study investigated the effect of UVB radiation on

melanogenesis. After irradiation, the number of exosomes released

from keratinocytes increased almost twofold. When using

keratinocyte exosome modulators D609 and GW4869, the

number of melanocytes in the co-culture system was significantly

reduced, indicating that the quantitative changes in keratinocyte

exosomes are of significant importance in the regulation of human

skin color development (179). Figure 3 summarizes the process of

exosome miRNA formation from keratin-forming cells and its

uptake by melanocytes, which affects melanin formation.

Unfortunately, there have been limited reports on the study of

secreted exosomes from melanocytes to keratinocytes. Current

research indicates that UVA radiation is a necessary condition for

human melanocytes to secrete exosomes. Under UVA irradiation,

the exosome protein markers flotillin-1 and CD63 were detected in

the conditioned medium of melanocytes (180, 181). It was also

determined that exosomes were released from melanocytes and

preferentially absorbed by keratinocytes without cell-to-cell contact,

enhancing the proliferation of keratinocytes (182). Petra Wäster

purified exosomes from UVA-exposed melanocytes and added

them to keratinocytes, which resulted in enhanced anti-apoptotic

signal transduction in the keratinocytes (183).
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4.3 Abnormal melanin production

The influence of exosomes on melanogenesis pathways and

their possible role in the pathogenesis of pigment deposition

diseases have been proposed, but the mechanisms are not yet

fully elucidated. There are four main pathways through which

miRNAs regulate melanin production:1) miRNA may cause

abnormal proliferation, differentiation, migration, and apoptosis

of melanocytes, thereby affecting pigment deposition (14). For

example, overexpression of miR-155 reduces the expression of

melanogenesis-related genes in melanocytes and keratinocytes

(184); MiR-211 inhibits UVB-induced human melanocyte

migration by suppressing MMP9 (matrix metalloproteinase 9)

and p53 (185). 2) miRNA targets proteins involved in

melanogenesis pathways, including SOX5, b-catenin, cyclin-

dependent kinase 2, and MITF (186). For example, exosomal

miR-21-5p derived from peripheral blood of vitiligo patients

inhibits melanogenesis in melanocytes by targeting special AT-

rich sequence-binding protein-1 (SATB1) (107); MiRNA-141-3p

and miRNA-200a-3p regulate melanogenesis stimulated by a-
melanocyte-stimulating hormone through directly targeting MITF

(187). 3) miRNA affects pigment deposition by inhibiting melanin

transport.MiR-203 reduces melanosomes transport by targeting

KIF5B and negatively regulating the CREB1/MITF/Rab27a

pathway (188). 4) miRNA may be involved in the destruction of

melanosomes. Human amniotic stem cell-derived exosomal miR-

181a-5p and miR-199a inhibit melanogenesis in excessive skin

pigmentation and promote melanosome degradation (131).
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Exosomal miRNAs participate in melanogenesis through

MAPK signaling pathways, Ras signaling pathways, Rap1

signaling pathways, cAMP signaling pathways, endocytosis, axon

guidance, and Wnt signaling pathways (10). A large number of

miRNAs carried by exosomes participate in intercellular

communication and selectively target miRNAs in melanocytes to

regulate melanin pigmentation by changing gene expression

patterns and/or enzyme activity (189). Studies have shown that

miR-27a-3p, miR-675, miR-145, miR-25, miR-340, miR-330-5p,

miR-211, miR-155, miR-218, miR-21a-5p8, and other miRNAs

affect melanogenesis through various mechanisms (175).
4.4 Oxidative stress-induced damage

