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Mast cells (MCs) are bone-marrow-derived haematopoietic cells that are widely

distributed in human tissues. When activated, they will release tryptase, histamine

and other mediators that play major roles in a diverse array of diseases/disorders,

including allergies, inflammation, cardiovascular diseases, autoimmune diseases,

cancers and even death. The multiple pathological effects of MCs have made

their stabilizers a research hotspot for the treatment of related diseases. To date,

the clinically available MC stabilizers are limited. Considering the rapidly

increasing incidence rate and widespread prevalence of MC-related diseases, a

comprehensive reference is needed for the clinicians or researchers to identify

and choose efficacious MC stabilizers. This review analyzes the mechanism of

MC activation, and summarizes the progress made so far in the development of

MC stabilizers. MC stabilizers are classified by the action mechanism here,

including acting on cell surface receptors, disturbing signal transduction

pathways and interfering exocytosis systems. Particular emphasis is placed on

the clinical applications and the future development direction of MC stabilizers.
KEYWORDS
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1 Introduction

Mast cells (MCs) are bone-marrow-derived haematopoietic cells involved in a

multitude of diseases/disorders, including allergies, inflammation, migraine headache,

cardiovascular diseases, autoimmune disease, cancer and even death (Table 1) (9, 18).

They are widely distributed in tissues, especially at sites exposed to the external

environment, such as the skin, digestive tract and respiratory tract (19). As innate

immune cells, MCs are involved in the early and rapid sensing of external invaders such

as bacteria, viruses, fungi, parasites and other allergic proteins (20).

Upon activation, MCs release biologically active compounds, and exert physiological

and pathological functions. The mediators of MCs can be classified into three types:

i) preformed mediators stored in secretory granules; ii) neoformed or lipid mediators

derived from membrane lipids; and iii) neosynthesized mediators produced following
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transcriptional activation. Histamine, chymase and tryptase are

well-known MC preformed mediators. Histamine can induce

vasodilation, bronchoconstriction, smooth muscle contraction and

augment mucus secretion (1, 2), all of which are commonly

associated with allergic and inflammatory reactions. In addition,

histamine can also stimulate tumor proliferation by enhancing

angiogenesis (4, 5). Chymases and tryptases are serine proteinases

and exclusively expressed by MCs, which can produce the coronary

constrictor angiotensin and induce proteolytic changes in high

density lipoprotein particles (6, 7). They are related to a number

of pathological states including inflammation, arthritis, innate

immune defence, glomerulonephritis, abdominal aortic aneurism

formation and tumor angiogenesis (21, 22). Based on serine

proteinase composition, MCs can be divided into two subsets: a

subset that contains the tryptase and chymase (MCTC), and a

subset that contains only tryptase (MCT) (23). Histamine and

tryptases released by activated meningeal (dural) MCs play

important roles in the migraine headache pathophysiology mainly

through the complex bidirectional relationship with calcitonin

gene-related peptide (CGRP) (9). The activation of mast cell

signaling pathways leads to the rapid production and release of

neoformed mediators, representing by prostaglandins (PGs) and

leukotrienes (LTs) (10). PGs contribute to mucus production,

leukocyte recruitment, increased vascular permeability and nerve

cell activation (10). LTs exert local effects on the vascular

endothelium by promoting the recruitment of eosinophils and

neutrophils, which is beneficial to host defend against bacterial

infections (10). Neosynthesized mediators produced following

transcriptional activation and regulated by the type of stimuli and

receptor including cytokines, CXC-chemokine ligands (CXCL) and

CC-chemokine ligands (CCL) (11). Transforming growth factor-b
(TGF-b) released byMCs has been shown to promote Treg function

contributing to controlling autoimmune and allergic inflammation

(24). More detrimentally, it is extensively implicated in the

pathogenesis of fibrosis (3). Other cytokines, associated with type
Frontiers in Immunology 02
1and 2 T-helper cell responses such as interferon-gamma (IFN-g),
IL-2, IL-4, IL-3 and TNF-a, are primarily involved in inflammatory

responses that include alopecia areata, obesity, diabetes and

laminitis (25). The chemokines CCL5 and CXCL8 can recruit

immune cells to sites of infection (26).

The diverse cellular functions and ubiquitous distribution make

MCs a hotspot for the treatment of numerous diseases, especially

allergic diseases (24). To date, the clinically available MC stabilizers

are limited. Due to the rapidly increasing incidence rate and

widespread prevalence of MC-related diseases, a comprehensive

reference is needed for the clinicians or researchers to identify new

effective MC stabilizers. The present review classifies MC stabilizers

based on their mechanism. Particular emphasis is placed on the

clinical applications and the future development direction of

MC stabilizers.
2 Process of MC activation

MC activation is regulated by surface receptors (27), including

FceRI, KIT, Mas-related G protein coupled receptor X2

(MRGPRX2) and natural killer (NK) receptor. The FceRI-
dependent pathway is the most recognized MC activation

pathway with the crosslink of FceRI caused by the recognition of

allergens to bound IgE. The crosslink leads to spleen tyrosine kinase

(Syk)-dependent phosphorylation and activation of the SRC-family

kinases FYN and LYN, causing the phosphorylation of adaptor

proteins, including linker For Activation of T-Cells (LAT) and

Grb2-related adaptor protein (GAB2) (28). The downstream

pathways consist of the PLCg and the phosphatidylinositol 3-

kinase (PI3K) signalling pathways (28). Signal molecule

recruitment is followed by activation of second messenger

molecules, including inositol triphosphate (IP3), diacylglycerol

(DAG) and PtdIns, which activate protein kinase C (PKC) and

increase intracellular Ca2+. Along with Ca2+ mobilization, the
TABLE 1 Common symptoms and diseases caused by MC mediators.

