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and Yuyan Xiong1,2*
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Affiliated Hospital of Northwest University, Xi’an, Shaanxi, China, 2Key Laboratory of Resource Biology
and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest
University, Xi’an, Shaanxi, China, 3School of Medicine, Northwest University, Xi’an, Shaanxi, China
Introduction: Gastric cancer (GC) remains a major global health threat ranking as

the fifth most prevalent cancer. Hypoxia, a characteristic feature of solid tumors,

significantly contributes to the malignant progression of GC. Mitochondria are the

major target of hypoxic injury that promotes mitochondrial dysfunction during the

development of cancers including GC. However, the gene signature and

prognostic model based on hypoxia- and mitochondrial dysfunction-related

genes (HMDRGs) in the prediction of GC prognosis have not yet been established.

Methods: The gene expression profile datasets of stomach cancer patients were

retrieved from The Cancer Genome Atlas and the Gene Expression Omnibus

databases. Prognostic genes were selected using Least Absolute Shrinkage

and Selection Operator Cox (LASSO-Cox) regression analysis to construct a

prognostic model. Immune infiltration was evaluated through ESTIMATE,

CIBERSORT, and ssGSEA analyses. Tumor immune dysfunction and exclusion

(TIDE) and immunophenoscore (IPS) were utilized to explore implications for
Abbreviations: GC, Gastric cancer; HMDRGs, hypoxia- and mitochondrial dysfunction -related genes; HRG,

hypoxia-related gene; MDRG, mitochondrial dysfunction-related gene; STAD, stomach adenocarcinoma;

TCGA, The Cancer Genome Atlas; t-SNE, T-distributed Stochastic Neighbor Embedding; LASSO, least

absolute shrinkage and selection operator; OS, overall survival; GO, Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; TME, tumor microenvironment; ssGSEA, single-sample gene set

enrichment analysis; K-M, Kaplan-Meier; DEGs, differentially expressed genes; AGE, advanced glycation end

product; RAGE, receptor for AGE; BPs, biological processes; CCs, component categories; MFs, molecular

functions; ROC, receiver operating characteristic; AUC, area under the ROC curve; ECM, extracellular

matrix; CAMs, cell adhesion molecules; MAPK, mitogen-activated protein kinase; cAMP, cyclic adenosine 3’,

5’-monophosphate; CAMs, cell adhesion molecules; IHC, immunohistochemistry; HPA, Human Protein

Atlas; HRGs, Hypoxia-related genes; CAFs, cancer-associated fibroblasts; TIDE, Tumor Immune Dysfunction

and Exclusion; IPS, Immunophenotypescore; ROS, Reactive Oxygen Species.
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immunotherapy. Furthermore, in vitro experiments were conducted to validate

the functional roles of HMDRGs in GC cell malignancy.

Results: In this study, five HMDRGs (ZFP36, SERPINE1, DUSP1, CAV1, and AKAP12)

were identified for developing a prognostic model in GC. This model stratifies GC

patients into high- and low-risk groups based on median risk scores. A

nomogram predicting overall survival (OS) was constructed and showed

consistent results with observed OS. Immune infiltration analysis indicated that

individuals in the high-risk group tend to exhibit increased immune cell

infiltration. Additionally, analysis of cancer immunotherapy responses revealed

that high-risk group patients exhibit poorer responses to cancer immunotherapy

compared to the low-risk group. Immunohistochemistry (IHC) staining indicated

that the expression levels of HMDRGs were remarkably correlated with GC, of

which, SERPINE1 displayed the most pronounced up-regulation, while ZFP36

exhibited the most notable down-regulation in GC patients. Furthermore, in vitro

investigation validated that SERPINE1 and ZFP36 contribute to the malignant

processes of GC cells correlated with mitochondrial dysfunction.

Conclusions: This study presents a novel and efficient approach to evaluate GC

prognosis and immunotherapy efficacy, and also provides insights into

understanding the pathogenesis of GC.
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1 Introduction

Gastric cancer (GC) is a common malignancy, ranking as the

third leading cause of global cancer-related mortality (1). Despite

eminent advancements achieved in diagnosing and therapeutic

interventions, the survival rate for GC remains unsatisfactory all

over the world, which is partially attributed to be lack of efficient

tools to predict prognosis, identify high-risk patients, and assess

immunotherapy responses (2, 3). This underscores the urgent need

for exploring novel approaches to tackle this critical problem. In

recent years, developing a prognostic model based on gene

signatures offers a promising strategy.

Hypoxia, one of the common cellular stresses, is a distinctive

feature observed in solid tumors, and plays multiple roles in tumor

biology through the modulation of tumor cell proliferation and

migration, immune evasion, angiogenesis, microenvironment,

invasion, and metastasis (4). Over the past decades, emerging

studies have demonstrated that hypoxia contributes to GC

malignant progression (5–7). Hypoxia-inducible factor-1a (HIF-

1a), a key modulator under hypoxia conditions, has been

clinically revealed that its positive expression is significantly

correlated with GC progression and development, and it can be

a potent inducer in GC (8, 9). Moreover, HIF-1a has been

demonstrated to be an effective biomarker for predicting the

outcomes of GC patients in a predictive model based on three
02
ferroptosis‐related genes including HIF-1a, cation transport

regulator homolog 1 (CHAC1) and NADPH oxidase 4 (NOX4)

(10). Notably, long-term hypoxia can cause severe damage to

mitochondria to induce mitochondrial dysfunction by producing

excessive reactive oxygen species (ROS) (11), and disrupting

biogenesis, fission, and morphology (12). Mitochondria is the

energy production center of cells, and its dysfunction not only

dysregulates cellular energy metabolism but also triggers a series

of disruptions in cellular signaling pathways, in turn exacerbating

cancer development (13). Substantial evidence has indicated that

both hypoxia and mitochondrial dysfunction play a central role in

contributing to the malignant progression of GC (14–16), and are

widely acknowledged to correlate with poorer prognosis in GC

(17, 18). Whereas, a predictive prognosis model based on hypoxia-

and mitochondrial dysfunction-related genes (HMDRGs) has yet

to be established.

In this study, we identified five HMDRGs through a

comprehensive bioinformatics analysis. A prognostic model based

on this HMDRG signature was established, and its prognostic value

was validated in GC patient cohorts. A nomogram model for

predicting overall survival (OS) was also constructed, exhibiting

consistent values with the actual observed OS. More importantly,

we validated the biological functions and potential molecular

mechanisms of HMDRGs in contributing to the malignant

processes in GC cell lines via modulating mitochondrial
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dysfunction. This study may open up new avenues for clinical

prognostic prediction, risk stratification and evaluation of

immunotherapy response in GC. Furthermore, we provide novel

insights into understanding the molecular mechanisms of GC

pathogenesis connecting to hypoxia and mitochondrial dysfunction.
2 Materials and methods

2.1 Acquisition of hypoxia- and
mitochondrial dysfunction-related
gene sets

The hypoxia-related gene set consisting of 200 genes was retrieved

from the Molecular Signatures Database (http://www.gsea-msigdb.org/

gsea/msigdb/index.jsp) (Supplementary Table S1). The human

mitochondrial dysfunction-related gene set was obtained from the

GeneCards database (https://www.genecards.org/) using the

keyword search term “mitochondrial dysfunction” and a

relevance score threshold of >1.5 (Supplementary Table S2).
2.2 Data collection

The RNA-seq data and clinical characteristics of the TCGA

STAD cohorts for training purposes were collected from the TCGA

database (https://portal.gdc.cancer.gov/). Participants lacking

detailed expression and clinical data or with a 0-day follow-up

duration were excluded. Following these criteria, 348 STAD and 32

normal samples were obtained and selected for the training cohorts

(19). To validate our model, GSE84437 and GSE62254 STAD

cohorts were retrieved from the Gene Expression Omnibus

(GEO) public repository (https://www.ncbi.nlm.nih.gov/geo/).

