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Clinically relevant body
composition phenotypes are
associated with distinct
circulating cytokine and
metabolomic milieus in epithelial
ovarian cancer patients
Evan W. Davis1†, Hua-Hsin Hsiao1, Nancy Barone2,
Spencer Rosario1,3 and Rikki Cannioto2*

1Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo,
NY, United States, 2Department of Cancer Prevention and Control, Roswell Park Comprehensive
Cancer Center, Buffalo, NY, United States, 3Department of Pharmacology and Therapeutics, Roswell
Park Comprehensive Cancer Center, Buffalo, NY, United States
Introduction: Preclinical evidence suggests that host obesity is associated with

tumor progression due to immuno-metabolic dysfunction, but the impact of

obesity on immunity and clinical outcomes in patients is poorly understood, with

some studies suggesting an obesity paradox. We recently reported that high-

adiposity and low-muscle body composition phenotypes are associated with

striking increases in epithelial ovarian cancer (EOC) mortality and we observed no

evidence of an obesity paradox. However, whether at-risk versus optimal body

composition phenotypes are associated with distinct immuno-metabolic milieus

remains a fundamental gap in knowledge. Herein, we defined differentially

abundant circulating immuno-metabolic biomarkers according to body

composition phenotypes in EOC.

Methods:Muscle and adiposity cross-sectional area (cm2) was assessed using CT

images from 200 EOC patients in The Body Composition and Epithelial Ovarian

Cancer Survival Study at Roswell Park. Adiposity was dichotomized as low versus

high; patients with skeletal muscle index (SMI) <38.5 (muscle cm2/height m2)

were classified as low SMI (sarcopenia). Joint-exposure phenotypes were

categorized as: Fit (normal SMI/low-adiposity), Overweight/Obese (normal

SMI/high-adiposity), Sarcopenia/Obese (low SMI/high adiposity), and

Sarcopenia/Cachexia (low SMI/low-adiposity). Treatment-naïve serum samples

were assessed using Biocrates MxP Quant 500 for targeted metabolomics and

commercially available Luminex kits for adipokines and Th1/Th2 cytokines.

Limma moderated T-tests were used to identify differentially abundant

metabolites and cytokines according to body composition phenotypes.

Results: Patients with ‘risk’ phenotypes had significantly increased abundance of

metabolites and cytokines that were unique according to body composition

phenotype. Specifically, the metabolites and cytokines in increased abundance in

the at-risk phenotypes are implicated in immune suppression and tumor

progression. Conversely, increased abundance of lauric acid, IL-1b, and IL-2 in
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the Fit phenotype was observed, which have been previously implicated in tumor

suppression and anti-tumor immunity.

Conclusion: In this pilot study, we identified several significantly differentially

abundant metabolites according to body composition phenotypes, confirming

that clinically significant joint-exposure body composition phenotypes are also

biologically distinct. Although we observed evidence that at-risk phenotypes

were associated with increased abundance of immuno-metabolic biomarkers

indicated in immune suppression, additional confirmatory studies focused on

defining the link between body composition and immune cell composition and

spatial relationships in the EOC tumor microenvironment are warranted.
KEYWORDS

body composition, adipose tissue, skeletal muscle, epithelial ovarian cancer,
metabolomics, cytokines, immune suppression, tumor progression
1 Introduction

Preclinical evidence across a variety of tumor models has

established that host obesity is associated with tumor progression

as a result of immune and metabolic dysregulation (1–9), but the

impact of obesity on immunity and outcomes in patients remains

an area of intense scientific debate and clinical interest, with many

studies suggesting obesity is linked with improved immunotherapy

and survival outcomes (an obesity paradox) (1, 2, 10–21). For

instance, in epithelial ovarian cancer (EOC), the most recent

meta-analyses summarizing the associations of obesity at

diagnosis with mortality suggests there is either no association of

excess adiposity with EOC mortality (15) or there is an obesity

paradox (11).