System Mediators Symptoms and diseases References

Systemic
Histamine, Proteases,
ILs, Cytokines

Anaphylaxis, Systemic mastocytosis, Tissue fibrosis (1–3)

Cardiovascular
Tryptase, Histamine, TGF-b,
Matrix
metalloproteinases, Renin

Atherosclerosis, Supraventricular tachycardia and cardiac arrest, Irregularities of blood pressure
regulation, Chronic heart failure, Acute coronary syndromes, enhancing angiogenesis (stimulating
tumor proliferation)

(4–8)

Neurologic:
Adipocytokines,
Histamine, proteases

Migraine headache, Brain fog, Paresthesias, Peripheral neuropathy, Brain inflammation and autism (9–12)

Dermatologic
Histamin, TNF-a,
Cytokines, Chemokines

Angioedema, Dermatographism, Flushing, Pruritus, Urticaria (11, 13)

Gastrointestinal
Histamine, IL-16,
Eosinophilic
chemotactic factor

Abdominal pain, Bloating, Diarrhea, Esophagitis, Nausea, Vomiting, Crohn’s Disease (10, 14)

Musculoskeletal
TNF-a, VEGF, TGF-b, IL-6,
MMP9, Chymase

Bone/muscle pain, Degenerative disc disease, Osteoporosis (15, 16)

Respiratory
PGD2, Histamine, Proteases,
ILs, Cytokines, LTs

Hoarseness, Sore throat, Throat swelling, Wheezing, Allergic asthma, Allergic rhinitis (17)
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degranulation machinery is triggered. Granules containing

mediators move to the plasma membrane in a microtubule-

dependent manner along with the production of lipid mediators

and cytokines (Figure 1).

FceRI -independent pathways mediated by KIT, NK or

MRGPRX2 have also been found to serve pivotal roles in the

pathophysiology of various allergic and inflammatory conditions

(Figure 1) (29). KIT, NK and MRGPRX2 can also induce

autophosphorylation at multiple tyrosine residues in the

cytoplasmic tail resulting in the recruitment of signal molecules

and leading to MC degranulation (Figure 1). These receptors can

both be the ‘prime’ method for MC activation and complementary

of FceRI-dependent pathways. Among them, MRGPRX2 is a

prominent receptor responsible for FceRI-independent allergic

reactions, including itch, rosacea, urticaria and adverse drug

reactions (30). It can be activated by a wide range of stimuli

including cysteine proteases, neuropeptides, small cationic

molecules and peptides with amphipathic properties, and drugs,

playing important roles in host defence, immunomodulation,

inflammatory diseases and pseudo-allergic drug reactions (31, 32).

The pathway of MRGPRX2-mediated activation is similar to that of

the FceRI-dependent pathway, including Ca2+ mobilizing and

activation of downstream signals such as Erk1/2, JNK, p38 and

PI3K/AKT (33).
Frontiers in Immunology 03
3 MC-stabilizing agents

Regarding various MC activation pathways, a diverse array of

MC stabilizers has been reported. The mechanism of action for MC

stabilizers can be classified into three categories: i) Blocking external

stimulus signals into cells; ii) inhibiting intracellular signalling

pathways; and iii) disturbing degranulation (Figure 1, Table 2).
3.1 Blocking external signals into the MCs

3.1.1 Anti- IgE
IgE plays a central role in MC activation. The ability to reduce

circulating IgE with a humanized monoclonal antibody (mAb) such

as omalizumab, ligelizumab, quilizumab and UB-221 represents a

new approach for stabilizing MCs (150). Omalizumab is a first

generation anti-IgE mAb that was originally designed to reduce

patients’ sensitivity to inhaled or ingested allergens (34). It

selectively binds to the Ce3 domain of soluble IgE, thus

immobilizing and preventing IgE-FceRI binding (151). Combining

omalizumab (300 mg/month subcutaneously) with anti-

inflammatory agents and/or pimecrolimus, a calmodulin inhibitor,

can achieve better therapeutic efficacy in MC-associated diseases

(152), including allergic asthma, allergic rhinitis and urticaria.
FIGURE 1

A highly simplified mechanism for MC degranulation and the action mechanism of MC stabilizers.
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TABLE 2 Current therapeutic strategies targeting MCrefer.

Compounds Type Mechanism of action Characteristics References

Blocking external signals into the MC

Anti- IgE

Omalizumab mAb Binding to IgE Reducing free IgE (34)

Ligelizumab mAb Binding to IgE
88-fold higher affinity for
human IgE than that
of omalizumab

(35, 36)

Quilizumab mAb
Binding to IgE
Cytotoxicity on mIgE-expressing B cells

>100-fold higher affinity for
human IgE than that of
omalizumab
Suppressing IgE production

(37)

UB-221 mAb
Binding to IgE
Binding to CD23 on B cell

Reducing both free and bound
IgE,
Downregulate CD23-meidated
IgE synthesis

(34, 38, 39)

sdab 026

Single-domain
antibody,
Recombinant
proteins

Binding to IgE overlap with the CD23
binding site

Reducing both free and
bound IgE,

(40)

DARPin E2_79
bi53_79

Recombinant
proteins

Binding to IgE
Reducing both free and
bound IgE,

(41, 42)

C3a7 and C3a9
C3a-
derived peptides

Interacting with the b chain of FceRI Lack of studies
(43–45)

Inhibition of
Ca2+ influx

Cromolyn Small molecular Preventing Ca2+ influx and activating GPR35 More potent effect on lung MC (46–56)

Nedocromil Small molecular Preventing Ca2+ influx and activating GPR35
Tachyphylaxis in lung and
tonsillar MCs, but not in
adenoidal and intestinal MCs

(57–60)

Lodoxamide Small molecular Preventing Ca2+ influx
Dual stabilizing action on both
MCs and eosinophils,
allergic conjunctivitis

(61, 62)

Ketotifen Small molecular Preventing Ca2+ influx
MC stabilizing properties and
strong H1 receptor antagonism

(63–69)

Dihydropyridines Small molecular L-type Ca2+ channel blockers
Not the first choice for MC
targeting therapy

(70, 71)

MRGPRX2
antagonists

Isoliquiritigenin,
shikonin,
imperatorin,
roxithromysin

Small molecular Binding to MRGPRX2
low affinity and low selectivity;
can interact with a diverse
group of ligands

(30, 33, 72)

KIT antagonists

Pyrimidine derivatives,
Quinazoline derivatives,
Indolinone derivatives,
Indole derivatives,
Quinoline derivatives

Small molecular Binding to KIT

Known as anti-cancer agents,
More potent in chronic allergic
asthma and mastocytosis;
Virtual eradication of tissue
MCs and a sustained decrease
in serum tryptase levels,

(73–78)

NK-1
receptor
antagonists

CP99994 Small molecular Blocking the NK-1 receptor
Stress induced inflammatory
skin disease

(79, 80)

Inhibitory
receptors

LY3454738(anti-
CD200R)
Lirentelimab(anti-
Siglec-8)

mAb ITIM tyrosine phosphorylation
Cross-link activated receptors
with inhibitory receptors can
abrogate activating signal

(81–87)

Interfering intracellular signaling pathways

SFK inhibitors
Ibrutinib, acalabrutinib,
etc. and sophorae flos

Small molecular
or
natural
compounds

Inhibiting activities of Lyn, Fyn, BTK or Hck,
Broadly prevent IgE-mediated
MC degranulation, such
as acalabrutinib

(88–93)

(Continued)
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Apart from allergic diseases, omalizumab also plays an important role

in infectious diseases, such as aspergillosis. Omalizumab treatment

reduced exacerbations and oral corticosteroid use, improved lung

function and asthma control in patients with allergic

bronchopulmonary aspergillosis (ABPA) and was well-tolerated

(153). It is also demonstrated to enhance plasmacytoid dendritic

cell antiviral responses (154).