Log2 transformation and normalization were applied to the

expression profiles, and the average expression level was used for

duplicate genes. The “ComBat” function of the “sva” package

(v3.50.0) (https://bioconductor.org/packages/release/bioc/html/

sva.html) in R software version 4.2.1 was utilized to remove batch

effects (20). Ten stomach tumor tissue samples from patients with

primary gastric cancer were utilized for single-cell RNA sequencing

analysis, obtained from dataset GSE183904 in the GEO database

(https://www.ncbi.nlm.nih.gov/geo/).
2.3 scRNA-seq data analysis

The GC single-cell RNA sequencing (scRNA-seq) data

underwent analysis utilizing the “Seurat” R package (v4.3.0) (21,

22). Initial data are screened according to the criteria of cells with less

than 15% mitochondrial genes, 200 to 7000 genes per cell, and each

gene expressed in at least three cells, ensuring high-quality scRNA-

seq data. To exclude batch effects and integrate diverse single-cell

transcriptome samples, the “SCTransform” function within the

“Seurat” package was employed. Subsequently, highly variable

genes were selected via the “Select Integration Features” function

for anchoring purposes. Dimensionality reduction was executed
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using the “RunPCA” function, with a specified dimension of 50.

Cluster analysis was conducted with the “Find Clusters” program,

setting the resolution parameter at 0.5. T-distributed Stochastic

Neighbor Embedding (t-SNE) was employed to compress high-

dimensional probability distributions into a lower-dimensional space.
2.4 Identification of single-cell hypoxia-
related differentially expressed genes

To evaluate the degree of enrichment for hypoxia-related gene

expression at the single-cell level, we executed the “AUCell” R package

(v1.24.0) (23). We computed the hypoxia AUC value for each cell type

using 200 hypoxia-related genes. The cells were stratified into high

hypoxia-AUC score and low hypoxia-AUC score groups based on the

median AUC score as the cutoff value. The partitioning visualization

was performed using the “FindMarkers” function of Seurat R package.

Genes were identified as single-cell hypoxia-related differentially

expressed genes (DEGs) according to the criteria of an adjusted p-

value< 0.05, |log2FoldChange| > 1, and Minpct ≥ 0.25.
2.5 Identification of differentially expressed
genes of STAD

The “edgeR” package (v4.0.16) was utilized for conducting

differential expression analysis of genes between TCGA STAD

and normal stomach tissue. Genes with adjusted p-value (adj.p)<

0.05 and |log2FoldChange| > 1 were identified as differentially

expressed genes (DEGs) of STAD (24).
2.6 Identification and validation of the
prognostic HMDRG gene signature

Univariate Cox proportional hazards regression analysis was

conducted on each HMDRG to identify genes significantly

associated with OS in the TCGA training cohort (25, 26).

Subsequently, the LASSO Cox regression method was applied to

further identify HMDRGs using the R software package “glmnet”

(version 4.1-8) (27, 28). Based on the optimal lambda value,

HMDRGs were identified and used to calculate a prognostic risk

score for each patient using the following formula:

Risk   Score =o expri   *   coefi

where “coef” represents the regression coefficients of each HMDRG,

and “expr” denotes the expression values. The median risk score

was defined as the cutoff value to divide TCGA STAD patients into

high-risk and low-risk groups. Univariate and multivariate Cox

proportional hazards regression analyses were conducted to assess

whether the HMDRG-based prognostic model was an independent

prognostic factor combined with clinical variables. A Kaplan-Meier

(K-M) survival curve was generated, and survival differences

between groups were assessed using the log-rank test. The

sensitivity and specificity of the prognostic performance were
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evaluated through ROC curve analysis and visualized using the R

package “timeROC” (v0.4) (29). The area under the curve (AUC)

values indicated the discrimination ability of the model.
2.7 The development and validation of
the nomogram

A prognostic nomogram was constructed using the “rms”

package (v6.8.0) in R software to estimate the probability of 1-, 3-,

and 5-year overall survival (OS) in STAD patients. The calibration

curves and the Concordance Index (C-Index) were employed to

assess the predictive accuracy of our nomogram. Calibration curves

were used to visually compare the predicted probabilities generated

by our model with the actual observed survival rates, offering valuable

insights into the precision and reliability of predicting patient

prognoses. Furthermore, we utilized the C-Index to assess the

predictive accuracy. Calculating the C-Index AUC value allowed us

to quantitatively assess the predictive capabilities of the model.
2.8 Gene set enrichment analysis

GSEA was conducted using the R package “clusterProfiler”

(v4.10.1) to explore biological pathways associated with the

high-risk and low-risk groups in stomach cancer patients from

TCGA (30). The analysis ranked the gene list based on their

signal-to-noise ratio and used a reference database of known

pathways (c2.cp.kegg.v7.5.1.entrez.gmt). Pathways with a

normalized enrichment score (|NES|) greater than 1 and a p-

value less than 0.05 were considered significantly enriched (31).
2.9 Functional enrichment analysis

To elucidate the biological significance of the HMDRGs,

functional enrichment analysis was performed using the

‘clusterProfiler’ package (v4.10.1) in R (32, 33), including Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment to characterize the functional profiles

of the HMDRGs. The p-value less than 0.05 was defined as

statistically significant enrichment.
2.10 Immune landscape analysis

To characterize the immune landscape of gastric cancer, gene

expression profiles from tumor samples were used to estimate the

proportions of immune and stromal cells within the tumor

microenvironment (TME) for each patient. The “ESTIMATE” R

package (v1.0.13) was employed to calculate the stromal score

(indicating the presence of supportive tissue), immune score

(reflecting the extent of immune cell infiltration), ESTIMATE

score (combined stromal and immune scores), and tumor purity.

CIBERSORT analysis was used to deconvolute the cellular

composition of the tumor sample of each STAD patient based on
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expression profiles, which identified the relative abundances of 22

distinct immune cell types (34). The single-sample gene set

enrichment analysis (ssGSEA) implemented within the “GSVA” R

package (v1.50.5) was employed to estimate the infiltration levels of

28 different immune cell types (35, 36).
2.11 Immunotherapy responses analysis

The analyses of tumor immune dysfunction and exclusion (TIDE)

score and immunophenoscore (IPS) were employed to explore the

potential of our model in cancer immunotherapy. TIDE is a

computational tool used to assess tumor immune evasion and predict

response to immune checkpoint inhibitors (ICIs) therapy by integrating

multiple biomarkers to analyze interactions between the tumor and

immune system, and its score obtained from the Harvard TIDE website

(http://tide.dfci.harvard.edu/) (37). IPS analysis is an algorithm used

to predict the potential response to cancer immunotherapy by

integrating multiple gene expression profiles and immune-related

biomarkers to provide a comprehensive assessment of the tumor

immune landscape, and obtained from the Cancer Imaging Archive

(TCIA) database (https://tcia.at/home) (38–41).
2.12 Immunohistochemical staining
analysis of HMDRGs protein in GC samples