For several years, our group has rigorously studied the

relationships of body composition with EOC mortality and we

recently reported novel data demonstrating that high-adiposity and

low-muscle joint-exposure body composition phenotypes before

chemotherapy are associated with striking increases in EOC

mortality (22). For example, in comparison to the ‘Fit’ body

composition phenotype (normal muscle mass and low adiposity),

the ‘Overweight/Obese’ phenotype (normal muscle/high adiposity)

was associated with up to 104% increased mortality; the

‘Sarcopenia/Obese’ phenotype (low muscle/high adiposity) was

associated with 67% increased mortality; and the ‘Sarcopenia/

Cachexia’ phenotype (low muscle/low adiposity) was associated

with 109% increased EOC mortality (22). Hence, we showed that

appropriately accounting for low muscle mass in joint-exposure

analyses eliminates any evidence of an obesity paradox. However,

what remains unknown is whether these four body composition

phenotypes are associated with distinct immune and metabolic

circulating milieus. To address this gap in knowledge, we initiated a
02
pilot study to define differentially abundant cytokines and

metabolites according to four clinically relevant joint-exposure

body composition phenotypes in EOC patients diagnosed and

treated at Roswell Park. Associations were defined in EOC overall

and in patients diagnosed with high-grade serous ovarian

carcinoma (HGSOC), the most common and deadly EOC subtype.
2 Methods

2.1 Study population

We leveraged data and specimens from women in The Body

Composition and Epithelial Ovarian Cancer Survival (BComES)

Study at Roswell Park Comprehensive Cancer Center in Buffalo NY

(PI: Cannioto). The BComES Study is a survival cohort comprised

of 750 pathologically confirmed invasive EOC patients treated at

Roswell Park between 2006 and 2024. For the current study, we

identified a sub cohort of EOC patients in the BComES study who

also: 1) were consented and enrolled into the Data Bank and

BioRepository (DBBR) at Roswell Park, a Comprehensive Cancer

Center Shared Resource; 2) had treatment-naïve banked serum

samples; 3) completed first-line treatment without significant

treatment delays between 2006-2021; 4) had clinically measured

height and weight recorded in the EHR; and 5) had a high-quality

computed tomography (CT) image available in the Picture

Archiving and Communication System. A total of 200

participants met the inclusion criteria and are included the

current analysis. Approval to initiate the BComES Study was

obtained in June 2019 from the Roswell Park Institutional Review

Board; additional approval to initiate the current biomarker study

was obtained in May 2022.
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2.2 Body composition assessment
and parameterization

Previous CT image-based body composition validation studies

have established that cross-sectional body composition at the third

lumbar vertebra (L3) is most representative of whole-body adiposity

and muscle mass (23). Herein, standard-of-care CT images at L3

were manually segmented by a trained rater using a well-established

standardized pipeline for analysis. We used commercially available,

validated sliceOmatic software to segment and quantify the cross

sectional area (cm2) at L3 for skeletal muscle, subcutaneous adipose

tissue, intermuscular adipose tissue, and visceral adipose tissue (24).

Total adipose tissue (TAT) area was calculated as the sum of

subcutaneous, intermuscular, and visceral adipose tissue area. In

accordance with guidance established in the extant literature, a

skeletal muscle index (SMI) was calculated as the ratio of skeletal

muscle area (cm2) to patient height (m2); patients with SMI≥38.5

cm2/m2 were classified as having a normal SMI and patients with

SMI<38.5 cm2/m2 were classified as having a low SMI, a proxy for

sarcopenia (25). As no standard cut-points for adiposity at L3 exist,

and tertile one coincides with the approximate percentage of

normal-weight patients in our cohort according to body mass
Frontiers in Immunology 03
index (BMI), we used the cut-point for the lowest tertile of

adiposity to classify low versus high adiposity.

Based on our previous reports (22, 26), our primary exposure of

interest for the current analysis is a joint-exposure muscle and

adiposity body composition phenotype. Representative cross-

sectional CT images of each body composition phenotype are

depicted in Figure 1. Specifically, circulating metabolites and

cytokines will be defined according to four clinically relevant

body composition phenotypes classified as: the Fit (referent)

phenotype (normal SMI/low TAT) (Figure 1A); the Overweight/

Obese phenotype (normal SMI/high TAT) (Figure 1B); the

Sarcopenia/Obese phenotype (low SMI/high TAT) (Figure 1C);

and the Sarcopenia/Cachexia phenotype (low SMI/low

TAT) (Figure 1D).
2.3 Biospecimen collection and
sample preparation

Patients enrolled in the DBBR consent to biospecimen collection

with permission to link biospecimens with epidemiological and

clinical data for the purpose of research. Upon enrollment in the
FIGURE 1

Cross-sectional computed tomography images at the third lumber vertebra depicting the adiposity and muscle distribution of each of the four body
composition phenotypes including the (A) Fit (normal muscle/low total adiposity) Phenotype; (B) Overweight/Obese (normal muscle/high total
adiposity) Phenotype; (C) Sarcopenia/Obese (low muscle/high total adiposity) Phenotype; and (D) Sarcopenia/Cachexia (low muscle/low total
adiposity) Phenotype. The red compartment represents skeletal muscle; the green compartment represents subcutaneous adipose tissue; the blue
compartment represents intermuscular adipose tissue; and the pink compartment represents visceral adipose tissue. Total adiposity is derived as the
sum of the green, blue, and pink compartments.
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DBBR, patients are scheduled to have blood samples drawn by