Ligelizumab is a second-generation anti-IgEmAb with an 88-fold

higher affinity for human IgE than omalizumab (35, 36). In a phase

2b clinical trial (NCT02477332), ligelizumab therapy of 72 mg or 240

mg had a higher percentage of complete control of symptoms in

patients with chronic spontaneous urticaria compared to

omalizumab at a dose of 300 mg, or placebo, administered

subcutaneously every 4 weeks (155). Different from omalizumab,

ligelizumab cannot dissociate the combined IgE from FceRI.
Quilizumab is also classified as a second-generation anti-IgE mAb.

It selectively binds to the Ce3 and Ce4 domains of human IgE with a

higher affinity (>100-fold) than omalizumab (37). Quilizumab can

suppress IgE production by its antibody-dependent cell mediated

cytotoxicity on IgE-expressing B cells. However, the results of clinical
Frontiers in Immunology 05
trials (NCT01987947, NCT01582503) showed that its effect on IgE

production and B cells could not bring a clinically meaningful benefit

for adults with refractory chronic spontaneous urticaria (CSU) and

allergic asthma when used at a dose of 300 mg monthly (156, 157).

UB-221 is a third-generation anti-IgE mAb (38). Compared with the

previous two generations, UB-221 binds to IgE with a higher affinity

and reduces faster the IgE levels in circulation (34). UB-221 binds to

CD23 on B cells and downregulates CD23-mediated IgE synthesis

(39). Phase 1 studies are investigating the characteristics and effect of

intravenous UB-221 in patients with CSU (150). Treatment with IgE

mAb provides a new era for the management of severe allergic

conditions (158).

Apart from traditional mAbs, recombinant proteins have been

reported to possess anti-IgE activity, including recombinant

humanized single-domain antibody (sdab) and designed ankyrin

repeat proteins (DARPins) (159). The sdab 026 was reported to

reduce both free and bound IgE, which is more efficient than

omalizumab (40). Sdab 026 targets IgE by binding to an epitope

within the Fc domains that markedly overlap with the CD23-

binding site instead of the FceRI-binding site (40). The DARPin
TABLE 2 Continued

Compounds Type Mechanism of action Characteristics References

Interfering intracellular signaling pathways

Syk inhibitors

2,4-diaminopyrimidine
(R112, R406, R788,R343),
piceatannol
and curcumin

Small molecular
or
natural
compounds

Competing with ATP-binding sites of syk

Allergic rhinitis,autoimmune
diseases, inflammatory
diseases, cancer, and
infectious diseases

(94–104)

PKC
family inhibitors

Bisindolylmaleimide,
calphostin C,
sphingosine,
quercetin and myricitrin

Small molecular
or
natural
compounds

Inhibiting catalytic domain or regulatory
domain of PKC

More potent effect on skin and
lung MCs

(105–112)

PI3K inhibitors Idelalisib Small molecular
Binding to PI3K p110d in its ATP-
binding site

Allergic rhinitis
(113–118)

JA3K,CERK,
PDE5 inhibitor

WHI-131, K1, vardenafil Small molecular Inhibiting JA3K, CERK, PDE5 separately Lack of studies
(119–122)

Nanoenzyme CeNP Nano particle phosphatase-mimetic activity.
Low cost, high stability, easy to
preparation and modification

(123, 124)

Disturbing MC degranulation

Hybrid proteins
Fusion of mast-cell
targeted proteins
and proteases

Recombinant
protein

Targeting MC and interfering its exocytosis Lack of studies
(125)

Statins
Fluvastatin, simvastatin
and atorvastatin.

Small molecular Interfering with microtubule formation.
Treating hypercholesterolemia,
not the first choice for MC
targeting therapy

(126–131)

Mixed action mechanism

Flavonoids
fisetin, genistein, luteolin,
quercetin
and kaempherol

Natural
compounds

Interfering cell-to-cell interaction between
MC and T cell membranes, inhibiting the
activity of NF-kB and MAPKs

Effective in the treatment of
allergic conjunctivitis, rhinitis,
otitis, asthma and food allergy.

(132–142)

Pemirolast
[1,2-a]pyrimidin-4-
one derivative

Small molecular

Inhibiting Ca2+ mobilization, arachidonic
acid release and metabolism; suppressing
phosphodiesterase activity; increasing
cAMP levels

Allergic asthma and ragweed
allergic conjunctivitis
More suitable for
continuous therapy

(143–145)

Others Tacrolimus and cyclosporine, Artesunate Not the first choice for MC targeting therapy (146–149)
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E2_79 is a fusion of two anti-IgE DARPins that not only prevents

binding of free IgE to FceRI, but also removes receptor-bound IgE

from the cells in a concentration- and time-dependent manner (41).

Moreover, the fusion of DARPin E2_79 with the non-inhibitory

anchor DARPin E3_53 results in a bi-paratopic anti-IgE binder,

bi53_79, with markedly enhanced disruptive efficacy (42).

Compared with mAbs, these recombinant proteins exhibit

increased stability and high production yield in simple expression

systems. Advanced strategies for multiple targeting and half-life

extension can be easily applied to them. Delivery in functional form

via mucosal and airway tissues may be possible using these small-

size IgE inhibitors promoting anti-IgE application.

A patent reported that the C3a-derived peptides C3a7 and C3a9

can interact with the b-chain of FceRI on MCs and decrease the

probability of IgE FceRI binding, resulting in suppression of signal

transduction (43–45). Although C3a7 and C3a9 can inhibit MCs’

function, in-depth studies are lacking and their specific functions

are largely unknown.