Immunohistochemical staining analysis of HMDRGs protein

expression levels was employed by accessing the immunohistochemical

staining images of HMDRGs protein in GC pathological sections

from the Human Protein Atlas (HPA) database (https://

www.proteinatlas.org/).
2.13 The potential drug prediction

To identify potential therapeutic targets, we performed gene-

based drug screening using data from DrugBank (https://

go.drugbank.com). The Protein Data Bank (PDB) database

(https://www.rcsb.org) was queried to retrieve the crystal

structures of relevant drug target proteins. We employed

Autodock 4 software (v4.0) for in silico molecular docking

simulations to investigate the binding interactions between the

identified drugs and their corresponding target proteins.
2.14 Cell culture

MGC803, HGC27 human gastric cancer cells were purchased

from Procell in Wuhan, China, and cultured in DMEM medium

(DMEM; Sigma, USA) supplemented with 10% fetal bovine serum

(Gemini, USA), 100 g/mL streptomycin, and 100 U/mL penicillin at

37 °C. For hypoxic treatment, cells were incubated in an incubator

with 1% O2 and 94% N2, while normoxic conditions were

maintained in an incubator with 21% O2 and 5% CO2. Forskolin

treatment was performed at concentrations of 20 mM and 40 mM.
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2.15 Quantitative real-time PCR

Total RNA was isolated from cells using TRIzol reagent

(Invitrogen) according to the manufacturer’s protocol. Reverse

transcription was performed with the PrimeScript RT Reagent Kit

(Takara) following the manufacturer’s instructions. Quantitative

reverse transcription-polymerase chain reaction (RT-qPCR) was

then performed using the SYBR PrimeScript RT-PCR Kit (Takara)

to analyze gene expression. The 2-DDCT method was employed for

quantification, with b-actin used as an internal control. The PCR

primer pairs, synthesized by Sangon Biotech in Shanghai, China, had

the following sequences (5’-3’, F: forward, R: reverse, h: human):

hZFP36-F: GCTATGTCGGACCTTCTCAGAG,

hZFP36-R: CCTGGAGGTAGAACTTGTGACAG;

hSERPINE1-F: CTCATCAGCCACTGGAAAGGCA,

hSERPINE1-R: GACTCGTGAAGTCAGCCTGAAAC;

hDUSP1-F: CAACCACAAGGCAGACATCAGC,

hDUSP1-R: GTAAGCAAGGCAGATGGTGGCT;

hCAV1-F: CCAAGGAGATCGACCTGGTCAA,

hCAV1-R: GCCGTCAAAACTGTGTGTCCCT;

hAKAP12-F: AGAAAGGAGCCCTGAACGGTCA,

hAKAP12-R: CCGCTGACTTAGTAGCCATCTC;

hb-actin -F: CACCATTGGCAATGAGCGGTTC,

hb-actin -R: AGGTCTTTGCGGATGTCCACGT.
2.16 Cell proliferation assay

To evaluate cell proliferation, the Cell Counting Kit-8 (CCK-8;

Vazyme, Nanjing, China) was utilized. In 96-well plates, we planted

2×103 cells per well. Then, the plate was incubated for two hours at

37°C in the dark with 10 ml of CCK-8 reagent (A311-01, Vazyme,

Nanjing, China) per well. To assess the viability of the cells, the

absorbance was measured at 450 nm wavelength using a microplate

reader (A33978, Thermo, USA) at 24, 48, 72, and 96 hours.
2.17 Transwell assay

Cell invasive potential was assessed using a Matrigel invasion

assay (BD Biosciences). Briefly, 20,000 cells in 100 mL serum-free

medium were seeded in the upper chamber of transwells. The lower

chamber contained 500 mL complete media with 10% FBS. Following

a 24-hour incubation at 37°C, invaded cells were fixed, stained with

crystal violet, and meticulously removed from the upper chamber.

Invaded cells were counted in five random fields under a microscope,

and the mean number of invaded cells represented invasion viability.
2.18 Colony formation

For colony formation, 500 cells per well were seeded in triplicate

35 mm dishes with a complete growth medium. After incubation

for approximately 2 weeks, colonies were fixed with 4%

paraformaldehyde for 15 minutes and stained with 0.2% crystal

violet for quantification using ImageJ 1.54 (NIH).
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2.19 Wound healing assay

Cell migration was assessed using a wound healing assay. Cells

were seeded in 35 mm dishes with complete medium and allowed to

reach 70-90% confluence. A scratch wound was created using a 200

μL pipette tip. The initial wound width (s0) was measured under a

microscope. After 24 hours of incubation in a complete medium,

the medium was replaced with a serum-free medium, and the

wound width (s24) was measured again after an additional 24

hours. Percent wound closure was calculated as [(s0 - s24)/s0]

x 100%.
2.20 Lentivirus production
and transduction

To produce lentivirus particles, HEK293T cells were transfected

with the empty vector pLKO.1 containing targeted shRNA

sequences for SERPINE1 knockdown, or pLV/EF1A vector

containing targeted shRNA sequences for ZFP36 overexpression,

along with the helper plasmid pMD2.G. GP-Transfer-Mate was

utilized as a transfection reagent for low-scale preparations at a 4:3

ratio of GP-Transfer-Mate to DNA. Moreover, the ratio of the

lentiviral backbone constructs pSPAX2 and pMD2.G was 4:3:1.

After transfection, the viral supernatant was collected 24 and 48

hours later, spun at 1500 rpm for 5 minutes, flash frozen, and stored

at -80°C. MGC803 and HGC27 cells were transduced with

lentivirus when reached about 80% confluency, by incubating

them in 1.5 mL of media containing 250 mL of lentivirus for

24 hours.
2.21 ROS assay

Intracellular ROS levels were assessed using a ROS assay kit

(Beyotime, China) according to the manufacturer’s protocol.

Briefly, cells were seeded at a density of 10,000 cells/cm² and

allowed to adhere. Following treatment, cells were washed twice

with PBS and incubated with 10 mMDCFH-DA and 5 mMDAF-FM

DA in a serum-free medium for 20 minutes at 37°C in the dark.

Cells were then washed three times with PBS to remove unbound

dye. Finally, ROS generation was visualized using fluorescence

microscopy (Olympus, Tokyo, Japan).
2.22 Mitochondrial membrane
potential measurement

MMP was assessed using a JC-1 mitochondrial membrane

potential assay kit (Solarbio, China) according to the manufacturer’s

instructions. Briefly, cells were seeded at 10,000 cells/cm² and allowed

to adhere. JC-1 dye was added to the cells, and its accumulation within

the mitochondria was dependent on DYm. High DYm promotes JC-1

aggregation in the matrix, emitting red fluorescence. Conversely, low

DYm results in JC-1 monomers, emitting green fluorescence.