phlebotomy service at Roswell Park. Blood samples are labeled with

Roswell Park generated barcodes and immediately sent to the DBBR

laboratory through the pneumatic tube system for processing and

storage. Blood samples are processed into plasma, red blood cells,

buffy coat, and serum and aliquoted into 0.5 mL straws by CryoBio

System MAPI (Paris, France). Aliquots are then cryopreserved in

liquid nitrogen. The time from biospecimen collection to storage is

one hour or less to maintain biospecimen integrity (27).

2.3.1 Targeted metabolomics
Banked serum samples were prepared and analyzed using the

MxP Quant 500 kit (Biocrates Life Sciences AG, Innsbruck, Austria)

in the Bioanalytics, Metabolomics, and Pharmacokinetics Shared

Resource at Roswell Park accordance with the user manual. This

assay has a high level of technical reproducibility and internal

standards to ameliorate batch effects. 10mL of each supernatant,

quality control samples, blank, zero sample, or calibration standard

were added on the filterspot (already containing internal standard)

in the appropriate wells of the 96-well plate. The plate was then

dried under a gentle stream of nitrogen. Samples were derivatized

with phenyl isothiocyanate for the amino acids and biogenic amines

and dried again. Sample extract elution was performed with 5mM

ammonium acetate in methanol. Sample extracts were diluted with

either water for the HPLC-MS/MS analysis (1:1) or kit running

solvent for flow injection analysis-MS/MS (50:1) using a Sciex 5500

mass spectrometer, which can measure up to 630 metabolites

spanning 26 biochemical classes. Data were processed using

MetIDQ software (Biocrates Life Sciences AG, vsn Oxygen-

DB110-3005), and values below detection level were imputed

using 0.1 times the smallest value in each metabolite; 25

metabolites were excluded due to >80% of samples being below

the limit of detection.

2.3.2 Cytokines
Cytokine profiles including adiponectin, leptin (HADK2MAG-

61K-01), resistin (HADK1MAG-61K-02), and Th1/Th2 response

cytokines (i.e., GM-CSF, IFN-g, TNF-a, IL-1b, IL-2, IL-4, IL-5, IL-
6, IL-12p70, IL-13, and IL-18) were assayed in the Flow and

Immune Analysis Shared Resource at Roswell Park using

commercially available kits from Millipore Sigma (Burlington,

Massachusetts). The experiment and instrument set-up were

performed based on the manufacturer’s kit instructions and data

was acquired on a Luminex 200 instrument (Luminex Corporation,

Austin, Texas). Analyte concentrations were determined by

extrapolating individual experimental fluorescence intensity

values against each analyte’s standard curve using the BeadView

multiplex data analysis software, version 1.0 (Upstate Cell Signaling

Solutions, Lake Placid, New York).
2.4 Statistical Analysis

In primary analyses, to identify differentially abundant circulating

metabolites and cytokines according to body composition phenotype

in EOC overall and in HGSOC, Limma moderated T-tests, (vsn
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3.56.2) (28) adjusted for age at diagnosis, stage at diagnosis, and

surgical debulking status were used. Limma moderated T-tests

employ empirical Bayes methods to compare multiple metabolites

or cytokines concurrently reducing variance and thus generating

reliable results even when sample sizes are small (28). Covariates were

selected a priori based on the extant literature demonstrating that age

at diagnosis (29), stage at diagnosis (29), and surgical debulking status

(30) are the only well-established prognostic factors for EOC. We

examined the overlap in differentially abundant metabolites and

cytokines in EOC overall and HGSOC using Venn diagrams. In

exploratory analyses, we examined the interrelations of circulating

serum cytokines and metabolites using Spearman correlations.

Limma moderated T-tests for differential abundance analysis were

performed using the “EnhancedVolcano” package and Spearman

correlations were performed using the “mtcars” package in R (3.6.1),

and descriptive characteristics were generated using SAS version 9.4.
3 Results

The epidemiological and clinical characteristics of the EOC

study population are summarized in Table 1. The mean age at EOC

diagnosis was 62.5 (11.2) years; most patients were diagnosed with

advanced-stage disease (58.5%) and HGSOC tumors (62.1%).

