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Brainmetastatic cancer poses a significant clinical challenge, with limited treatment

options and poor prognosis for patients. In recent years, immunotherapy has

emerged as a promising strategy for addressing brain metastases, offering distinct

advantages over conventional treatments. This review explores the evolving

landscape of tumor immunotherapy in the context of brain metastatic cancer,

focusing on the intricate interplay between the tumor microenvironment (TME)

and immunotherapeutic approaches. By elucidating the complex interactions

within the TME, including the role of immune cells, cytokines, and extracellular

matrix components, this review highlights the potential of immunotherapy to

reshape the treatment paradigm for brain metastases. Leveraging immune

checkpoint inhibitors, cellular immunotherapies, and personalized treatment

strategies, immunotherapy holds promise in overcoming the challenges posed

by the blood-brain barrier and immunosuppressive microenvironment of brain

metastases. Through a comprehensive analysis of current research findings and

future directions, this review underscores the transformative impact of

immunotherapy on the management of brain metastatic cancer, offering new

insights and opportunities for personalized and precise therapeutic interventions.
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cell renal cell carcinoma; EGFR, epidermal growth factor receptor; TCR, T cell receptor; ACI, adoptive cellular

immunotherapy; ECM, extracellular matrix; CTLA – 4, cytotoxic T-lymphocyte - associated antigen 4; PD-1,

programmed cell death protein 1; PD - L1, programmed cell death 1 ligand 1.
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1 Introduction

Recent advancements in diagnostic and therapeutic modalities

have significantly improved survival rates in patients with

malignant tumors. However, the development of symptomatic

brain metastases (BM) presents a considerable challenge and

remains a leading cause of mortality in these patients. Brain

metastatic carcinoma, characterized by the metastasis of

malignant tumors from other parts of the body to the skull,

represents one of the most prevalent intracranial tumors

encountered in clinical practice (1, 2). This condition infiltrates

various intracranial tissues, including the brain parenchyma, spinal

cord membranes, nerves, and capillaries, with brain parenchymal

metastasis being the most frequent. Consequently, patients often

experience epilepsy, cognitive dysfunction, sensory impairment,

motor dysfunction, and cranial nerve damage, leading to a

significant decline in their overall quality of life (3). The primary

treatment options for metastatic brain tumors currently encompass

surgical resection and radiation therapy. While conventional

chemotherapeutic agents have shown limited efficacy in the

central nervous system (CNS), the emergence of targeted small

molecule tyrosine kinase inhibitors has revolutionized therapeutic

approaches by effectively crossing the BBB and displaying

activity within the CNS (4). Additionally, immunotherapy has

emerged as a promising treatment modality for brain metastatic

carcinoma, overcoming the traditional challenges associated with

pharmacotherapy by demonstrating intracranial activity. Notably,

two major factors impeding pharmacotherapy efficacy in BM

include the unpredictable molecular profiles of BM relative to the

primary tumor and their variable responsiveness to drugs, alongside

the constraints posed by limited drug penetration through the

human BBB and blood-tumor barrier (BTB) (5).

The tumor immune microenvironment (TME) plays a crucial

role in tumor development, progression, and metastasis. It consists

of tumor-associated immune cells and associated cytokines (6,

7). Tumor cells are a prime component of the immune

microenvironment and can hinder immune responses by releasing

various molecules and cytokines, allowing them to escape immune

surveillance (8). Meanwhile, diverse immune cells play essential roles

in mounting an effective immune response. Additionally, fibroblasts,

vascular endothelial cells, and other cell types contribute to the

construction of the TME and influence tumor cell growth and

metastasis. Interleukins (ILs), tumor necrosis factors (TNFs), and

transforming growth factors (TGFs) are pivotal in regulating immune

responses and tumor growth (9). Immunotherapy, the manipulation

of the body’s immune system to enhance its ability to target and

eliminate tumor cells, intimately links with the tumor immune

microenvironment (10). On one hand, the tumor immune

microenvironment greatly influences the effectiveness and response

rates of immunotherapy. For instance, certain tumor cells employ the

upregulation of programmed death-ligand 1 (PD-L1) to evade attacks

from immunotherapy by inhibiting T cell activation and cytotoxicity.