Following staining, cells were analyzed by fluorescence microscopy
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(Olympus, Tokyo, Japan) for qualitative assessment and flow

cytometry for quantitative measurement of MMP.
2.23 MitoTracker
immunofluorescence staining

The cells with a density of approximately 5000 cells/cm2 were

plated on 35 mm dishes with coverslips in culture medium and

incubated at 37°C. For mitochondrial staining, the culture medium

was replaced with a medium containing 100 nM MitoTracker Red

(Invitrogen, USA), and cells were incubated with the dye at 37°C for

30 min. Then, followed by three washes with PBS, mitochondria

were visualized by a laser confocal scanning microscopy (Leica

Microsystems CMS GmbH, Germany).
2.24 Statistical analysis

Differential expression analysis of genes was conducted using

theWilcoxon test. Univariate Cox analysis was employed to identify

genes with prognostic significance. Kaplan-Meier (K-M) survival

curves were constructed and compared using the log-rank test. All

statistical analyses were performed using R version 4.2.1 (https://

www.r-project.org/) along with appropriate packages. Statistical

significance was set at p< 0.05.
3 Results

3.1 Single-cell RNA sequencing data
analysis and HMDRGs identification in
STAD cohort

The flowchart of this study is shown in Figure 1. To ensure the

integrity and reliability of single-cell transcriptome dataset analysis,

we employed quality control by limiting the number of genes

detected per cell, each gene expressed at least 3 cells, and the

mitochondrial gene ratio (Supplementary Figure S1A), a set of

36645 qualified cells were obtained (Supplementary Figure S1B).

Given the potential variability in cell cycle stages among cells within

the dataset, we assessed the distribution of cell cycle phases using

cell cycle scoring techniques, revealing a consistent distribution of

cell cycle phases across all samples (Supplementary Figure S1C).

Through a comprehensive examination of clustering outcomes

across a spectrum of resolutions ranging from 0.1 to 1.0 utilizing

clustree, we found that a resolution of 0.5 yielded reliable results

(Supplementary Figure S1D). Next, we utilized t-SNE to categorize

all cells into 24 detailed clusters (Figure 2A). The expression

patterns of marker genes were used to identify cell types within

these 24 clusters (Supplementary Figure S1E), and we identified 14

distinct cell types, including plasma, NK cells, T cells, etc.

(Figure 2B). Among these 14 different types of cells, to further

identify the significantly upregulated- and downregulated-

differentially expressed genes (DEGs) under hypoxia conditions

from the single-cell level, the AUC score for each cell was calculated
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by employing the “AUCell” R program. Based on the median AUC

scores, 14 cell types were categorized into high- and low-hypoxia

AUC groups (Figure 2C). 282 single-cell hypoxia-DEGs were found

by the “FindMarkers” function with a |log2FoldChange| > 1,

adjusted p-value< 0.05, and minimum percentage expression

(MinPct) ≥ 0.25 (Supplementary Table S3). These DEGs were

enriched for pathways associated with IL-17 signaling, TNF

signaling, apoptosis, and the HIF-1 signaling pathway (Figure 2D

and Supplementary Table S4). The STAD cohort data comprising

348 patients with detailed clinic parameters, were retrieved from

TCGA (Supplementary Table S5). The Kaplan-Meier survival

curves and log-rank tests for clinicopathological parameters,

including overall stage, tumor (T), metastasis (M), and node (N),

are shown in Supplementary Figures S2A-D, and a total of 4482

STAD differentially expressed genes (STAD-DEGs) exhibited

differential expression (Supplementary Table S6), of which 2133

genes were up-regulated and 2349 genes were down-regulated as

visually represented by the volcano plot (Figure 2E). Venn diagram

analysis of STAD-DEGs, single-cell hypoxia-DEGs, hypoxia-related

genes, and mitochondrial dysfunction-related genes was employed

to identify 10 differentially expressed hypoxia- and mitochondrial

dysfunction-related genes (HMDRGs) (Figure 2F).
3.2 Development and evaluation of a
prognostic model based on HMDRGs in
the TCGA STAD cohort

To evaluate the prognosis significance of these 10 HMDRGs in

the STAD cohort, the univariate Cox regression analysis was

performed. Five genes (ZFP36, DUSP1, SERPINE1, CAV1, and

AKAP12) were found to be remarkably correlated with OS, and

identified as the risk genes (HR>1, p<0.05) (Figure 3A).

Furthermore, we analyzed the expression levels of these five

prognostic genes in normal subjects and STAD patients. The

heatmap demonstrated SERPINE1 was up-regulated in tumor

tissues, while the rest four genes (ZFP36, DUSP1, CAV1, and

AKAP12) were down-regulated as compared to the normal group

(Figure 3B). We further investigated the expression patterns of these

five HMDRGs at the single-cell level, revealing that SERPINE1

exhibited abundant expression in fibroblasts and endothelial cells,

ZFP36 showed prominent expression in T cells, NK cells, and B

cells, DUSP1 was highly expressed in fibroblasts and macrophages,

CAV1 demonstrated remarkable expression in endothelial cells,

fibroblasts, and pericytes, and AKAP12 displayed rich expression in

fibroblasts, mast cells, and pericytes (Supplementary Figures S3A-

E). Subsequently, these five HMDRGs underwent LASSO Cox

regression analysis to formulate a prognostic risk assessment

model in the TCGA training cohort. The LASSO regression

analysis of independent HMDRGs confirmed that ZFP36,

DUSP1, SERPINE1, CAV1, and AKAP12 were identified as key

HMDRGs with an optimal logarithmic lambda value (l= 0.017)

(Figures 3C, D). Next, a risk score was assigned to each STAD

patient in the TCGA database using the following formula (LASSO

Cox regression coefficient * mRNA expression level): Risk score =

0.030 * ZFP36 + 0.024 * DUSP1 + 0.16 * SERPINE1 + 0.016 * CAV1
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+ 0.068 * AKAP12. According to the median value of the risk scores,

we then assessed the prognostic significance of this HMDRGmodel.

Patients in the TCGA training cohort were stratified into low-risk

(174 patients) and high-risk (174 patients) groups. Consistently,

high-risk patients exhibited higher risk scores (Figure 3E) and

experienced shorter survival times as compared to low-risk

individuals (Figure 3F). Moreover, in comparison with the high-

risk group, K-M survival analysis demonstrated a higher survival
Frontiers in Immunology 07
probability in the low-risk group (p<0.001, HR=2.23, 95% CI=1.67-

3.23) (Figure 3G). The receiver operating characteristic (ROC)

analysis indicated that the values for survival probability at 1, 2,

and 3 years were 0.63, 0.67, and 0.70, respectively (Figure 3H).

Importantly, this model was validated in two distinct GEO cohorts

(GSE84437 and GSE62254), showing consistent results with those

observed in the TCGA training cohort (Supplementary Figures

S4A-H).
FIGURE 1

The flowchart of this study.
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Several prognostic models aimed at predicting survival in STAD

patients have been established in previous investigations. Next, we

performed a model comparison analysis as compared to other

previously reported five models (Model 1 (Li et al.) (42), Model 2

(Deng et al.) (43), Model 3 (Chang et al.) (44), Model 4 (Liu et al.)