Additionally, most patients were overweight or obese according to

BMI≥25 kg/m2 (75.4%) and 32.3% of patients were classified as low

SMI, a proxy for sarcopenia. Further, 16.9% of patients had a Fit

phenotype (Figure 1A), 50.8% had an Overweight/Obese phenotype

(Figure 1B), 15.4% had a Sarcopenia/Obese phenotype (Figure 1C),

and 16.9% had a Sarcopenia/Cachexia phenotype (Figure 1D).
3.1 Epithelial ovarian cancer overall

To define associations of body composition with targeted

metabolomics in EOC overall, we conducted differential metabolite

abundance analyses comparing the Fit phenotype to three at-risk

phenotypes (Overweight/Obese, Sarcopenia/Obese, and Sarcopenia/

Cachexia) in the overall study population (Figure 2). For each

comparison, the volcano plot (left panel) provides an overall

summary of differentially abundant metabolites between the Fit

and at-risk phenotypes and a more detailed lollipop plot (right

panel) shows the magnitude and direction of the most significantly

differentially abundant metabolites.

First, in comparing the Overweight/Obese versus the Fit phenotype

(Figure 2A), we noted significantly increased abundance of several

triacylglycerides and diacylglycerides, numerous amino acids including

glutamate, branched-chain amino acids (i.e., leucine, isoleucine, and

valine), proline, tyrosine, lysine, and alanine, trimethylamine N-oxide

(TMAO), cystine, lactic acid, asymmetric dimethylarginine (ADMA),

a-aminoadipic acid, and three acylcarnitines, with the most notable

being propionylcarnitine. Next, in comparing the Sarcopenia/Obese

versus the Fit phenotype (Figure 2B), we observed significant increased

abundance of p-Cresol sulfate, triacylglycerides, cholesteryl esters,

ceramides, phosphatidylcholines, sphingomyelins, amino acids (most

notably glutamate), amino acid related metabolites (i.e., ornithine and
frontiersin.org
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cystine), lactic acid, choline, spermidine, and propionylcarnitine and

several long-chain acylcarnitines and significantly decreased abundance

of sphingomyelin C22:3. Last, in comparing the Sarcopenia/Cachexia

versus the Fit phenotype (Figure 2C), we observed significant increased

abundance of eicosenoic and eicosadienoic acid, a hexosylceramide, and

several acylcarnitines (e.g., short-, medium-, and long-chain) and

decreased abundance of glycolithocholic acid (GLCA), several

triacylglycerides, one diacylglyceride, and one ceramide.

Next, circulating cytokine abundance according to joint-

exposure muscle and adiposity body composition phenotypes was

assessed in EOC patients overall (Figure 3). In comparing the

Overweight/Obese versus the Fit phenotype, we observed

significantly increased abundance of leptin (Figure 3A). For

patients with the Sarcopenia/Obese phenotype versus Fit

phenotype, we noted significantly increased abundance of leptin

and significantly decreased abundance of adiponectin (Figure 3B).

However, no significant differentially abundant cytokines were

observed in comparisons between patients with the Sarcopenia/

Cachexia phenotype versus the Fit phenotype (Figure 3C).
3.2 High-grade serous ovarian carcinoma

Associations of body composition phenotype with targeted

metabolomics in HGSOC are presented in Figure 4. In comparing

the Overweight/Obese phenotype versus the Fit phenotype (Figure 4A),

we noted significantly increased abundance of a triacylglyceride, several

diacylglycerides, several amino acids including glutamate and branched

chain amino acids (i.e., leucine, isoleucine, and valine), lactic acid,

xanthine, and three acylcarnitines including valerylcarnitine,

octadecenoylcarnitine, and hexadecanoylcarnitine, and significantly

decreased abundance of one diacylglyceride, one hexosylceramide,

lauric acid, and hippuric acid. For the Sarcopenia/Obese phenotype

versus the Fit phenotype (Figure 4B), we observed increased

abundance of p-Cresol sulfate, several phosphatidylcholines, cystine,

eicosapentaenoic acid, one sphingomyelin, one ceramide, and several

acylcarnitines including dodecenoylcarnitine, hexadecenoylcarnitine,

cctadecenoylcarnitine, and octadecadienylcarnitine, and decreased

abundance of several triacylglycerides and one diacylglyceride. Lastly,
TABLE 1 Clinical and epidemiological characteristics of the epithelial
ovarian cancer study population1.