On the other hand, immunotherapy actively influences tumor growth

and metastasis by modulating the immune microenvironment. For

instance, targeting the cytotoxic T-lymphocyte-associated protein 4
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(CTLA-4) molecule promotes T cell activation and cytotoxicity,

thereby inhibiting tumor growth and metastasis.

In recent years, rapid advancements in biomedical science have

led to novel ideas for immunotherapy in the treatment of malignant

brain metastases. This article provides a comprehensive summary

of research pertaining to various immunotherapies for brain

metastatic cancer. Additionally, it outlines recent advances in

immunotherapy for brain metastatic cancer in conjunction with

the specific tumor immune microenvironment found in brain

metastatic foci.
2 Brain-specific structures
and microenvironment

2.1 BBB

The BBB consists of a heterogeneous composition of cell types,

including microvascular endothelial cells, the basement

membrane, and adjacent astrocytes Among these cell types,

microvascular endothelial cells serve as the primary constituents

of the BBB, which are interconnected by tight junction proteins

such as TJP-1 (ZO-1), claudin, and occludin, forming a cohesive

barrier (Figure 1) (11).

These tight junction proteins are crucial for maintaining cellular

interconnectivity and preventing the entry of macromolecules into

the neural tissue Moreover, the basement membrane plays a vital

role in the establishment and maintenance of the BBB by

establishing adhesive connections between microvascular

endothelial cells and astrocytes via proteins, polyamines, and

sugars (12, 13). The adjacent astrocytes, being a specialized

subtype of glial cells, not only provide structural support but also

influence neuronal activity (14). Functionally, the BBB selectively

filters substances from the bloodstream, permitting the passage of

only small, specific molecules. This “selective permeability” feature

of the BBB is crucial for the stable functioning of neural tissue (15).

However, after the onset of brain metastases, the integrity of the

BBB is disrupted to various extents, leading to the formation of

what is referred to as the BTB. Experimental models of brain

metastases have revealed that the BTB tends to be more

permeable to drugs and contrast media than the BBB.

The BBB, on the other hand, is the barrier between plasma and

brain cells formed by the walls of brain capillaries and glial cells, and

between plasma and cerebrospinal fluid formed by the choroid

plexus (16, 17). During tumor treatment, circulating tumor cells

may enter the brain and form brain metastases. However, because

of the presence of the BBB, most circulating tumor cells cannot pass

through, limiting the occurrence of BM to some extent (18). Recent

studies have shown that circulating tumor cells disrupt the integrity

of the BBB, thereby promoting the development of brain metastases

(19). Circulating tumor cells may disrupt the BBB by interacting

with endothelial and pericyte cells of the BBB and releasing

substances such as VEGF that alter the permeability of the BBB

(20). Circulating tumor cells can also directly invade the endothelial

and pericyte cells of the BBB, thereby inducing BBB disruption (21).
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In addition, circulating tumor cells can further promote the

development of BM by interacting with glial cells and inducing

their activation, thereby releasing substances that alter the

permeability of the BBB, such as interleukin-8 (IL-8) (22, 23).

There is growing evidence that MMPs play a role in disrupting

tight junctions and promoting tumor brain metastasis. During

cerebral ischemia, MMP2 and MMP9 are activated and degrade

tight junction proteins such as claudin-5, occludin, and ZO-1 in

brain microvascular endothelial cells, increasing the permeability of

the blood-cerebrospinal fluid barrier and causing brain edema and

hemorrhage (24).

Treatment options for encephalopathy often involve the use of

lipid-soluble drugs with low polarity. Studies have demonstrated

that the rate at which different drugs enter the brain and

cerebrospinal fluid from the blood can vary greatly. Drugs that

have a high binding affinity to plasma encounter difficulties in

traversing the BBB and reaching brain tissue. Under normal

physiological conditions, drugs that exist in a non-dissociated

form are more likely to pass through the BBB, while drugs with a

high oil-water partition coefficient tend to have easier access to the

CNS. In normal circumstances, the presence of the BBB provides a
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protective effect for the CNS, limiting the entry of certain substances

from the bloodstream into the brain. The restrictive properties of

the BBB are more pronounced in comparison to the capillaries of

other organs. The BBB acts as a barrier, allowing essential

substances for brain metabolism to pass through while preventing

the entry of foreign matter, such as bacteria and viruses, thereby

safeguarding the brain tissue from potential harm. The invasion of

viruses and bacteria into the central nervous system typically occurs

through dissemination via the bloodstream, necessitating passage

through the BBB. Thus, the integrity of the BBB contributes to

determining the occurrence and severity of CNS infections.