(45), and Model 5 (Liu et al.) (46)) by using C-Index and decision

curve analysis (DCA). A comparative analysis of the C-Index

demonstrated that our model (HMDRGs-Model) exhibited the
Frontiers in Immunology 08
optimal prediction ability for OS probabilities with the highest c-

index value (AUC=0.689) compared to the other five models

(Supplementary Figure S5A). Also, DCA indicated that our model

achieved superior performance in clinical practice as evaluated by

net benefits (Supplementary Figure S5B). These results indicate that

the prognostic model based on HMDRGs can offer remarkable

accuracy, capability, and performance for clinically predicting the

OS of GC patients.
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FIGURE 2

Single-cell RNA sequencing data analysis and HMDRGs identification in STAD cohort. (A) The results of the dimension reduction cluster analysis are
shown in the t-SNE diagram. (B) Cells were annotated into 14 different types of cells. (C) All cells were scored according to hypoxia conditions and
divided into two groups. (D) Enriched pathways analysis of single-cell hypoxia-DEGs. (E) Volcano plot of the 4482 DEGs. (F) The Venn diagram of
analysis of STAD-DEGs, single-cell hypoxia-DEGs, hypoxia-related genes, and mitochondrial dysfunction-related genes.
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3.3 Construction and validation of
the nomogram

To assess the independent predictive capability of the risk score,

univariate and multivariate Cox regression analyses were

conducted. The univariate Cox regression analysis revealed a

significant association between OS and various clinicopathological

parameters, including age (p=0.0046, HR = 1.020, 95% CI =1.0070-

1.039), gender (p=0.046, HR=1.47, 95% CI=1.010-2.16), T stage
Frontiers in Immunology 09
(p=0.017, HR=1.31, 95% CI=1.048-1.63), N stage (p<0.001,

HR=1.32, 95% CI=1.13-1.55), M stage (p=0.0078, HR=2.24, 95%

CI=1.24-4.08), tumor stage (p<0.001, HR=1.54, 95% CI=1.25-1.92),

and risk score (p<0.001, HR=3.00, 95% CI=1.76-5.13) (Figure 4A).

Additionally, the multivariate Cox regression analysis validated the

age (p<0.001, HR = 1.030, 95% CI = 1.012-1.048), tumor stage (p =

0.019, HR = 1.31, 95% CI = 0.87-1.97), and risk score (p<0.001, HR

= 2.74, 95% CI = 1.60-4.73) are reliable independent prognostic

factors for predicting the OS of STAD patients in the TCGA
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FIGURE 3

Development and evaluation of the HMDRGs prognostic model. (A) Forest plot of the univariate Cox regression analysis. (B) Expression levels of
survival-related genes in tumor and normal tissues. (C) LASSO coefficient profiles of the 5 survival-related genes. (D) A coefficient profile plot was
produced against the log (lambda) sequence in the LASSO model. The optimal parameter (lambda) was indicated by the black dotted line. (E, F) The
distributions of the risk score, survival time, and status of patients in TCGA STAD training cohorts. (G) Kaplan-Meier curves of the gene signature in
TCGA STAD training cohorts. (H) The time-dependent ROC curves of the prognostic gene signature in TCGA STAD training cohorts.
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training cohort (Figure 4B). A nomogram serves as an effective tool

to integrate multiple risk factors for predicting the OS of cancer

patients. Here, we developed a nomogram for predicting 1-year, 3-

year, and 5-year OS in the TCGA STAD cohort. Three independent

risk factors, including age, stage, and the HMDRG signature, were

incorporated into this model (Figure 4C). The calibration curves

showed that the nomogram-predicted OS aligned with the actual
Frontiers in Immunology 10
observed OS at 1-year, 3-year, and 5-year intervals (Figures 4D-F).

The C-Index curve illustrates that the nomogram (AUC=0.702)

provides the most accurate prediction compared to other

prognostic factors, including risk score (AUC=0.689), tumor stage

(AUC=0.646), and age (AUC=0.613) (Figure 4G). Besides, we

conducted a clinical analysis to discern the variances in clinical

features between the two risk groups. Notably, patients in the high-
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FIGURE 4

Construction and validation of the nomogram. Forest plots of the (A) univariate and (B) multivariate Cox regression analysis in TCGA STAD cohorts.
(C) The nomogram was constructed based on the age, stage and risk score. The calibration plots for the internal validation of the nomogram
predicting (D) 1-year, (E) 3-year, and (F) 5- year OS. The X-axis represents the nomogram predicted survival, and the y axis represents the actual
survival. (G) Concordance index of nomogram, risk score, age, and stage. The percentages of different (H) stages and (I) ages of patients between
high and low-risk groups.
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risk group had higher percentages of advanced stages (IV), ages (60-

85 years), and TNM classifications (T4, N3, and M1) compared to

the low-risk group (Figures 4H, I and Supplementary Figures

S6A-C).
3.4 Exploration of molecular functions and
signaling pathways related to HMDRGs by
GSEA, GO, and KEGG analyses

To investigate the underlying differences in biological functions

of HMDRGs between the high-risk and low-risk groups, GSEA was

employed. All the enriched KEGG pathways were listed in

Supplementary Table S7. GSEA analysis revealed that 74 pathways

exhibited significant enrichment in the high-risk group. Several

pathways, including focal adhesion (NES=2.35, p<0.001), regulation

of actin cytoskeleton (NES=2.32, p<0.001), mitogen-activated protein

kinase (MAPK) signaling pathway (NES=2.19, p<0.001), renal cell

carcinoma (NES=2.15, p<0.001), and pathways in cancer (NES=2.14,

p<0.001), have been demonstrated to be closely associated

tumorigenesis (Figure 5A). Nineteen pathways, such as the citrate

cycle (TCA cycle) (NES=-2.04, p<0.01), spliceosome (NES=-2.08,

p<0.01), base excision repair (NES=-1.97, p<0.001), RNA

degradation (NES=-1.93, p<0.01), DNA replication (NES=-1.85,

p<0.05), and homologous recombination (NES=-1.84, p<0.01) were

significantly enriched in the low-risk group (Figure 5B). Next, we

explored the differences in biological processes and pathways between

the two risk groups based on the HMDRG gene signature. The DEGs

between the high-risk group and low-risk group were identified using

the cut-off values of adjusted p-values (adj.p)< 0.05 and |

log2FoldChange| > 1 (Supplementary Table S8). By conducting GO

enrichment and KEGG pathway analysis, we identified 722 biological

processes (BPs), 106 cellular components (CCs), and 92 molecular

functions (MFs) (Supplementary Table S9). The top ten enriched

BPs, CCs, and MFs are illustrated in Figures 5C-E. The KEGG

pathway analysis identified 57 enriched pathways (Supplementary

Table S10), which are significantly enriched in signaling pathways of

neuroactive ligand-receptor interaction, extracellular matrix (ECM)-

receptor interaction, protein digestion and absorption, focal

adhesion, cyclic adenosine monophosphate (cAMP), advanced

glycation end product -receptor for AGE (RAGE), cell adhesion

molecules (CAMs), IL-17, calcium, and malaria (Figure 5F).
3.5 Analysis of immune status for STAD
patients combined with the
prognostic signature