Clinical & Epidemiological
Characteristics

M (SD) or N2 (%)

Age at Diagnosis 62.5 (± 11.2)

Self-Identified Race

White 186 (95.4%)

Black 3 (1.5%)

Other 6 (3.1%)

Tumor Stage at Diagnosis

I 28 (14.4%)

II 24 (12.3%)

III 79 (40.5%)

IV 35 (18.0%)

Unknown 29 (14.9%)

Histotype

High-Grade Serous 121 (62.1%)

Low-Grade Serous 8 (4.1%)

Clear Cell 12 (6.2%)

Endometrioid 9 (4.6%)

Mucinous 5 (2.6%)

Mixed 32 (16.4%)

Other 8 (4.1%)

Surgical Debulking Status

Complete (R0) 32 (16.4%)

Optimal (≤1cm) 91 (46.7%)

Suboptimal (>1cm) 27 (13.9%)

Unknown 45 (23.1%)

Smoking Status

Current 32 (16.4%)

Former 58 (29.7%)

Never 104 (53.3%)

Unknown 1 (0.5%)

Body Mass Index (BMI)

Underweight (BMI<18.5 kg/m2) 1 (0.5%)

Normal Weight (18.5-24.9 kg/m2) 47 (24.1%)

Overweight (25-29.9 kg/m2) 69 (35.4%)

Obese (≥30 kg/m2) 78 (40.0%)

Skeletal Muscle Index (SMI)3

Low Muscle (SMI<38.5 cm2/m2) 63 (32.3%)

Normal Muscle (SMI≥38.5 cm2/m2) 132 (67.7%)

(Continued)
TABLE 1 Continued

Clinical & Epidemiological
Characteristics

M (SD) or N2 (%)

Body Composition Phenotype

Fit Phenotype 33 (16.9%)

Overweight/Obese Phenotype 99 (50.8%)

Sarcopenia/Obese Phenotype 30 (15.4%)

Sarcopenia/Cachexia Phenotype 33 (16.9%)
1Patients included were enrolled in both the Data Bank and BioRepository and the Body
Composition and Epithelial Ovarian Cancer Survival Study at Roswell Park Comprehensive
Cancer Center.
2Columns may not sum to total N due to missing data.
3Skeletal muscle index (SMI) representing the ratio of muscle area in cm2 to height in m2, a
proxy for sarcopenia.
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in comparing the Sarcopenia/Cachexia phenotype versus

the Fit phenotype (Figure 4C) we observed significantly

increased abundance of circulating hydroxyvalerylcarnitine and

tetradecadienoylcarnitine and significantly decreased abundance
Frontiers in Immunology 06
of several triacylglycerides, one diacylglyceride, and two

phosphatidylcholines. The associations of body composition

phenotypes with cytokines in HGSOC are presented in Figure 5. In

comparison with the Fit phenotype, patients with the Overweight/
FIGURE 2

Volcano and lollipop plots depicting significant differentially abundant serum metabolites according to body composition phenotypes in EOC overall.
Shown in the left panel are significant differentially abundant metabolites in the (A) normal SMI/high TAT (overweight/obese phenotype), (B) low SMI/
high TAT (sarcopenia/obese phenotype), and (C) low SMI/low TAT (sarcopenia/cachexia phenotype) versus the reference/fit phenotype (normal SMI/
low TAT). Red dots represent metabolites that are higher in the overweight/obese phenotype, pink dots represent metabolites that are higher in the
sarcopenia/obese phenotype, orange dots represent metabolites that are higher in the sarcopenia/cachexia phenotype, and blue dots represent
metabolites that are higher in the fit phenotype while blue dots represent metabolites that are higher in the fit phenotype. The right panel includes a
lollipop chart showing the magnitude and direction of the top significantly differentially abundant metabolites in greater detail. SMI, skeletal muscle
index wherein low SMI is a proxy for sarcopenia; TAT, total adipose tissue cross sectional area at L3; NS, non-significant. Differentially abundant
metabolites are significant at p<0.05 unless indicated otherwise: *p<0.01; **p<0.001; ***p<0.0001.
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Obese (Figure 5A) and Sarcopenia/Obese phenotypes (Figure 5B) had

significantly increased abundance of leptin. Conversely, in patients with

the Sarcopenia/Cachexia phenotype, we observed significantly

decreased abundance of IL-1b and IL-2 (Figure 5C).
3.3 Comparison of EOC overall
and HGSOC

We examined the overlap in differentially abundant immuno-

metabolic biomarkers between EOC overall and HGSOC for each body
Frontiers in Immunology 07
composition phenotype in Figure 6. In patients with the Overweight/