Moreover, the existence of the BBB reinforces the stability of

brain cells and enhances the resistance of brain tissue to

environmental changes, thereby promoting the organism’s

adaptive capacity. In pathological conditions, the functioning of

the BBB becomes compromised. For instance, in cases of brain

tumors, substances such as 32P or other fluorescent materials that

normally have limited BBB permeability can penetrate the brain

tissue. This principle is applied in radiological diagnoses of brain

tumors. Notably, more than 89% of experimental brain metastatic

lesions exhibit some disruption in BBB permeability, varied in terms
A

B C

FIGURE 1

The structure and feature of the blood brain barrier (BBB). (A) Claudins and occludin compress two neighboring endothelial cells together. These
proteins are connected to cytoskeletal proteins through auxiliary proteins such as ZO, which promote the formation of TJs. The blood-brain barrier is
formed by endothelial cells connected by tight junction proteins (TJs) and separates the brain from components of the circulating blood. (B, C) The
capillary lumen of the blood-brain barrier is surrounded by endothelial cells, and TJs are located between the endothelial cells of the brain thus
preventing the flow of most substances from the blood into the brain. TJs allow essential nutrients to enter the brain parenchyma by simple diffusion,
passive diffusion between cells, and transport proteins that transport essential macromolecules, but they limit the entry of potentially harmful molecules
from the blood into the brain.Endothelial and pericytes are surrounded by a common basement membrane. The ends of astrocytes surround the
endothelium and pericytes and provide the connection between neurons and the blood-brain barrier. (Created with BioRender.com).
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of significance, with only 10% achieving therapeutic drug

concentrations. Therefore, increasing BBB permeability to

peripheral immune cells and antitumor drugs has become a

crucial area of focus within therapeutic research for brain

metastatic cancer.
2.2 Immune microenvironment of
metastatic brain tumors

The TME is a complex and intricately coordinated system

consisting of multiple components. These include tumor cells,

immune cells, inflammatory cells, tumor-associated fibroblasts

(TAMs), neighboring mesenchymal tissue, microvasculature, as

well as various cytokines and chemokines (25). The TME can be

further divided into two distinct compartments: the immune

microenvironment, predominantly governed by immune cells, and

the non-immune microenvironment, primarily controlled by

fibroblasts. Within the TME, there exist intricate interactions and

regulatory relationships among its diverse constituents, which exert

considerable influence on numerous processes such as tumorigenesis,

metastasis, and drug resistance. Furthermore, these complex

components contribute to the metabolic heterogeneity of the TME

and dictate the behavior of immune cells. Tumor metastasis

represents a significant hurdle in tumor management and is a

leading cause of mortality in many cancer patients. One key driver

of tumor metastasis is the establishment of pre-metastatic niches

(PMNs), which are specific locations where a microenvironment

conducive to tumor metastasis forms. Remarkably, certain tumor

cells exhibit organ-specific tropism, suggesting the selective nature of

tumor metastasis. The formation of PMNs is mediated by a tripartite

interplay involving tumor-derived secreted factors (TDSFs),

extracellular vesicles (EVs), and bone marrow-derived cells

(BMDCs). Specifically, TDSFs and EVs derived from primary

tumors induce the recruitment of BMDCs to target organs, thereby

facilitating the creation of an inflammatory microenvironment

conducive to tumor metastasis. Consequently, this inflammatory

milieu promotes tumor cell colonization, survival, and growth

within PMNs.

Brain metastasis shares similarities with metastasis in other

organs, as it follows a highly selective, nonrandom, multistep

process. Tumor cells act as the “seeds” of metastasis, with the

microenvironment of the metastatic site serving as the “soil” for

their growth (26). The genetic and biological heterogeneity of tumor

cells from different subclones within a primary tumor influences

their metastatic potential, with only subclones possessing strong

invasive properties capable of crossing the blood-cerebrospinal fluid

(BSF) barrier to establish brain metastases (27, 28). The brain

provides a unique microenvironment featuring astrocytes, stromal

cells, cytokines, vascular networks, and metabolic components that

either promote or inhibit tumor growth, influencing the

development and progression of brain metastasis. Upon

hematogenous dissemination, tumor cells interact with brain

endothelial cells, secreting cytokines like vascular endothelial

growth factor (VEGF) and matrix metalloproteinases (MMPs)