Oxidative stress is commonly detected in vitiligo and is related

to immune response and melanocyte death progression (190). The

regulation of endogenous ROS production and its balance with the

antioxidant system is dynamic and complex. Under physiological

conditions, mild stress such as moderate sun exposure or physical

exercise can induce ROS release, activating responses that maintain

cellular defense barrier functions. Excessive ROS can cause the

death of a small number of melanocytes by causing molecular and

organelle dysfunction and exposing melanocyte-specific antigens

(14, 191). Recent research has found that miRNAs regulate the

response of oxidative stress in vitiligo. MiRNAs may promote the

development of vitiligo by regulating the expression and function of

oxidative stress-related genes in melanocytes.
FIGURE 3

Exosome-derived miRNAs in keratinocytes modulate melanocyte Function. The miRNA-containing exosomes are taken up by melanocytes, followed
by the transfer of miRNAs. Furthermore, exosomal miRNAs are involved in the PI3K/Akt, MAPK, and cAMP signaling pathways to regulate the
transcription of MITF in melanogenesis. Exosomal miR-675 inhibits the phosphorylation of CREB, ERK, and AKT signaling molecules, subsequently
causing the inhibition of TYR, TYRP1, and TYRP2 expression. Exosomal miR-25 promotes ROS increase, suppressing the expression of MITF.
Exosomal miR-330-5p directly inhibits the expression of MITF protein, leading to the inhibition of TYR, TYRP1, and TYRP2 expression. PI3K/Akt,
phosphatidylinositol 3-kinase/protein kinase B, MAPK, mitogen-activated protein kinase, cAMP, cyclic adenosine monophosphate.
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Studies have shown that the expression of miR-493-3p in

circulating exosomes and perilesional skin of SV patients is

significantly increased. Overexpression of miR-493-3p in

keratinocytes increases the concentration of dopamine in the

culture supernatant, leading to a significant increase in ROS and

melanocyte apoptosis, and a decrease in melanocyte proliferation

and melanin synthesis in the co-culture system by targeting

HNRNPU. The miR-493-3p/HNRNPU/COMT/dopamine axis

may contribute to the dysregulation of melanocytes in the

pathogenesis of SV (123). Oxidative stress also increases the

expression of miR-25 in melanocytes and keratinocytes. Q Shi

performed luciferase reporter assays, indicating that miR-25

directly regulates MITF expression by binding to the predicted

target sites in the 3′UTR of its mRNAs (120). In studies of miR-25

on melanocytes, overexpression of miR-25 alone does not affect

melanocyte apoptosis but can inhibit the antioxidant capacity of

melanocytes by suppressing the MITF-apyrimidinic endonuclease

(APE1) pathway, making melanocytes more susceptible to the

effects of oxidative stress-induced apoptosis (120).

It has been reported that mesenchymal stem cell-derived

exosomes can prevent H2O2-induced damage to keratinocytes,

improve the antioxidant capacity of keratinocytes, and reduce the

cellular response to oxidative stress (192). This provides new ideas

and possibilities for the treatment of vitiligo.

5 Conclusions and perspective

Given the significant clinical implications of miRNAs in vitiligo,

specifically targeting exosomal miRNAs as an in vitro strategy

presents a promising approach for vitiligo treatment. In vitiligo

patients, a large number of miRNAs are abnormally expressed,

reflecting the activity and histological changes of the disease. These

miRNAs are involved in oxidative stress responses (e.g., miR-9,

miR-211), immune imbalance(e.g.,miR-21-5p,miR-133b, miR-224-

3p), and melanin production (e.g.,miR-330-5p, miR-211,miR-21-

5p,miR-200a-3p,hsa-miR-149-5p) (2, 163, 184). These miRNAs can

reflect the activity and histological changes of vitiligo, which are

considered biomarkers of vitiligo. Therefore, exosomal miRNAs

become attractive diagnostic and therapeutic targets.

There are two strategies for the application of miRNAs: 1) Anti-

miRNAs. Anti-miRNAs can be used to counteract the over-activation

of miRNAs. For example, Short tandem target mimic-miR-143-5p can

upregulate the expression ofMYO5A, which in turn increases the levels

of MITF, promoting melanogenesis (134). 2) miRNA Replacement.

This involves reintroducing a gene-suppressor miRNAmimic or using

adeno-associated virus -mediated miRNA gain-of-function to

modulate gene expression. For instance,miR-211 mimic can alter the

migratory capacity of melanocytes through the p53-TRPM1/miR-211-

MMP9 axis, enhancing melanin levels (2, 193).

The delivery of miRNA through exosomes has attracted

widespread attention. For example, Kuang et al. pointed out that in

C57BL/6 mice exposed to cerebral ischemia, natural MSC-derived

exosomes (rather than exosomes obtained fromMSCs pre-treated with

anti-miR-25-3p) regulated oligonucleotide autophagy flux and cell

death by modulating the p53-BNIP3 pathway (194). Exosomal
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miRNAs have several excellent properties for disease treatment.