3.1.2 Prevention of Ca2+ influx into MCs
The increase in intracellular Ca2+ is a key step for MC

activation. Intracellular Ca2+ is necessary for microtubule

assembly, microfilament contraction, vesicle fusion to the cell

membrane and subsequent degranulation (160). Prevention of

Ca2+ influx into MCs is the action of mode of most clinically

approved MC stabilizers.

3.1.2.1 Cromolyn

In 1965, cromolyn, also known as 5,5 - [(2 - hydroxytrimethylene)

bis - (oxy)]4 - oxo - 4H-1-benzopyran-2-carbox-ylic acid (Figure 2),

was first synthesized during experiments for the drug khellin used for

cardiovascular disease treatment. It is the most commonly used MC

stabilizer that binds specifically to the Ca2+-binding protein on MC

membranes, forming a ternary complex with Ca2+. The ternary

complex creates a blockage that stabilizes MC membranes and

prevents degranulation (46). Recently, it was also shown to have

agonist activity at GPR35 (47) which is predominantly expressed in

the gastrointestinal tract and is closely related to inflammatory bowel

diseases (48). GPR35 is coupled with numerous effectors after agonist

stimulation, causing a series of downstream events, including ion

channel inhibition and transient Ca2+ reduction (49). However, this

discovery differs from previous findings showing that GPRs are

activated receptors and GPR35 is upregulated upon stimulation

with allergens (50). Therefore, further investigation concerning this

potential mechanism is necessary.

Cromolyn has a potent MC stabilizing effect, especially on lung

MCs. Thus, it is widely used for the treatment of allergic diseases

such as rhinitis and asthma. It can improve acute and chronic injury

in lung transplant animal models, but the precise mechanism of

action remains unknown (51). Due to its large molecular weight,

highly hydrophilic and ionisable character, cromolyn is poorly

absorbed by the gastrointestinal tract. Thus, inhalation is the

preferred delivery method. Cromolyn must be taken 4-8 times

daily due to its short half-life (52) which results in a poor

compliance. Recent studies (53) found that cromolyn was able to
Frontiers in Immunology 06
form niosomes, giving this drug a higher percutaneous permeation

profile and the possibility for passive transdermal delivery. Besides,

a series of metal complexes derived from cromolyn were recently

designed, including cromolyn-Zn, -Mg and -Ca. These new metal

complexes can prolong the action time and reduce adverse reactions

(54). Compared with other MC stabilizers, cromolyn is preferred for

patients with cardiovascular diseases (55), obesity and diabetes (56).

3.1.2.2 Nedocromil

Nedocromil sodium, also known as [9-ethyl-6, 9-dihydro-4, 6-

dioxo-10-propyl-4H- pyrano (3,2-g) quinoline-2,8- dicarboxylic

acid; Figure 2], is classified as a benzopyrone and is a second-

generation cromolyn drug. Its mechanism of action is similar to

cromolyn in preventing Ca2+ influx and activating GPR35. Apart

from Ca2+, nedocromil is capable of inhibiting chloride ion flux in

MCs (57). Electrolytes with low ion numbers, such as K+ and Cl-,

are likely to affect cell membrane potential and inhibit Ca2+

influx indirectly.

Nedocromil shows tachyphylaxis in lung and tonsillar MCs, but

not in adenoidal and intestinal MCs (58). It is more powerful than

cromolyn sodium in inhibiting inflammatory mediator release in

bronchial mucosa with a better safety profile (59). Thus, nedocromil

can be used as an effective therapeutic for tonsillitis, asthma and

asthmatic bronchitis. Moreover, a patent stated that nedocromil

sodium was the first choice MC stabilizer for animal laminitis (60).

However, detailed experiments were not provided, and the

application requires more evidence.

3.1.2.3 Lodoxamide

Lodoxamide or 2-[2-Chloro-5-cyano-3-(oxaloamino)anilino]-

2- oxoacetic acid (Figure 2), is another clinically effective MC

stabilizer. Its derivatives, lodoxamide ethyl and lodoxamide

tromethamine, have high anti-allergic activity. They can inhibit

Ca2+ influx into MCs in response to antigen and activating GPR35

(48, 161). Lodoxamide can be used to control various allergic

responses due to its dual stabilizing action on both MCs and

eosinophils. Especially, it is widely used for allergic conjunctivitis

with a better effect than cromolyn and nedocromil (61). In addition,

animal studies (62) showed that injection of lodoxamide inhibited

CP48/80-induced hypotension, which indicated the therapeutic

effect of lodoxamide on cardiovascular disease.

3.1.2.4 Ketotifen

Ketotifen or [4-(1-methyl-4-piperidylidene)-4h-benzo[4,5]

cyclohepta [1,2-b]thiophen-10(9H)-one fumarate; Figure 2], is a

benzocycloheptathiophene derivative with MC stabilizing

properties and strong Histamine type 1 (H1) receptor antagonism

(63). It blocks Ca2+ channels essential for MC degranulation

resembling the function of cromolyn, which is its main

mechanism of action (64). Besides, ketotifen was also reported to

suppress the process of exocytosis in a dose-dependent manner by

counteracting the plasma membrane deformation in degranulating

MCs (65). Ketotifen is widely used in IgE-mediated allergic

reactions, including dermatitis, urticaria, asthma, and food or

drug allergy (66). Its ability to inhibit passively induced skin
frontiersin.org
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allergy and allergic airway obstruction is 6 and 50 times stronger

than that of cromolyn, respectively. Apart from the anti-allergy

effects, it also plays major roles in prevention of UV-induced

wrinkle formation, reduction of joint capsule fibrosis and

improvement of sperm quality, chromatin integrity and

pregnancy rate after varicocelectomy (67–69). Due to its central

nervous system inhibitory effects and anticholinergic effects,

ketotifen should not be taken prior to driving, operating heavy

machinery or performing athletic endeavours.
Frontiers in Immunology 07
3.1.2.5 Dihydropyridines

Dihydropyridines (Figure 2) are L-type Ca2+ channel (LTCC)

blockers usually used in the treatment of hypertension. MCs express

dihydropyridine-sensitive LTCCs, which is likely the mechanism by

which dihydropyridines stabilize MCs (70). In animal experiments,

dihydropyridines showed therapeutic effects in the treatment of

bronchoconstriction and ocular allergies (71). However, these drugs

are not the first choice in the treatment of MC-related diseases and

further clinical studies are needed.
FIGURE 2

The structure of some MC stabilizers.
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3.1.3 Promoting the potassium efflux
Apart from Ca2+ channels, the K+ and Cl − channels may play a

key role in activation processes of MCs since these channels

modulate cell membrane potential and inhibit Ca2+ influx

indirectly. A recent study showed that a selective TWIK-related

spinal cord potassium (TRESK) channel activator, cloxyquin, dose-

dependently prevented excitotoxicity-induced degranulation of

brain MCs and decreased the number of MCs (162). However, it

is unknown whether TRESK channels are expressed in MCs, and

the MC stabilizing effect of cloxyquin needs to be further studied.