that modify the brain microenvironment to support tumor
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growth (29, 30). Additionally, some researchers suggest that

tumor cells may carry activated tumor-associated fibroblasts,

acting as part of the microenvironment for brain metastasis

initiation, survival, and proliferation. The dynamic interplay

between tumor cells and the brain microenvironment ultimately

leads to the rapid and irreversible growth of brain metastases. For a

detailed illustration of the TME characteristics in brain metastasis,

refer to Figure 2.

The immune microenvironment of brain metastatic lesions is

notably distinct from that of metastatic or primary lesions in other

anatomical sites. The brain harbors distinctive microenvironmental

characteristics, such as the BBB, specialized environmental cells

(including microglia, astrocytes, oligodendrocytes, and neurons), a

lymphoid system draining to the neck, and an extracellular matrix.

Furthermore, the brain exhibits a unique immunological profile (31,

32). Despite the limited presence of immune cells in the normal brain

microenvironment, there is documentation of CNS immune

surveillance through CD4+ T lymphocytes and CD8+ T

lymphocytes in healthy individuals. Notably, astrocytes assume a

crucial role in the microenvironment of brain metastatic lesions (33).

In the initial phases of brain metastatic lesion development, astrocytes

predominantly participate in inhibiting the survival of metastatic

tumor cells. However, upon the establishment of metastatic tumor

cells in the brain, they release a multitude of cytokines that facilitate

the polarization of astrocytes from type M1 (tumor suppressor) to

type M2 (tumor activator), thereby leading to a significant

involvement of astrocytes in promoting tumor cell proliferation (34).
2.3 Drivers of brain metastasis
development and treatment challenges

The development of brain metastases is influenced by various

factors, including tumor cell invasive and metastatic potential, as

well as oncogenes and genetic factors (35). The invasive and

metastatic potential of tumor cells plays a crucial role in this

process. Malignant tumor cells, with their high proliferative and

invasive capabilities, are able to breach the cerebral vascular wall

and cerebrospinal fluid barrier. Subsequently, they enter the

cerebrospinal fluid circulation and establish metastatic foci within

the brain. Moreover, tumor cells secrete specific proteins that

facilitate their adhesion to brain tissue, enabling their passage

through the cerebral vascular wall and successful infiltration into

brain tissue via the bloodstream. In addition to tumor cell behavior,

the impact of oncogenes and genetic factors on the development of

brain metastasis should not be overlooked. Overexpression of

cancer genes leads to the emergence of tumors. If primary tumors

in other parts of the body are not effectively controlled, cancer genes

can be disseminated to the brain via systemic circulation, resulting

in intracranial metastases. Certain patients, such as those with

neurofibromatosis, retinoblastoma, and angioretinoblastoma,

possess a higher susceptibility to familial intracranial metastases.

Treatment of brain metastases is complicated by several challenges,

including the BBB, drug resistance of tumor cells, and the

phenotypic heterogeneity of tumor cells. The BBB serves as a

major impediment, preventing many drugs from entering the
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brain and hampering the efficacy of treatment. Furthermore, tumor

cells can acquire resistance to drugs following repeated therapies,

thus diminishing the therapeutic impact. The individualized

treatment of brain metastases is necessitated by the distinct gene

expression profiles and biological properties of various tumor cells.

Consequently, an in-depth understanding of tumor cell invasion

and metastasis mechanisms, along with a comprehensive

comprehension of the physiological and pathological aspects of

the BBB, is imperative for the development of more effective

treatment strategies and therapeutic agents that can successfully

address brain metastasis.
3 Immunotherapy for metastatic
brain tumors

3.1 Immune checkpoint inhibitors

The immune system is known to fulfill a crucial role in

safeguarding against cancer (36, 37). This function is commonly

referred to as the immune surveillance of tumors, attributing to the

immune system’s capacity to recognize and eliminate tumor cells

through the recognition of tumor-specific antigens and molecular

specificity induced by cell activation (38, 39). The concept of “cancer
Frontiers in Immunology 05
immune editing” elucidates the dual role of the immune system