Exosomes have high stability, effectively protecting miRNAs from

degradation by endogenous RNases. In addition, they are widely

distributed in various body fluids such as milk, urine, blood, and

saliva, making them easy to isolate and non-invasively obtain.

Moreover, in vitiligo, miRNAs encapsulated in exosomes have been

found to exert biological functions by regulating specific aspects such as

immune response, oxidative stress, and regulation of keratinocyte and

melanocyte function. Importantly, many exosomal miRNAs are

involved in more than two of these processes and have good

consistency in their mode of action.

Currently, there are 49 clinical trials with different statuses

related to miRNAs encapsulated in exosomes registered at https://

clinicaltrials.gov/. Of these 49 trials, 12 are completed, 16 are active

and recruiting, 5 are active but not recruiting, 2 are not yet

recruiting, and 14 are unknown. It is expected that the dawn of

the exosomal miRNA era will arrive.

However, there are significant challenges to be addressed when

applying exosomal miRNA for disease treatment in clinical settings.
1) Exosomes have low yields, mainly obtained in limited fluids

(such as culture media). Traditional exosome isolation

methods, like ultracentrifugation, require multiple steps

and cause significant loss and damage to exosomes,

reducing their quality and purity (195). MSCs have

remarkable ex vivo proliferation abilities, making them a

key source for therapeutic exosome production (196).

Mendt et al. developed a scalable exosome extraction

method based on GMP standards, which extracts

exosomes from human bone marrow-derived MSCs with

yields three times higher than those from human foreskin

fibroblasts (197). MSCs are widely found in adipose tissue,

human umbilical cords, and bone marrow (198). Adipose

tissue can be obtained from the abdominal and gluteal fat of

healthy adult donors, and MSCs can be screened and

cultured using specific media. Additionally, human

embryonic kidney cells(HEK293) are extensively used as

exosome donors in various studies due to their high

transfection efficiency, ease of culture, and ability to

produce large quantities of exosomes (199). Importantly,

HEK293 cells can produce proteins most similar to those

synthesized by the human body, with low immunogenicity,

making them an ideal tool for producing protein or

peptide-based drugs (200, 201).

2) In exosome-based clinical research, the practicality, safety,

and compliance of exosome-related drugs are crucial issues

that need to be addressed. Firstly, the choice of donor cells

for exosomes is important; whether to use autologous cells

or allogeneic cells with low immunogenicity requires

adherence to relevant regulations and ethical review

requirements. Secondly, the method of drug loading and

release must be determined, optimizing the interaction

between exosomes and the drug to ensure the drug’s

stability and proper release rate. Thirdly, improving the

targeting and tissue localization capabilities of exosomes
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requires developing surface modification strategies suitable

for clinical application, such as using targeting peptides,

antibodies, or other molecules to allow exosomes to

specifically bind to target cells or tissues.
Given these limitations, future research should focus on these

directions. High-yield, efficient, safe, and standardizable production

of exosomes for treating vitiligo remains to be explored and

developed. New effective miRNA targets for vitiligo treatment can

be further investigated, with exosome delivery as a potential

approach. Currently, exosome-related therapies are primarily in

the preclinical stage, and their safety and efficacy need to be

demonstrated. Additionally, regulatory guidelines for exosome-

based drugs need to be refined. Furthermore, exosomes modified

through genetic and metabolic engineering have shown more

effective, stable, and safe immunomodulatory effects in the

progression of autoimmune diseases (202). Researchers should

continue to explore the potential value of modified exosomes in

vitiligo-related therapies, focusing on aspects such as targeted

delivery, circulatory stability, and biocompatibility. This will help

advance the clinical application of exosomes.

In summary, our review covers the biological functions of

exosomes and the involvement of exosomal miRNAs in the

pathological processes of vitiligo, providing new insights for the

diagnosis and treatment of the disease. Future research should delve

deeper into the mechanisms between exosomal miRNAs and

vitiligo progression and address the challenges of using exosomes

in the clinical treatment of vitiligo.
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