To comprehensively characterize immune cell infiltration within

the context of risk stratification in STAD, comprehensive analyses

including ESTIMATE, CIBERSORT, and ssGSEA were conducted in

high-risk and low-risk groups. ESTIMATE analysis showed that the

high-risk group displayed significant elevation in stromal, immune,

and estimate scores (p<0.001) (Figures 6A-C), while the tumor purity

was markedly reduced (p<0.001) (Figure 6D). CIBERSORT analysis

was performed to evaluate the proportions of 22 immune cell types in
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the low-risk and high-risk groups, showing that the infiltration levels

of the monocyte (p<0.001) and resting mast cells (p<0.001) were

remarkably increased in the high-risk group (Figure 6E). These

findings suggest a positive correlation between the risk score and

the infiltration levels of monocytes and resting mast cells in the high-

risk group. In addition, the ssGSEA analysis revealed a significant

increase in gene expression levels for 18 out of 28 immune cell

subtypes in the high-risk group compared to the low-risk group

(Figure 6F). These findings demonstrate that individuals in the high-

risk group tend to have a stronger immunological infiltration than

those in the low-risk group. Next, the expression levels of 33 immune

checkpoint molecules were examined between the high-risk and low-

risk groups. We found that ADORA2A, BTLA, CD200, CD200R1,

CD274, CD276, CD28, CD40, CD44, CD48, CD80, CEACAM1,

CTLA4, HAVCR2, KIR3DL1, LAG3, LAIR1, NRP1, PDCD1,

PDCDLG2, TIGIT, TNSF14, TNFSF18, and TNFSF4 were

significantly elevated in the high-risk groups. In contrast, LGALS3

and TNFRSF25 exhibited a significant decrease in the high-risk

group (Supplementary Figure S7). To further explore the predictive

potentials of our model in cancer immunotherapy, we conducted

tumor immune dysfunction and exclusion (TIDE) and

immunophenoscore (IPS) analyses. The TIDE analysis indicated

that the high-risk group with a higher TIDE score presented

poorer responses to cancer immunotherapy compared to the low-

risk group (Figure 6G). In addition, we performed IPS analysis and

found that the low-risk group exhibited higher IPS values compared

to the high-risk group, suggesting that low-risk patients may be more

responsive to immunotherapy using immune checkpoint inhibitors

and could achieve better immunotherapeutic efficacy (Figure 6H).
3.6 In vivo validation of HMDRGs
expression in GC

To verify the close correlation between the protein expression

levels of HMDRGs and the incidence of STAD, we conducted

immunohistochemical analysis on both healthy individuals and

STAD patients. Consistent with the transcriptional data,

immunohistochemistry (IHC) staining retrieved from the Human

Protein Atlas (HPA) database revealed that the protein expression

levels of AKAP12, CAV1, and ZFP36 were reduced, whereas

SERPINE1 was increased in gastric tissue compared to the

normal group (Supplementary Figures S8A-D). Among them,

SERPINE1 and ZFP36 exhibited the most significant changes in

staining intensities. These findings provide further in vivo evidence

to reveal the potential implication of HMDRGs in contributing to

STAD pathogenesis and malignant progression.
3.7 In vitro functional validation of the
HMDRGs in gastric cancer cells

To explore and validate the hypoxia responses of HMDRGs in

gastric cancer cells, MGC803 and HGC27 gastric cancer cell lines

were exposed to hypoxic conditions for 0, 24, and 48 hours as

verified by the remarkable upregulation of HIF-1a mRNA
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expression (Figure 7A). RT-qPCR analysis demonstrated aberrant

expression of five HMDRGs in GC cells under hypoxic conditions.

SERPINE1 and ZFP36, exhibiting the most significant

upregulation and downregulation, respectively, were selected for

further functional validation (Figures 7B-F). To further validate

the functional role of SERPINE1 and ZFP36 in GC cells, we

silenced SERPINE1 and overexpressed ZFP36 in MGC803 and
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HGC27 cell lines to evaluate the effects on cell viability,

proliferation, and migration/invasion. RT-qPCR confirmed the

potent silence and overexpression efficiency of SERPINE1 and

ZFP36 at the mRNA expression levels, respectively (Figures 7G,

H). Intriguingly, we observed that silencing SERPINE1 and

overexpressing ZFP36 significantly reduced cell viability

(Figures 7I, J), and suppressed cell proliferation (Figures 7K, L),
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FIGURE 5

Exploration of molecular functions and signaling pathways of HMDRGs by GSEA, GO, and KEGG analyses. Enrichment plot of the DEGs between the
(A) high- and (B) low-risk groups using GSEA (Gene Set Enrichment Analysis). GO (Gene Ontology) analysis, including (C) BP (Biological Process), (D)
CC (Cellular Component), and (E) MF (Molecular Function). (F) KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis.
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which were respectively evaluated by CCK8 and colony formation

assays in both GC cell lines. Transwell assays (Figures 7M, N) and

cell wound healing (Figures 7O, P) demonstrated that SERPINE1

knockdown and ZFP36 overexpression inhibited cell invasion/

migration. These in vitro results confirm that SERPINE1 functions
Frontiers in Immunology 13
as a risk gene, while ZFP36 acts as a protective gene in the

progression of GC.

Furthermore, based on the molecular structure of SERPINE1

(Figure 8A), molecular docking analysis demonstrates that

forskolin is a potent inhibitor of SERPINE1, exhibiting five
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FIGURE 6

Analysis of immune status for STAD patients combined with the prognostic signature. The comparison analysis of (A) stromal scores, (B) immune
scores, (C) ESTIMATE scores, (D) tumor purity, (E) proportion of immune cells, and (F) the ssGSEA (single sample Gene Set Enrichment Analysis)
score between the high-risk group and the low-risk group in TCGA STAD cohorts. (G) The TIDE (Tumor Immune Dysfunction and Exclusion) analysis
of the low- and high-risk groups. (H) The IPS (immunophenoscore) analysis of the low- and high-risk groups. *p<0.05, ***p<0.001, ns indicates
not significant.
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binding sites with SERPINE1 (Figures 8B, C and Supplementary Table

S11). As shown in Figure 8D, Forskolin (40 mM, 24 h) treatment

markedly inhibited the mRNA expression of SERPINE1 in MGC803

and HGC27 cells. Moreover, inhibition of SERPINE1 by forskolin
Frontiers in Immunology 14
treatment was able to remarkably reduce the GC cell viability

(Figure 8E), proliferation (Figure 8F), and invasion/migration

(Figures 8G, H), which is consistent with the result that SERPINE1

knockdown alleviated the oncogenic progression of GC cells.
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FIGURE 7

In vitro validation of HMDRGs in gastric cancer cells. MGC803 and HGC27 cells were transduced with pLKO.1-TRC shRNA/pLV/EF1A empty vector as
control or pLKO.1-SERPINE1 to silence SERPINE1/pLV/EF1A hZFP36 to overexpress ZFP36. RT-qPCR analysis of the mRNA expression of (A) HIF-1a,
(B) SERPINE1, (C) ZFP36, (D) DUSP1, (E) CAV1, and (F) AKAP12 under hypoxia conditions in MGC803 and HGC27 cells. RT-qPCR analysis of the
mRNA expression of (G) the knockdown efficiency of SERPINE1, and (H) the overexpression level of ZFP36. (I, J) The cell proliferation assay, (K, L)
colon formation assay, (M, N) Transwell assay, and (O, P) wound healing assay in MGC803 and HGC27 cells. *p<0.05, **p<0.01, ***p<0.001, ns
indicates not significant. Student’s t-test. The error bars represent the mean ± SEM. Scale bar = 0.1 mm.
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3.8 SERPINE1 knockdown and ZFP36
overexpression promote mitochondrial
dysfunction in gastric cancer cell

To further validate whether SERPINE1 and ZFP36 as HMDRGs

modulate GC progression is associated with mitochondrial

dysfunction, the effects of SERPINE1 knockdown and ZFP36

overexpression on ROS generation and mitochondrial membrane

potential were examined in GC cells. DCFH-DA staining analysis

demonstrated that silencing SERPINE1 and overexpressing ZFP36
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markedly promoted ROS production in GC cell lines MGC803