3.1.4 Targeting receptors on the MC surface
3.1.4.1 MRGPRX2 antagonists

MRGPRX2 is a member of the Mas-related gene receptor family

and it is emerging as a prominent receptor involved in non-IgE-

mediated allergic reactions, including urticaria, rosacea, itch, atopic

dermatitis and adverse drug reactions (30). Due to its low selectivity

and affinity, MRGPRX2 can interact with a diverse group of ligands

such as neuropeptides, antimicrobial peptides and FDA-approved

drugs (72), playing a critical role in promoting MC-mediated host

defence. Naturally occurring compounds such as isoliquiritigenin,

shikonin, imperatorin and roxithromysin were shown to bind to

MRGPRX2 in molecular docking studies and surface plasmon

resonance (33). They could inhibit C48/80 or substance P (SP)-

induced passive cutaneous anaphylaxis in mice. Although a series of

natural and small-molecule MRGPRX2 antagonists were

discovered, none of them is in clinical use. Combining new

protein analysis techniques such as cryoEM and X-ray

crystallography with three-dimensional (3D) structure analysis of

MRGPRX2 antagonist complexes will enable the rational design of

MRGPRX2 antagonists with higher affinity.

3.1.4.2 KIT antagonists

KIT inhibitors can inhibit the binding of stem cell factor (SCF)

to the KIT receptor thereby inhibit KIT-dependent MC activation.

These agents can be classified on the basis of their parent scaffolds

into six categories, including pyrimidine derivatives, particularly N-

phenyl-2-pyrimidine-amine, quinazoline derivatives, indolinone

derivatives, particularly pyrrol-substituted indolinones, indole

derivatives, quinoline derivatives and others (73–77). KIT

inhibitors are usually known as anti-cancer agents. They also

have therapeutic value for the treatment of MC-related diseases,

especially chronic allergic asthma and mastocytosis. The long-term

treatment with KIT antagonists such as avapritinib can cause a

sustained decrease in serum tryptase levels and the virtual

eradication of tissue MCs (78). However, the use of KIT

inhibitors must be balanced against their potential side effects.

Although KIT inhibitors have the advantages of immediate,

complete, sustained and non-toxic remission in anti-allergy, this

new drug indication warrants further studies in patients with

allergic diseases (74–76).

3.1.4.3 NK-1 receptor antagonists

NK-1 receptor is generally localized to skin MCs and considered to

play a vital role in stress-induced inflammation when it combines with
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the substance P (79). CP99994, (2S,3S)-3-(2-methoxybenzylamino)-2-

phenylpiperidine (Figure 2) (80), is a representative drug that blocks

the binding of substance P to the NK-1 receptor and inhibits NK-1-

dependent MC degranulation. As an NK antagonist, CP99994 holds

therapeutic potential in the treatment of stress-induced inflammatory

skin diseases. No evidence showed that CP99994 also has an inhibitory

effect on other activation pathways (79).

3.1.4.4 Silencing MC through inhibitory receptors

Inhibitory surface receptors such as Siglec-6, Siglec-8, FcgRIIB,
CD200R and CD300a are able to inhibit MC activity (81–83).

Inhibition is mainly accomplished through immunoreceptor

tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tail

that can reverse one or more tyrosine phosphorylation steps critical

to progressive signal transduction. The anti-Siglec-8 mAb

(lirentelimab) can selectively inhibit MCs and deplete eosinophils.

In omalizumab-naive and omalizumab-refractory patients with CSU,

lirentelimab decreased the degree of disease activity by 77% and 45%

respectively at week 22 according to urticaria activity score

(NCT03436797) (84). As the Siglec-8 receptor is also expressed on

eosinophils, lirentelimab can reduce the numbers of both blood

eosinophil and gastrointestinal MCs in patients with eosinophilic

gastrointestinal diseases. Apart from lirentelimab, the CD200R

agonist LY3454738 was also developed for the treatment of atopic

dermatitis and CSU (85). Bispecific antibodies, that cross-link

activated receptors, FceRI or KIT, with inhibitory receptors

(CD300a or FcgRIIb), could abrogate FceRI- or KIT-induced

signalling (86, 87). For example, the DARPin-Fc fusion protein can

aggregate FceRI-bound IgE with FcgRIIb and block IgE-FceRI
binding faster, indicating that it is more efficient than omalizumab,

causing the dissociation of preformed ligand-receptor

complexes (85).
3.2 Interfering intracellular
signalling pathways

MC activation is accomplished by various signalling enzymes.

Inhibiting the activity of these vital enzymes can disturb the

signalling pathways and stabilize MCs to some extent.

3.2.1 Src family kinase inhibitors
The SFKs Lyn, Fyn, Bruton’s tyrosine kinase (BTK) and Hck

participate at the start of activation-induced MC signalling (88).

Suppressing the activity of SFKs can reduce the symptoms of

allergic diseases especially asthma and rhinitis (89). A total of >20

different drugs were proved to inhibit SFKs, including synthetic

drugs such as saracatinib, dasatinib, ibrutinib and acalabrutinib,

and natural drugs such as sophorae flos (Figure 2) (90). BTK

inhibitors can broadly inhibit FceRI-dependent MC activation

and cytokine production, thus preventing allergen-induced

contraction of isolated human bronchi (91). Acalabrutinib, a

BTKi, can completely prevent moderate IgE-mediated anaphylaxis

in mice and protect against death during severe anaphylaxis (92).

Apart from MC activation, SFKs also play crucial roles in signal
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transduction and regulation of other cell biological processes, such

as proliferation, differentiation and apoptosis; research is focused on

the role and mechanism of action of SFKs in tumorigenesis instead

of allergic diseases (93).