during tumor pathogenesis, encompassing both host-protective and

tumor-sculpting functions (40, 41). The emergence of immune

checkpoint inhibitors marks a significant advancement in the realm

of tumor therapy, as these inhibitors obstruct autologous tumor

antigens, bolster zvex-induced T cell responses, and enhance

antitumor effects (42). ICIs are pharmaceutical agents designed to

stimulate or augment the immune system’s assault on tumor cells by

intervening with specific immune checkpoint molecules. The

utilization of immune checkpoint inhibitors necessitates careful

consideration of various aspects including the patient’s overall

health and ability to manage potential adverse reactions associated

with immunotherapy. It is vital to note that not all tumor types are

amenable to treatment with immune checkpoint inhibitors,

highlighting the importance of selecting the appropriate tumor type

for this therapeutic approach. Additionally, understanding the

patient’s genetic mutation status is essential, as certain genetic

variations may impact the efficacy of immunotherapy. Combining

ICIs with other treatment modalities like chemotherapy and

radiation therapy can enhance therapeutic outcomes. It is

imperative to remain vigilant for potential adverse reactions such

as immune-related adverse events, skin issues, and gastrointestinal

disturbances, necessitating close monitoring and prompt

intervention. Clinical trials with ICIs are shown in Table 1.
FIGURE 2

The characteristics of tumor microenvironment of brain metastases. Microglia are resident macrophages in the tumor microenvironment of brain
metastases and are not of bone marrow origin. Only when the blood-brain barrier is disrupted can bone marrow-derived macrophages reach the
CNS and act as a response to CNS disturbances. These cells are known as tumor-associated macrophages (TAMs), in which M1-like macrophages
are usually pro-inflammatory and are stimulated by Toll-like receptor ligands as well as IFN-g and TNF-a. They exert tumor suppressor functions by
producing factors such as IL-1, IL-12 and nitric oxide. M2-like macrophages are anti-inflammatory and can be activated by IL-4 and IL-13 to produce
molecules such as =TGF-b, arginase, IL-10, and pro-fibrotic factors. M2-like macrophages can also be associated with tumor-promoter functions by
inhibiting the proliferation of CD8+ T-cells.M2-like macrophages can also be associated with tumor-promoter functions by inhibiting CD8+ T-cell
proliferation.M1-like macrophages are usually pro-inflammatory and stimulated by Toll-like receptor ligands as well as IFN-g and TNF-a. (Created
with BioRender.com).
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3.1.1 Adrebrelimab
Adrebrelimab is a high-affinity humanized monoclonal antibody

against PD-L1 that has demonstrated efficacy and safety in advanced

esophageal squamous cell carcinoma (ESCC) (43), extensive SCLC

(SCLC) (44), and resectable non-small cell lung cancer (NSCLC) (45).

Lung cancer is currently one of the most common malignancies in

the world, and its morbidity andmortality are increasing year by year.

Local recurrence and metastasis are the main causes of poor

prognosis for many lung cancer patients, among which the

incidence of brain metastasis reaches 30%~50% (46, 47). NSCLC

20%~50% of patients develop brain metastasis during the course (48,

49) and survive more than 2 years. SCLC The incidence of brain

metastasis in patients with SCLC is as high as 60% to 80% (50). The

main treatment modalities for BM are whole brain radiotherapy

(WBRT), stereotactic radiosurgery (SRS), surgery, and chemotherapy

(51). The mechanism of brain metastasis of lung cancer is shown in

Figure 3. Wang et al (44), evaluated the efficacy and safety of

adrebrelimab (SHR-1316) versus standard chemotherapy in the

primary treatment of extensive SCLC (ES-SCLC). The main

inclusion criteria were age 18-75 years, ES-SCLC patients without a

previously confirmed histologic or cytologic diagnosis, and Eastern

Cooperative Oncology Group (ECOG) grade 0-1. Ultimately, 230

patients received adrebrelimab combination chemotherapy

(adrebrelimab arm) and 232 patients received placebo combination

chemotherapy (placebo arm). Patients received carboplatin and

etoposide for 4-6 cycles, with concurrent adrebrelimab or

corresponding placebo. Adrebrelimab or placebo was administered

as maintenance therapy. Results of the research demonstrated a

significant improvement in median overall survival in the

adrebrelimab group in comparison with the placebo group and an

acceptable safety profile, suggesting that this combination treatment

may be a new first-line therapy for ES-SCLC.