Obese phenotype (Figure 6A), we noted that several amino acids (most

notably glutamate), branched-chain amino acids (isoleucine and

valine), lactic acid, valerylcarnitine, hexadecanoylcarnitine, several

diacylglycerides, and one triacylglyceride were similar in EOC overall

and HGSOC. In patients with the Sarcopenia/Obese phenotype

(Figure 6B), we noted that several long-chain acylcarnitines,

phosphatidylcholines, a ceramide, a sphingomyelin, cystine, and p-

Cresol sulfate were increased in abundance for EOC overall and

HGSOC. Finally, in patients with the Sarcopenia/Cachexia

phenotype (Figure 6C), we noted that hydroxyvalerylcarnitine,
FIGURE 3

Volcano plots depicting significant differentially abundant serum cytokines according to body composition phenotypes in EOC overall. (A) Significant
differentially abundant metabolites in the normal SMI/high TAT (overweight/obese) phenotype versus the reference/fit phenotype (normal SMI/low
TAT). (B) Significant differentially abundant metabolites in the low SMI/high TAT (sarcopenia/obese) phenotype versus the reference/fit phenotype.
(C) Significant differentially abundant metabolites in the low SMI/low TAT (sarcopenia/cachexia) phenotype versus the reference/fit phenotype. SMI,
skeletal muscle index wherein low SMI is a proxy for sarcopenia; TAT, total adipose tissue cross sectional area at L3; NS, non-significant.
Differentially abundant metabolites are significant at p<0.05 unless indicated otherwise: *p<0.01; **p<0.001; ***p<0.0001.
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FIGURE 4

Volcano and lollipop plots depicting significant differentially abundant serum metabolites according to body composition phenotypes in HGSOC.
Shown in the left panel are significant differentially abundant metabolites in the (A) normal SMI/high TAT (overweight/obese phenotype), (B) low SMI/
high TAT (sarcopenia/obese phenotype), and (C) low SMI/low TAT (sarcopenia/cachexia phenotype) versus the reference/fit phenotype (normal SMI/
low TAT). Red dots represent metabolites that are higher in the overweight/obese phenotype, pink dots represent metabolites that are higher in the
sarcopenia/obese phenotype, orange dots represent metabolites that are higher in the sarcopenia/cachexia phenotype, and blue dots represent
metabolites that are higher in the fit phenotype while blue dots represent metabolites that are higher in the fit phenotype. The right panel includes a
lollipop chart showing the magnitude and direction of the top significantly differentially abundant metabolites in greater detail. SMI, skeletal muscle
index wherein low SMI is a proxy for sarcopenia; TAT, total adipose tissue cross sectional area at L3; NS, non-significant. Differentially abundant
metabolites are significant at p<0.05 unless indicated otherwise: *p<0.01; **p<0.001; ***p<0.0001.
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tetradecadienoylcarnitine, and several triacylglycerides were increased

in patients with EOC overall and HGSOC.
3.4 Exploratory analyses

Finally, in exploratory analyses, we observed an inverse relationship

between several Th1 cytokines and metabolites with increased

abundance in the at-risk phenotypes in EOC overall (Supplementary

Figure 1) and HGSOC (Supplementary Figure 2). We also observed

positive correlations between Th2 cytokines and metabolites with

increased abundance in the at-risk phenotypes in EOC overall

(Supplementary Figure 1) and HGSOC (Supplementary Figure 2).
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4 Discussion

We previously reported that three at-risk body composition

phenotypes before chemotherapy (Overweight/Obese, Sarcopenia/

Cachexia, and Sarcopenia/Obese) are associated with dramatic (up

to twofold) increases in mortality in EOC patients in the BComES

Study (22, 26). In the current investigation of the associations of

body composition phenotypes with immuno-metabolic biomarkers,

we show that clinically relevant high-adiposity and low-muscle

phenotypes are biologically distinct phenotypes with unique

circulating cytokine and metabolic milieus.