3.2.2 Syk inhibitors
Syk is a 72 kDa non-receptor tyrosine kinase containing two

SRC homology 2 domains and a kinase domain. Its expression is

highest in haematopoietic cells (94). Syk acts as a central initiator in

the MC activation signal pathway. Inhibitors of Syk can be classified

on the basis of their parent scaffolds, represented by pyrimidines,

prazolyl, 1,6-naphthyridones, pyrido[3,4-b]pyrazine and their

derivatives (95–98). These compounds inhibit Syk kinase by

competing with ATP-binding sites (99, 100). The most widely

studied Syk inhibitors in clinical trials are R112, R406, R788 and

R343 (94, 101) which belong to the 2,4-diaminopyrimidine family.

Except for small molecule compounds, natural substances such as

piceatannol and curcumin also possess inhibitory activity of Syk

(102, 103). A phase II study showed that intranasal dosing of Syk

inhibitors showed a rapid onset of action without serious side effects

in the treatment of allergic rhinitis (94). However, as in the case of

SFK inhibitors, Syk is also a vital signal transducer of activated

immunoreceptors in multiple downstream events, which differ

depending on the cell type, including proliferation, differentiation

and phagocytosis. Therefore, except for allergic diseases, Syk

inhibitors were also reported to be an attractive target for

therapeutic interventions for autoimmune and inflammatory

diseases, cancer and infectious diseases, including rheumatoid

arthritis, leukemias and plasmodium falciparum malaria (104).

3.2.3 PKC family inhibitors
PKC is a family of protein kinase enzymes that phosphorylate

hydroxyl groups on threonine and serine amino acid residues to

control the protein function in MC activation pathways (105). The

PKC structure consists of a catalytic C-terminal domain and a

regulatory N-terminal held together by a hinge region (106). Based

on their different sites of action, PKC inhibitors can be classified

into catalytic and regulatory domain inhibitors. Clinical trials of

PKC candidates are mainly focused on those that inhibit the

catalytic domain. The catalytic domain is a highly conserved

region throughout the PKC family, making it challenging to

selectively target a particular isoform (107). The optimal structure

of the catalytic domain inhibitor is bisindolylmaleimide, a

staurosporine analog, while the two optimal inhibitors of the

regulatory domain are calphostin C and sphingosine (Figure 2)

(106, 107). Apart from synthetic small-molecule inhibitors, a couple

of natural compounds also have inhibitory activity, including

quercetin and myricitrin (108, 109). PKC inhibitors can be used

in systemic mastocytosis and asthma (110). Skin and lung MCs

were shown to be more sensitive to PKC downregulation than other

MCs (111), indicating a good therapeutic effect of PKC inhibitors

for patients with skin and airway allergic diseases. Except for the

MC activation pathway, PKCs are also involved in multiple signal

transduction systems that control cell proliferation, differentiation,

apoptosis, survival, migration and invasion. Studies recommend
Frontiers in Immunology 09
that PKC inhibitors can be applied to other diseases including

cancer, neurological and cardiovascular diseases, and

infections (112).

3.2.4 PI3K inhibitors
PI3Ks are a family of intracellular heterodimeric lipid kinases

responding to environmental factors such as nutrition and growth

factors. They regulate a variety of biological functions, including cell

growth, differentiation, proliferation, metabolism, genomic stability,

motility, angiogenesis and protein synthesis (113). Idelalisib

(Figure 2) is a potent and representative PI3K inhibitor that was

approved for the treatment of non-Hodgkin lymphoma and chronic

lymphocytic leukemia (114–116). It binds noncovalently and

reversibly to PI3K p110d in its ATP-binding site (117). To assess

its therapeutic effect in allergic disease, 41 patients with allergic

rhinitis received idelalisib (100 mg twice daily) or a placebo for 7

days, and then received an allergen challenge on day 7

(NCT00836914) (118). After a 2-week washout period, subjects

received the alternate treatment, and the allergen challenge was

repeated. The study demonstrated that idelalisib reduced the

allergic response after the allergen challenge with notable

therapeutic effects regarding nasal symptoms, airflow and

secretion weight compared with the placebo. No marked side

effects were observed in patients at a dose of 100 mg idelalisib

twice daily over the period of 7 days (118).

3.2.5 Other enzyme inhibitors
Apart from the aforementioned enzymes, a number of other

enzymes involved in MC signalling pathways can also be the target

of MC stabilizers: i) Janus kinase 3 (JAK3) is a member of the JAK

family of tyrosine kinases and is involved in cytokine receptor-

mediated intracellular signal transduction. WHI-131 is the inhibitor

of JAK3 which inhibits both Ca2+ ionophore and IgE-mediated MC

degranulation (119); ii) Ceramide Kinase (CERK) acts as a Ca2+-

sensor for MC activation. K1 is the inhibitor of CERK which can

notably suppress both Ca2+ ionophore and IgE-mediated MC

activation (120). K1 does not inhibit IgE-/antigen-induced

tyrosine phosphorylation or subsequent Ca2+ increase, indicating

a distinctive pathway (121); iii) PDEs catalyse the hydrolysis of 3’,5’-

cyclic adenosine monophosphate (cAMP) and 3’,5’-cyclic

guanosine monophosphate (cGMP) in cells. Both cAMP and

cGMP are important secondary messengers involved in MC

activation. As an inhibitor of PDE5, vardenafil was found to

ameliorate MC-mediated allergic reactions and reduce histamine

release (122), providing evidence for the potential MC-stabilizing

properties of PDE inhibitors.