(Figures 9A, B) and HGC27 (Figures 9C, D). Moreover, we

observed that SERPINE1 knockdown and ZFP36 overexpression

resulted in remarkable reductions in mitochondrial membrane

potential (Figures 9E-H), and mitochondrial morphology

damages visualized by the perinuclear clustering of mitochondria

as compared to the control groups with more diffused mitochondria

(Figures 9I-L). These results provided in vitro evidence to validate

that HMDRGs contribute to GC malignant progression correlated

with mitochondrial dysfunction.
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FIGURE 8

Targeting SERPINE1 by forskolin suppresses the cell proliferation, invasion, and migration in GC cells. (A) SERPINE1 molecular structure. (B) Forskolin
molecular structure. (C) Molecular dock between SERPINE1 and forskolin. (D) RT-qPCR analysis of the SERPINE1 mRNA expression levels of MGC803
and HGC27 pre-treated with forskolin (0 mM, 20 mM, and 40 mM) for 24h. (E) The cell proliferation assay, (F) colon formation assay, (G) Transwell
assay, and (H) wound healing assay in MGC803 and HGC27 cells. *p<0.05, **p<0.01, ***p<0.001, ns indicates not significant. Student’s t-test. The
error bars represent the mean ± SEM. Scale bar = 0.1 mm.
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4 Discussion

GC is a common malignancy characterized by a poor prognosis

(47). With the advancement of bioinformatics and single-cell RNA

sequencing (scRNA-seq) technology, numerous aberrantly

expressed oncogenes have been identified and could serve as
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prognostic signatures in GC (48, 49). In comparison with

previous studies in GC, prognostic gene signatures based on

HMDRGs have not been previously investigated. In this study,

five HMDRGs were identified and found to be strongly associated

with the survival probability of STAD patients via Cox univariate

analysis and LASSO regression analysis. A new nomogram that
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FIGURE 9

SERPINE1 knockdown and ZFP36 overexpression promote mitochondrial dysfunction in GC cell. MGC803 and HGC27 cells were transduced with
pLKO.1-TRC shRNA/pLV/EF1A empty vector as control or pLKO.1-SERPINE1 to silence SERPINE1/pLV/EF1A hZFP36 to overexpress ZFP36. (A-D) ROS
assay in MGC803 and HGC27 cells. (E-H) Mitochondrial membrane potential assay in MGC803 and HGC27 cells. (I-L) Confocal microscopy image
analysis of the mitochondrial morphology stained with Mitotracker dyes. The red signal indicates mitochondrial distribution. ***p<0.001, Student’s
t-test. The error bars represent the mean ± SEM. Scale bar = 0.1 mm.
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integrates multiple risk factors for predicting the OS of STAD

patients stratified clinical outcomes in the TCGA cohorts.

Moreover, we provided substantial evidence to validate the

reliability and accuracy of the HMDRG signature for the

prediction of STAD prognosis and immunotherapy. This study

indicates that the HMDRG signature is a convincible biomarker for

the prognosis, survival risk stratification, and personalized

management of GC. Identification of HMDRGs may provide

novel insights for understanding the pathogenesis of GC with a

link to hypoxic microenvironment and mitochondrial dysfunction.

Through the bioinformatic analysis of scRNA-seq data of GC, we

identified 14 distinct cell types, and found that fibroblasts displayed

the highest scores related to hypoxia. The tumor microenvironment

comprises a variety of cell types, including fibroblasts, immune cells,

nerves, and vascular endothelial cells, all capable of interacting with

cancer cells (50). Among these, cancer-associated fibroblasts (CAFs)

display the most prevalent constituents. CAFs, one of the most

prominent components of the TME, exhibit high sensitivity to

hypoxia and engage in crosstalk with cancer cells. Hypoxic CAFs

promote cancer malignancy through various mechanisms, including

extracellular matrix (ECM) remodeling, immune evasion, metabolic

reprogramming, angiogenesis, metastasis, and drug resistance (51).

Activated CAFs are capable of producing chemokines, extracellular

matrix components, growth factors and metabolites, in turn

orchestrating tumor growth through direct contact or paracrine

signaling (52, 53). Emerging evidence suggests that CAFs as one of

the most abundant mesenchymal cell components of stroma

strongly contribute to the initiation and development of GC (54).

However, the underlying molecular mechanisms still require

further investigation.

In this study, five HMDRGs including ZFP36, SERPINE1,

AKAP12, CAV1 and DUSP1, were identified to construct a

prognostic risk evaluation model via the LASSO Cox regression

analysis, which demonstrates a novel gene signature. In a previous

study, a hypoxia-related gene prognostic model was established to

guide the drug treatment of GC patients (55). However, here we

established HMDRGs prognostic model based on hypoxia- and

mitochondrial dysfunction-related genes. Furthermore, based on

the mRNA expression levels of these HMDRGs and the coefficients

from LASSO Cox regression analysis, a risk score was calculated for

each STAD patient. In the TCGA cohort, high-risk patients exhibited

elevated risk scores and shorter survival durations compared to low-

risk individuals. Kaplan-Meier survival analysis indicated a higher

survival probability and longer survival durations in the low-risk

group compared to the high-risk group. This model demonstrated

consistent results across two independent GEO cohorts. Moreover,

we developed a nomogram integrating age, stage, and the HMDRG

signature for predicting 1-year, 3-year, and 5-year OS in the TCGA

STAD cohorts. Calibration curves of the nomogram demonstrated

that the predicted OS closely aligned with the actual observed OS at 1-

year, 3-year, and 5-year intervals, suggesting that this nomogram is

accurate and reliable for predicting the OS of STAD patients. The

prognosis models of GC by bioinformatics have been previously

investigated based on telomerase regulation-related lncRNA (56),

cuproptosis-related genes (42), ferroptosis-related genes (43, 45, 46),

and mitochondrial-related genes (44), whereas our model based on
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HMDRGs with different approaches present novel advantages.

Remarkably, we performed a model comparison analysis with other

established prognostic models (42–46), indicating that our model

presents superior accuracy and reliability in predicting the OS of

GC patients.

To elucidate the potential mechanism of HMDRGs in

modulating the malignant processes of GC, we conducted

biological function and signaling pathway analyses of HMDRGs in

the high-risk and low-risk groups. GSEA enrichment analysis

revealed that HMDRGs were involved in regulation of actin

cytoskeleton, focal adhesion, and MAPK signaling pathways in the

high-risk group. Conversely, in the low-risk group, HMDRGs were

enriched in the biological process related to the regulation of the TCA

cycle, spliceosome, mismatch repair, and base excision repair.

Consistently, a large proportion of HMDRGs-related signaling

pathways have been found to be implicated with the orchestration

of tumorigenesis. In mesenchymal triple-negative breast cancer

(TNBC) cells, hypoxia-induced focal adhesion turnover promotes

cell migration (57). Under the hypoxic condition, MAPK signaling

cascade enhances HIF-1a stability and transcriptional activity (58).

Noteworthy, the MAPK pathways undergo dysregulation through

various ways in GC, with their components potentially mediated by

trans-regulating factors such as drugs, ligands, or endogenous

proteins. Furthermore, within the context of hypoxia, disruption of

the TCA cycle occurs in the mitochondria, which results in

mitochondrial dysfunction, ultimately contributing to tumor

development and metastasis (59). Mechanistically, HMDRGs may

contribute to the pathogenesis of GC by regulating hypoxia and

mitochondrial dysfunction through the enriched pathways, which

offers novel perspectives to elucidate the molecular mechanisms of

GC pathogenesis.