For instance, patients with the Overweight/Obese phenotype

had increased abundance of known markers of excess adiposity (i.e.,
FIGURE 5

Volcano plots depicting significant differentially abundant serum cytokines according to body composition phenotypes in HGSOC. (A) Significant
differentially abundant metabolites in the normal SMI/high TAT (overweight/obese) phenotype versus the reference/fit phenotype (normal SMI/low
TAT). (B) Significant differentially abundant metabolites in the low SMI/high TAT (sarcopenia/obese) phenotype versus the reference/fit phenotype.
(C) Significant differentially abundant metabolites in the low SMI/low TAT (sarcopenia/cachexia) phenotype versus the reference/fit phenotype. SMI,
skeletal muscle index wherein low SMI is a proxy for sarcopenia; TAT, total adipose tissue cross sectional area at L3; NS, non-significant.
Differentially abundant metabolites are significant at p<0.05 unless indicated otherwise: *p<0.01; **p<0.001; ***p<0.0001.
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triacylglycerides, glutamate, branch-chain amino acids, TMAO, a-
aminoadipic acid, lactic acid, ADMA, and leptin) (31–38) while

patients with the Sarcopenia/Obese phenotype had increased

abundance of markers that suggested both excess adiposity (i.e.,

triacylglycerides, glutamate, phosphatidylcholines, ceramides, and

cholesteryl esters) (31, 32, 39–41) and low muscle/muscle

wasting (i.e., phosphatidylcholines, ceramides, and long-chain

acylcarnitines) (42–46) via their impact on insulin resistance

(39, 42, 45). Interestingly, there were also differences in adiposity

markers between these two phenotypes. For example, there was

greater abundance of phosphatidylcholines and ceramides in

Sarcopenia/Obese phenotype, but not in the Overweight/Obese

phenotype. While phosphatidylcholines and ceramides are

markers of excess adiposity (39–41) they are also markers of

insulin resistance (39, 42) which is known to contribute to muscle

loss/wasting (42–46). Moreover, in the Sarcopenia/Cachexia

phenotype we observed greater abundance of markers suggestive

of low muscle/muscle wasting (43–46) and low adiposity (47) in

comparison to the Fit phenotype. While the Sarcopenia/Cachexia

and Fit phenotypes both have low adiposity, distinct immuno-

metabolic biomarkers emerged when the two were compared that

revealed potentially immune suppressive markers in the

Sarcopenia/Cachexia phenotype that were not present in the

Fit phenotype.

The previously reported differences in survival according to

joint-exposure muscle and adiposity body composition phenotypes

(26) and the differences in the immuno-metabolic milieus reported

herein confirms the need to consider skeletal muscle mass when

examining the impact of excess adiposity in clinical oncology and

cancer epidemiological studies. Failing to jointly consider adiposity

and skeletal muscle body composition phenotypes may attenuate or

eliminate important clinically and biologically relevant

relationships in cancer patient populations.

To this end, we noted several of the metabolites that were

significantly higher in the three at-risk phenotypes (Overweight/

Obese, Sarcopenia/Cachexia, and Sarcopenia/Obese) in EOC

overall and HGSOC have also been implicated in immune

suppression (48–60) and tumor progression (61–67). For

instance, in patients with high-adiposity phenotypes versus the Fit

phenotype, triacylglycerides and diacylglycerides (54–60), lactic

acid (48) and phosphatidylcholines (49) were all significantly

elevated and these metabolites have been shown to promote

regulatory T cell, myeloid-derived suppressor cell, and M2-like

macrophage populations. Additionally, cholesteryl esters,

increased in the Sarcopenia/Obese phenotype, have been

associated with inhibition of CD8+ T cell populations (50).

Excess methionine (51) and branched-chain amino acids (i.e.,

leucine, isoleucine, and valine) (52), increased in high-adiposity

phenotypes, may also contribute to a blunted anti-tumor immune

response and be linked to dysfunction in tumor-infiltrating T cells.

Further, higher leptin and lower adiponectin, observed in the high-

adiposity phenotypes, play important roles in immune suppression

and tumor progression (68–71). Finally, long-chain acylcarnitines,
FIGURE 6

Venn diagrams depicting the significant differentially abundant
serum metabolites and cytokines that were similar and different
between EOC overall and HGSOC according to the (A) Overweight/
Obese phenotype (normal SMI/high TAT), (B) Sarcopenia/Obese
phenotype (low SMI/high TAT), and (C) Sarcopenia/Cachexia
phenotype (low SMI/low TAT) versus the fit phenotype (normal SMI/
low TAT). SMI, skeletal muscle index wherein low SMI is a proxy for
sarcopenia; TAT, total adipose tissue cross sectional area at L3.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1419257
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Davis et al. 10.3389/fimmu.2024.1419257
which were increased in all at-risk body composition phenotypes,

may contribute to T cell exhaustion and dysfunction (53). Further,

evidence in our data demonstrated that several metabolites with

greater abundance in the at-risk phenotypes were negatively

correlated with Th1 cytokines and positively correlated with Th2

cytokines further supporting the potential role of immune

suppression and tumor progression in these at-risk body

composition phenotypes.