3.2.6 Nanoenzyme
Recently, ceria nanoparticles (CeNPs) were reported to be an

effective phosphatase-mimetic MC nano-stabilizer protecting

against allergic diseases (123). The regenerable catalytic hotspots

of surface oxygen vacancies endow CeNPs with sustainable and

excellent phosphatase-mimetic activity. The CeNPs can block the

phospho-signalling cascades of MC activation, and thus inhibit the

degranulation of allergic mediators and the resulting pathological
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responses (123). Compared with natural enzymes, the nanoenzyme

shows advantages such as low-cost, easy preparation and high

stability under harsh conditions (124). Its structure can further be

modified to improve its targeting, providing a new research

foundation for the development of MC stabilizers.
3.3 MC stabilizers disturbing
MC degranulation

3.3.1 Hybrid proteins
MC exocytosis is accomplished by a number of proteins, such as

SNAP 25, synapbrevin, syntaxine and others (125). If one of these

proteins is inactivated, for example via protease cleavage, the

degranulation machine will be broken. A hybrid protein that

consists of at least one MC-targeted protein and one protease was

reported to disturb MC exocytosis. The protein must attach to the

MC or be taken up by the MC, including IgE or anti-IgE. The

protease cleaves one or several proteins involved in MC secretion,

which includes botulinum or tetanus toxin light chains and

Neisseria gonorrhoea IgA protease. This hybrid protein can be

synthesized in vitro or in the appropriate host cells by the gene

recombination technology (fusion of protease and light chain

genes). To date, these hybrid proteins have not entered clinical

application. From animal studies, the recommended uses for

allergic diseases include asthma, allergic dermatitis and allergic

desensitization. It can also be taken as a preventive treatment

when taking drugs with fatal allergic side effects (125).

3.3.2 Statins
Statins are a class of 3-hydroxy-3-methylglutaryl coenzyme A

(HMG-CoA) reductase inhibitors commonly used to treat

hypercholesterolemia, including fluvastatin, simvastatin and

atorvastatin. They bind to low-density lipoprotein (LDL)

receptors expressed on MCs and suppress geranylgeranyl

transferase by depletion of intracellular mevalonic acid, which

deactivates small GTP-binding proteins (126). GTP-binding

proteins are involved in microtubule formation. Owing to the

importance of microtubules in granule translocation, granule

secretion will be inhibited.

A number of studies have identified the therapeutic values of

statins for the treatment of asthma. Fluvastatin was reported to

suppress peripheral blood mononuclear cell proliferation and

inflammatory responses in patients with allergic asthma (127).

Simvastatin was shown to inhibit airway hyper-responsiveness in

a murine model (128). The oral atorvastatin 40 mg daily, in

conjunction with inhaled corticosteroids, was shown to improve

lung function and reduce sputum macrophage counts in patients

with mild-to-moderate atopic asthma (NCT00126048) (129).

Furthermore, statins were demonstrated to have potential

therapeutic value in the treatment of MC-related skin diseases,

including alopecia areata, atopic dermatitis, psoriasis and

mastocytosis (130). Fluvastatin was the most potent MC

activation inhibitor among statins, suppressing IgE-induced

cytokine secretion (131). Although statins may be useful for the
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treatment of MC-related diseases, they are mainly used to treat

hypercholesterolemia.
3.4 MC stabilizers with mixed
action mechanism

3.4.1 Flavonoids
Flavonoids are naturally occurring compounds with potent

anti-inflammatory, antioxidant and MC-blocking activities,

including fisetin, genistein, quercetin, luteolin and kaempherol.

The backbone of flavonoids is similar to a part of the structure of

cromolyn, and numerous flavonoids were identified possessing MC

stabilization activity. Fisetin was proved to interfere cell-to-cell

interaction between MC and T cell membranes, and inhibits the

activity of NF-kB and MAPKs (132). Genistein inhibits

proinflammatory cytokine production of human MCs through the

suppression of the ERK pathway (133). Quercetin can decrease the

activity of the PKC family. Compared with cromolyn, it is more

effective in blocking MC cytokine release and treating contact

dermatitis and photosensitivity (134). Luteolin (lut) and its novel

structural analog 3’,4’,5,7-tetramethoxyluteolin (methlut) were also

proposed as more effective MC stabilizers than cromolyn regardless

of the trigger and the mediator measured (135). Methlut was more

effective in inhibiting b-hexosaminidase (b-hex), TNF and

histamine secretion. The mechanism of action for methlut may be

due to its ability to inhibit intracellular Ca2+ increase, as well as NF-

kB induction at both the transcriptional and translational levels

without affecting cell viability.

Flavonoids were reported to be effective in the treatment of

allergic conjunctivitis, rhinitis, otitis, asthma and food allergy. A

patent demonstrated that flavonoids can also be used together with

proteoglycans including chondroitin, keratan and dermatan sulfates

to treat MC activation-induced diseases (136).However, the

hypothesis has not been verified in vivo. Apart from flavonoids, a

number of other naturally occurring compounds were reported to

stabilize MCs including thymoquinone, capsaicin, coumarins,

phenols, terpenoids and amino acids (137–142). They were

proved to inhibit MC degranulation and decrease the number of

MCs, such as thymoquinone and capsaicin (141, 142). Most of them

are complex structures, and the precise mechanism by which they

act remains largely unknown. It is hypothesised that, as in the case

of flavonoids, a number of segments of the allergic signal cascade

are targeted.

3.4.2 Pemirolast
Pemirolast or (9-Methyl-3-(1H-tetrazol-5-yl)-pyrido[1,2-a]

pyrimidin-4-one; Figure 2), is a [1,2-a]pyrimidin-4-one derivative

with MC stabilizing properties. Novel compounds derived from

pemirolast have been found according to the deuterium kinetic

isotope effect. The structural formula is shown in Figure 2. R1-R8

can be hydrogen- or deuterium-independent with at least one

deuterium. Deuterium-enriched compound would not cause any

additional toxicity since D2O or DHO is formed during drug

metabolism. Other elements may also be selected from less
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prevalent isotopes including 13C or 14C for carbon, 33S, 34S, or 36S

for sulphur, 15N for nitrogen, and 17O or 18O for oxygen. Pemirolast

and its derivatives can be potent inhibitors of Ca2+ uptake and

release from intracellular stores. They can also suppress

phosphodiesterase activity, increase intracellular cAMP levels, and

inhibit arachidonic acid release and metabolism (143).

Pemirolast can inhibit both antigen and CP48/80-induced MC

degranulation (144). It can be used in allergic diseases, especially

allergic asthma and ragweed allergic conjunctivitis. In the treatment

of ragweed allergic conjunctivitis, pemirolast potassium 0.1% is as

efficacious and safe as nedocromil sodium 2% but is superior in

comfort during topical application (145). Thus, pemirolast may be

more suitable for continuous therapy (145). To obtain a better

curative effect, pemirolast can be combined with other agents used

in the treatment of MC degranulation-mediated diseases.