3.1.2 Atezolizumab
Atezolizumab is a humanized IgG1 anti-PD-L1 drug approved

for the treatment of breast cancer (52), SCLC (53), and NSCLC (54).
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Lin et al (55), reported a case of poorly differentiated adenocarcinoma

of the right lobe of the lung treated with atezolizumab monotherapy.

The patient was diagnosed in April 2016 with stage IV poorly

differentiated adenocarcinoma of the right lobe of the lung and had

no driver gene mutations. The primary tumor remained enlarged

after 6 cycles of nedaplatin and paclitaxel, and on October 14, 2016,

the patient started atezolizumab monotherapy, which showed

significant reduction in both primary tumor and mediastinal lymph

nodes. Subsequently, the patient developed headaches, and on May

11, 2018, right parietal lobe metastasis of the tumor was confirmed.

On May 23, 2018, the patient underwent brain X-knife stereotactic

radiotherapy. One month later, the patient developed cough and

shortness of breath, a new nodule in the right inferior lung basement

area, a mild subpleural large lesion in the left inferior lobar area, a

small right-sided A small pleural effusion was noted on the right side.

Continued treatment with atezolizumab resulted in a decrease in the

number of nodules in the basal right lower lobe, a decrease in the

number of subpleural lesions in the basal left lower lobe, and a

decrease in the number of mediastinal lymph nodes. This indicates

significant efficacy of atezolizumab monotherapy in the treatment of

lung adenocarcinoma. IMpower130 reported an evaluation of the

efficacy and safety of atezolizumab plus chemotherapy versus

chemotherapy alone as primary treatment for nonsquamous non-

SCLC (56). Patient inclusion criteria were age 18 years or older,

histologically or cytologically confirmed diagnosis of stage IV non-

squamous non-SCLC, Eastern Cooperative Oncology Group

performance status of 0 or 1, and no prior stage IV chemotherapy.

Patients were randomized to receive either atezolizumab plus

chemotherapy (carboplatin [area under the curve 6 mg/mL/min IV

every 3 weeks] plus nab-paclitaxelor chemotherapy alone. Patients

were randomized in a 2:1 ratio to receive either chemotherapy alone

(four or six 21-day cycles, followed by maintenance therapy). The

primary endpoints were progression-free survival and overall survival

in the intention-to-treat wild-type population. The results of this

study showed that atezolizumab plus chemotherapy significantly

improved overall and progression-free survival compared with
TABLE 1 Current cancer brain metastasis clinical trials with immune checkpoint inhibitors therapy.

Clinicaltrials.gov Status Disease/condition Intervention/treatment Main Outcome measures

Identifier 　 (Drugs)

NCT04348747 Recruiting Metastatic TNBC or HER2 + BC
Dendritic cell vaccines
with pembrolizumab Assess mPFS, mOS

Evaluate the safety of treatment

NCT05629546
Active, not
yet recruiting Advanced or metastatic melanoma Memory-like natural killer cells with Progression-free survival

nivolumab and relatlimab overall survival

NCT04356222 Recruiting
Leptomeningeal metastases

from NSCLC Durvalumab
Neurological Progression Free

Survival (NPFS)

overall survival

NCT03719768
Active, not
yet recruiting Leptomeningeal metastases Avelumab overall survival at 3 months

NCT03025256
Active, not
yet recruiting Leptomeningeal metastases Nivolumab overall survival
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chemotherapy alone as a primary treatment option for stage IV non-

squamous non-SCLC without ALK or epidermal growth factor

receptor mutations.
3.1.3 Camrelizumab
Camrelizumab is a human IgG4-k monoclonal antibody with

high affinity for PD-1. Kamrelizumab binds to PD-1 with a binding

affinity of up to 3 nM and has an inhibitory effect on PD-1/PD-L1

with an IC50 of 0.70 nM. Camrelizumab has antitumor activity and

is well-tolerated in experimental cancers such as NSCLC (57),

Hodgkin lymphoma (58) and HCC (59). The safety and efficacy

of immune checkpoint inhibitors (including durvalumab,

atezol izumab, nivolumab, tr ipal imumab, t isul izumab,

cintilizumab, and camrelizumab) in patients with BMfrom SCLC

were evaluated (60). The group retrospectively reviewed the medical

records of patients with SCLC who received chemotherapy and

radiation therapy for BMwith or without immune checkpoint

inhibitors from January 2019 to January 2021 at our institution.