Importantly, in comparison to women with the Fit phenotype,

women with the Overweight/Obese, Sarcopenia/Obese, and

Sarcopenia/Cachexia phenotypes all had increased abundance of

long-chain acylcarnitines, a transporter of long-chain fatty acids for

b-oxidation (53). Considering the potential role of long-chain

acylcarnitines in immune suppression (53), patients with these

body composition phenotypes may derive benefit from

therapeutically targeting acylcarnitines. While we acknowledge

the pleiotropic effects of metformin on metabolism, metformin,

which has been proven a safe and effective treatment for diabetes

(72), has been found to decrease acylcarnitine levels (73) and is safe

for use in cancer patients (74). Combined with lifestyle intervention

ancillary to primary first-line therapy (75), metformin could be a

feasible, cost-effective therapeutic target to address metabolic

dysfunction in patients with at-risk body composition phenotypes

with the potential to improve treatment response and outcomes in

EOC overall and in HGSOC.

Not only did we observe a consistent suggestion that biomarkers

associated with immune suppression were more abundant among

high-adiposity and low-muscle phenotypes, but we also observed that

patients with the Fit phenotype had increased abundance of

metabolites and cytokines suggestive of immune activation and an

anti-tumor response. For example, we observed increased abundance

of lauric acid which is suggested to have antiproliferative and pro-

apoptotic activity in cancer cells (76). Furthermore, increased

abundance of Th1 and anti-tumor cytokines was noted in the Fit

phenotype suggesting that these patients have increased presence of

Th1 cells leading to increased cytotoxic T cell activation and improved

anti-tumor immunity (77–79). Together, these findings suggest that a

Fit body composition phenotype (normal SMI/low TAT) may

contribute to improved anti-tumor response, potentially conferring

improved treatment response in these patients. Indeed, our previous

work has shown that among EOC patients receiving immunotherapy,

patients with the Fit phenotype have significantly improved 5-year

survival in comparison to patients with at-risk phenotypes (data not

shown; p-value=0.04) (80). Considering that body composition is

modifiable (81, 82), targeted exercise programs according to body

composition phenotype could be harnessed to improve treatment

response and outcomes in patients receiving immunotherapy.
4.1 Limitations

The BComES Study comprises a clinically and demographically

homogeneous EOC patient population, potentially limiting the

generalizability of these findings to more diverse patient

populations. Additionally, we were not statistically powered to
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investigate the associations of body composition phenotype with

immuno-metabolic biomarkers in less common EOC histotypes,

including low-grade serous, endometrioid, mucinous, or clear cell

tumors. Lastly, observations reported herein reflect the circulating

immuno-metabolic milieu, which may not be reflective of the

TIME, the most relevant site for tumor progression. However,

previously published reports do suggest the circulating immuno-

metabolic microenvironment is a representative proxy for the

ovarian TIME (83, 84).

Important strengths of our pilot study include the relatively

large, well-characterized EOC patient population with treatment

naïve biospecimens linked with detailed cl inical and

epidemiological data, and the ability to account for objectively

assessed adiposity and skeletal muscle in our analyses. Moreover,

body composition and blood samples were collected in the peri-

diagnosis period identifying a modifiable exposure that is

implicated in immune suppression and tumor progression and

could be targeted through lifestyle intervention ancillary to

primary treatment. Additionally, we employed a novel approach

to understand the impact of body composition on immuno-

metabolic biomarkers by using targeted metabolomics and

Luminex analyses according to joint muscle/adiposity body

composition phenotypes, which has not previously explored in

cancer patient populations.
4.2 Conclusions

We have identified four clinically significant body composition

phenotypes known to predict survival in EOC and HGSOC which

also have distinct circulating metabolic and cytokine milieus (26).

In comparison to EOC patients with a Fit phenotype, patients with

high-adiposity and low-muscle phenotypes have higher

concentrations of metabolites and cytokines known to be

associated with immune suppression and tumor progression.

Conversely, patients with the Fit phenotype have higher

concentrations of metabolites and cytokines indicative of immune

activation and tumor suppression. Considering body composition is

modifiable (85–87), these findings provide rationale for leveraging

lifestyle intervention as a safe, feasible strategy for potentially

improving response to standard-of-care chemotherapy and novel

immunotherapies in patients diagnosed with a highly fatal

malignancy with poor treatment response (75).
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