3.4.3 Tacrolimus and cyclosporine
Tacrolimus and cyclosporine (Figure 2) are immunomodulatory

agents usually used to treat autoimmune diseases. Both cyclosporine

(5mM) and tacrolimus (5mM) were shown to inhibit cytokine release

from MCs. Cyclosporine effectively inhibits Ca2+-dependent protein

phosphatase activity in MCs, while tacrolimus is considerably less

effective (146). However, tacrolimus is ~100 times more potent than

cyclosporine as an inhibitor of IgE-dependent MC degranulation,

meaning that tacrolimus can stabilize MCs in a variety of ways (146).

Although tacrolimus can stabilize MCs, it is not typically used in the

treatment of MC related diseases (146).

3.4.4 Artesunate
Artesunate (Figure 2) is usually used in the treatment of

malaria. Besides, artesunate was found to inhibit Syk and PLCg1
phosphorylation, IP3 formation, intracellular Ca2+ increase in MCs

(147) as well as downregulate T helper 17 cell responses (148). It can

block IgE-mediated MC degranulation in a dose-dependent manner

(147). In animal models, artesunate has a protective effect in allergic

asthma and showed anti-inflammatory effects similar with

dexamethasone (149).

3.4.5 Endogenous stabilizers of MCs
Endogenous stabilizers of MCs play a vital role in controlling

activation of MCs and consequently in the immune homeostasis of

the body. For instance, as an endogenous cannabinoid, anandamide

inhibited the degranulation of dural MCs through CB2 receptors on

the surface of MCs (163). Heparin, chondroitin sulphate and

spermine from MCs can inhibit the activation of MCs (164).

Additionally, there are different endogenous molecules which can

inhibit MC activation such as progesterone, testosterone,

corticosterone and 2-arachidonoyl glycerol (2-AG) (164).
4 Discussion

The widespread tissue distribution and versatility of MCs make

them a hotspot in the studies of related diseases/disorders. They

exert their function mainly through mediators released during
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activation. Inhibiting one of the activated receptors on the MC

surface will prevent MCs from being activated by certain

substances. Apart from inhibiting activated receptors, activating

inhibitory receptors onMCs can also stabilize them. Co-aggregating

inhibitory receptors with activated receptors can reverse the

activation mediated by the latter, providing a new direction for

research and development of MC stabilizers.

The influx of extracellular Ca2+ is a vital event of MC

degranulation. Inhibiting Ca2+ influx is the mechanism of action

of most clinical MC stabilizers, represented by cromolyn sodium.

Besides, interfering Cl- and K+channels can also influence the Ca2+

influx indirectly through their effects on cell membrane potential,

which may offer a novel method for the treatment of MC-related

diseases/disorders. Together with the influx of extracellular Ca2+, a

series of phosphorylation cascades contribute to the activation of

MC. Inhibiting the enzymes involved in MC activation signal

pathway can prevent MC degranulation. However, these enzymes

are not usually specific to MC activation pathway. They always

participate in other cell biological processes, such as proliferation,

differentiation and apoptosis. This may explain why enzyme

inhibitors without MC-targeting are often not used as MC

stabilizers in clinical practice, and clinical drugs for other

indications including stains, tacrolimus, cyclosporine and others

may have a MC stabilization activity. Low targeting is an urgent

problem for MC stabilizers. The mAbs and humanized sdabs are the

epoch-making progress of the development of MC stabilizers with

high targeting and minimal side effects. There are three generations

of anti-IgE mAbs including omalizumab, ligelizumab, quilizumab

and UB-221. The improvement of each generation is mainly

focused on the affinity for IgE and the reduction of IgE

production. Compared with mAbs, sdabs exhibit high production

yield in simple expression systems and extraordinary stability.

State-of-the-art strategies for multiple targeting and half-life

extension can be easily applied to them.

Progress in new material therapy technology has promoted the

development of MC stabilizers. Normally, nanomaterials used for

medical applications are synthesized using specific polymers, lipids,

nano enzymes or proteins. Cell surface receptors, such as FceRI or
MRGPRX2, can be applied to target nanoparticles (NPs) to specific

subsets of MCs. By recognizing the receptors on MCs in their tissue

environments, NPs could be tailored to alleviate symptoms such as

specific allergies in individual patients, thereby opening a new

frontier in precision therapeutics. Furthermore, with the

increasing interest in genetic modification, nucleic acid-

containing NPs could be engineered to modify the gene necessary

for regulating MC activation. MC activation does not always lead to

pathology. A recent study showed that MC degranulation

suppresses epileptic seizures through the serotonin in their

granules (165). Thus, the approach based on genetic modification

may interfere with MC-mediated inflammatory responses while

preserving protective innate immune or tissue homeostatic

functions (166). At present, the development of nano MC

stabilizers is still at an early stage and has a broad scope in field

of allergy research in the future.

MC leukemia (MCL) is a rare form of systemic mastocytosis with

poor prognosis (167). Patients with MCL may benefit from MC-
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targeted therapies, including controlling MC-related symptoms and

cytoreductive therapy. Interferon-a and steroids are usually used to

control clinical symptoms. However, their effect is transient and

limited (167). With the discovery of KIT mutations in MCL, KIT

antagonist have become a hot spot in MCL therapy (168). KIT

antagonist represented by midostaurin has been approved for

patients with MCL (169) due to its strong inhibitory activity on

neoplastic human MC carrying the KIT D816V mutation in

preclinical and clinical settings (167). Avapritinib, dasatinib,

masitinib and imatinib also hold therapeutic effects in MCL with

different KIT mutated forms (167). Data detailing mutations are

useful in supporting individualized treatment. Despite achieving

initial success, the efficacy of these KIT-targeting agents on MCL

prognosis requires further evaluation. Cytostatic drugs (represented

by 2-CdA) have been shown to induce apoptosis of the human MC

(169). However, these drugs may have unpredictable toxicity and

adverse effects. Whether patients with MCL may benefit from

combination polychemotherapy remains unknown. Chemotherapy

combined with targeted therapy might be an interesting direction for

MCL treatment.

Future studies of MC stabilizers should focus on the following:

i) Using targeted agents or new material technology to develop

more effective and targeted MC stabilizers; ii) preventing the

detrimental response caused by MC activation while preserving

its vital roles in host defence; iii) exploring and developing novel

humanized MC culture technology and construction of humanized

animal models to investigate the application of MC stabilizers;

iv) increasing the number of clinical trials; and v) isolating

compounds from biological agents as a promising way to develop

new MC stabilizers.
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