Patients were divided into two groups: Group A received

chemotherapy and radiation therapy for brain metastases;

Group B received chemotherapy, radiation therapy for brain

metastases, and immunotherapy for at least four cycles. Overall

survival and intracranial progression-free survival were evaluated

using Kaplan-Meier estimation and Cox regression modeling. The

analysis showed that the intracranial objective response rate was

higher in group B than in group A, but the intracranial disease

control rate was similar in both groups, indicating that
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immunotherapy plus chemotherapy plus radiation therapy was

favorably effective in patients with BM from SCLC.

3.1.4 Durvalumab
Durvalumab is a humanized antibody that affects the immune

response by binding to PD-L1. Durvalumab fights tumors by

inhibiting the binding of PD-L1 to PD-1 and enhances the killing

of tumor cells by T cells. Currently, durvalumab is FDA-approved

for the treatment of lung cancer (61), esophageal cancer (62),

stomach cancer (63), and prostate cancer (64). Researcher

describes the therapeutic efficacy of durvalumab in a patient with

stage III SCLC (65). The patient developed lung and BM after

concurrent chemoradiation therapy (cCRT) and achieved complete

radiologic local regression after whole brain irradiation (WBI) using

the simultaneous integrated boost (SIB) technique. Durvalumab

was then used as maintenance therapy. After the second dose of

durvalumab, the patient developed an asymptomatic multifocal

brain tumor recurrence. In contrast, with the combination of

durvalumab and amlotinib, the myeloma regressed almost

completely without severe toxicity. This suggests that the

combination of durvalumab and amlotinib may have a synergistic

effect on myeloma in previously treated SCLC patients.

3.1.5 Ipilimumab
Ipilimumab is an IgG1 kappa immunoglobulin with a molecular

weight of approximately 148 kDa. Ipilimumab binds to CTLA-4

and blocks the interaction of CTLA-4 with its ligand CD80/CD86.
FIGURE 3

The mechanism of brain metastasis of lung cancer. Primary lung cancer cells can escape from the primary tumor site to invade and circulate in
blood vessels, called circulating tumor cells (CTC). In response to chemokines, CTCs can reach the brain and cross the blood-brain barrier by rolling,
adherence and extravasation in response to E-ligands and integrins, undergo mesenchymal epithelial transformation (MET) thereby restoring primary
tumor properties and generating and adapting to the new tumor microenvironment. Angiogenesis is necessary for the growth of brain metastases.
When pure oxygen diffusion is insufficient for the tumor, the tumor can gradually develop a hypoxic microenvironment and promote angiogenesis
by overexpressing angiogenesis-stimulating factors. (Created with BioRender.com).
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blockade of CTLA-4 increases T cell activity and proliferation,

including tumor-infiltrating effector T cells, and increases growth.

inhibition of CTLA-4 signaling similarly decreases regulatory T cell

function and may contribute to a general increase in T cell

responsiveness, including anti-tumor immune responses.

Ipilimumab is used primarily for the treatment of unresectable or

metastatic melanoma and for adjuvant therapy in patients with

cutaneous melanoma who have undergone total lymphadenectomy,

including total lymph node excision, and have localized lymph node

lesions greater than 1 mm. Adjuvant therapy. Metastatic malignant

melanoma has a poor prognosis and lacks effective treatment.