The infiltration of immune cells into the tumor microenvironment

plays a pivotal role in the development, progression, and malignancy of

GC by facilitating interactions with other immune cells (60). To figure

out the HMDRGs-related immune cell infiltration in GC, ESTIMATE,

CIBERSORT and ssGSEA analyses were performed to examine the

involvement of immune cell infiltration in GC in both the high-risk

and low-risk groups. In comparison with the low-risk group, GC

patients classified in the high-risk group exhibited elevated ESTIMATE

score, stromal score, and immune score, alongside a significant

decrease in tumor purity. The increase in infiltrating immune cells

coincides with stromal activation, potentially hindering the migration

of T cells from the tumor parenchyma to the peritumoral stroma (61,

62), in turn leading to an unfavorable prognosis in the high-risk group.

In CIBERSORT analysis, we found a significant increase in infiltration

levels of monocytes and resting mast cells in the high-risk group

evaluated. Furthermore, ssGSEA analysis revealed a significant

upregulation in the gene expression levels of immune cells in the

high-risk group compared to the low-risk group. These findings lead us

to hypothesize that the enhanced presence of infiltrated immune cells

in the tumor microenvironment accelerates GC progression, thereby

contributing to the poor prognosis observed in the high-risk group.

Immune checkpoint inhibitors (ICIs) that suppress the programmed

death 1 (PD-1)/programmed death-ligand 1 (PD-L1) and cytotoxic T-

lymphocyte antigen 4 (CTLA-4) interactions offer a novel strategy for

GC treatment (63). Here, we found that the expression levels of 24
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immune checkpoint molecules (ADORA2A, BTLA, CD200, CD200R1,

CD274, CD276, CD28, CD40, CD44, CD48, CD80, CEACAM1,

CTLA4, HAVCR2, KIR3DL1, LAG3, LAIR1, NRP1, PDCD1,

PDCDLG2, TIGIT, TNSF14, TNFSF18, and TNFSF4) were

significantly elevated in the high-risk group, while LGALS3 and

TNFRSF25 exhibited a significant decrease in the high-risk group.

Moreover, immunotherapy response analyses further confirm that the

high-risk group with higher TIDE scores and lower IPS exhibit poorer

responses to immunotherapy with immune checkpoint inhibitors as

compared to the low-risk group, suggesting that our prognostic model

offers great potential in clinically predicting immunotherapeutic

outcomes for GC immunotherapy.

Remarkably, our experimental work confirms that SERPINE1

and ZFP36 as HMDRGs are indeed hypoxia-related genes, and are

also implicated in the regulation of mitochondrial dysfunction in GC

cells. Upon hypoxia exposure, SERPINE1 is significantly up-

regulated, while ZFP36 is down-regulated in GC cells, which is

consistent with previous studies to demonstrate that hypoxia

promotes the aberrant expression of SERPINE1 and ZFP36 in

cancer cells (64, 65). Importantly, we provide in vitro evidence to

validate that SERPINE1 depletion and ZFP36 overexpression reduce

cell viability/proliferation, and suppress the capability of cell

migration/invasion in GC cells, which is in line with the prognostic

prediction model based on HMDRGs. Tian et al. demonstrated that

SERPINE1 promoted malignant progression and poor prognosis of

GC (66), and ZFP36 has been reported to reverse the carcinogenic

progression of GC cells (67). Furthermore, forskolin as a potent

inhibitor of SERPINE1 has been found, and it is capable of promoting

cell death and suppressing cell proliferation and migration/invasion

in GC cell lines. Consistently, in GC and non-Hodgkin’s lymphomas,

forskolin has been unraveled to exert anticancer by inhibiting cell

proliferation and inducing cell apoptosis (68). Nevertheless, whether

forskolin provides clinical potential for GC treatment still requires

further investigation. Notably, scRNA sequencing analysis reveals

that SERPINE1 is prominently expressed in fibroblasts and

endothelial cells, while ZFP36 exhibits high expression in T cells

and NK cells. Cancer-associated fibroblasts (CAFs) and endothelial

cells play significant roles in the microenvironment of GC through

ECM remodeling (69), immune modulation (69, 70), and

angiogenesis (71, 72). T cells and NK cells can contribute to

modulating the immune microenvironment of GC via adaptive

immunity (73), and innate immunity (74). Feng et al. have revealed

that SERPINE1 can serve as a prognostic biomarker of GC correlated

with cuproptosis and can modulate the immune infiltration and

angiogenesis in the microenvironment of GC (75). Also, ZFP36 has

been identified as a novel senescence-related gene signature for

GC prognosis and is involved in regulating the immune

microenvironment in patients with GC by influencing the

abundance of infiltrating immune cells (76). Although the

functional roles of DUSP1, CAV1 and AKAP12 in contributing to

GC malignant progression have not been validated in this study,

emerging evidence suggests that they may be directly or indirectly

involved in the pathogenesis of GC correlating with hypoxia and

mitochondrial dysfunction. Recently, DUSP1 has been identified and

characterized as a prognostic gene that predicts the overall survival of

GC patients (77), and it promotes apatinib-induced resistance for GC
Frontiers in Immunology 18
therapy by activating the MAPK pathway (78). In hepatocytes, it was

reported that hypoxia condition modulated DUSP1 expression in a

time-dependent manner (79), and DUSP1 overexpression was able to

prevent alcohol-induced mitochondrial dysfunction via reducing

ROS production (80). During hypoxic conditions with increased

expression of HIF-1a, CAV1 has been demonstrated to be mediated

by heat shock protein 90 (HSP90) and acts as a crucial regulator of

epithelial-mesenchymal transition (EMT), thereby contributing to

GC progression (81). AKAP12, a widely studied tumor suppressor in

various cancers, has been demonstrated to be an independent

prognostic factor with excellent predictive performance for the

prognosis of STAD patients, and its expression is significantly

associated with immune cell infiltration, immune pathways, and

immunomodulators (82). In human cardiac fibroblasts, reduced

AKAP12 expression was reported to contribute to aldosterone-

induced mitochondrial dysfunction and cardiac oxidative stress

(83). Taken together, this substantial evidence strongly confirms

that these HMDRGs (ZFP36, SERPINE1, AKAP12, CAV1, and

DUSP1) are strongly involved in hypoxia, mitochondrial

dysfunction, and tumor immunity, in turn contributing to the

modulation of GC pathogenesis and prognosis.

Although our study established a novel prognostic risk model

with remarkable accuracy and reliability based on HMDRGs for GC,

our study still bears several limitations. In further investigations, the

predictive capacity and reliability of this model for stratifying GC

patients, predicting GC prognosis and immunotherapeutic effects

need to be validated in practical clinical work using a larger

clinical cohort. In addition, the exact molecular mechanism by

which HMDRGs contribute to GC pathogenesis and malignant

progression still warrants further investigation.
5 Conclusion

In summary, we have identified a dependable prognostic

HMDRG signature through bioinformatic analysis of hypoxia- and

mitochondrial dysfunction-related genes in STAD training cohorts.

The prognostic risk model based on HMDRGs demonstrates

remarkable reliability and accuracy in stratifying GC patients,

predicting GC prognosis, and assessing immunotherapy efficacy,

which greatly aids in efficiently managing GC patients and quickly

choosing the most effective treatment in clinical practice. Moreover,

our study provides new insights into understanding the pathogenesis

of GC with a link to hypoxia and mitochondrial dysfunction

contributing to the malignant progression and prognosis of GC.
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