Patients with this disease have a median survival of only 6-9

months for stage IV and a 5-year survival rate of only 10-20%

(66, 67). Once the tumor has spread to the brain, only conservative

treatment is available (68). Surgery and radiation therapy are

effective but often cause other lesions (69). Radiation therapy,

now commonly used to treat many types of brain metastases, can

palliate but not eliminate lesions (4). Chemotherapy has also been

applied to treat brain metastases, but with poor efficacy and short

median survival (70). Chen et al (71), investigated the impact of

concurrent SRS-SRT and immune checkpoint inhibitors on the

prognosis and safety of patients with BM (metastatic non-SCLC,

melanoma, and renal cell carcinoma). Patients receiving SRS-SRT

treatment with anti-cytotoxic T lymphocyte-related protein 4

(ipilimumab) and anti-programmed cell death protein 1 receptor

(nivolumab and pembrolizumab) were included. Patients using

immune checkpoint inhibitors in ongoing or unreported clinical

trials were excluded, and concomitant use of ICIs was defined as ICI

use within 2 weeks of SRS-SRT treatment. Patients were treated

with SRS-SRT, SRS-SRT without ICI, or SRS-SRT with ICI. The

results of this study suggest that ICI concurrent with SRS-SRT may

reduce the incidence of new BM without increasing the incidence of

adverse events and may result in favorable survival outcomes. Long

et al (72), evaluated the efficacy and safety of nitolizumab alone or

in combination with ibritumomab in patients with active melanoma

brain metastases. They randomized asymptomatic patients with BM

who had never received local brain therapy to group A (nivolumab

plus ibritumomab) or group B (nivolumab), while patients with BM

who were refractory to local therapy and had neurological

symptoms or meningeal lesions were enrolled in a non-

randomized subgroup C (nivolumab). The treatment regimen

consisted of nivolumab 1 mg/kg plus ibritumomab 3 mg/kg every

3 weeks for a total of 4 doses, followed by nivolumab 3 mg/kg

intravenously every 2 weeks for patients in group A and nivolumab

3 mg/kg intravenously every 2 weeks for patients in group B or C.

The primary endpoint was intracranial response from week 12. The

primary and safety analyses were performed on an intention-to-

treat basis for all patients who received at least one treatment. The

results of this study showed that both the combination of

nivolumab and ipilimumab and nivolumab monotherapy had a

favorable effect on melanoma BM and that the combination of

nivolumab and ipilimumab is applicable to asymptomatic untreated

brain metastasis patients. Amaral et al (73), also reported that

asymptomatic and symptomatic Amaral et al. also evaluated the

efficacy of nituzumab plus ibritumomab alone or in combination

with local therapy in patients with asymptomatic and symptomatic
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melanoma BM(MBM). Results showed no difference in OS between

patients treated with BRAF and MEK inhibitors or nivolumab plus

ibritumomab, and no difference in OS between initial and

subsequent treatment with nituzumab plus ibritumomab in BRAF

wild-type patients. In contrast, patients who received stereotactic

radiosurgery or surgical local therapy had improved OS compared

to patients who did not receive local therapy. Thus, the combination

of nivolumab plus ibritumomab immunotherapy and stereotactic

radiosurgery or surgery was found to improve OS in both

asymptomatic and symptomatic MBM. Borzillo et al (74), used

the CyberKnife system to compare SRT/SRS with ibritumomab

(IPI) to evaluate the association and timing. They tested

the correlation in 53 patients treated with RT+IPI and 10

patients treated with RT alone. Results showed that IPI combined

with SRS/SRT improved LC in the treatment of MBM, but the

impact and timing of both therapies on patient prognosis is

unknown. Tawbi et al (75), tested the efficacy of nivolumab and

ibritumomab combination therapy in patients with symptomatic

MBM. The study protocol consisted of nivolumab 1 mg/kg and

ipilimumab 3 mg/kg IV every 3 weeks for 4 doses, followed by

nivolumab 3 mg/kg IV every 2 weeks for up to 2 years until disease

progression or unacceptable toxicity. The primary endpoint was to

assess the intracranial clinical response rate in all patients

treated. Secondary endpoints were intracranial progression-free

survival and overall survival. The results of this study showed that

the combination of nituzumab and ibritumomab improved

progression-free survival in patients with symptomatic

MBM without causing serious side effects. A multivariate

predictive model of response and survival to anti-programmed

cell death protein-1 (anti-PD-1) monotherapy or in combination

with anti-cytotoxic T-cell lymphocyte-4 (ipilimumab [IPI]; anti-

PD-1 + IPI) was developed in metastatic melanoma (76). Study

endpoints were objective response rate (ORR), progression-free

survival (PFS), and overall survival (OS). And the area under the

curve of the final model predicting ORR for immunotherapy-

treated patients was 0.71, indicating that the model can predict

response and survival outcomes for metastatic melanoma patients

receiving immunotherapy.

3.1.6 Nivolumab
Nivolumab is an immunotherapeutic drug that targets PD-1

and inhibits the interaction between PD-1 and its ligand PD-L1,

thereby restoring immune cell activity and strengthening the body’s

defense against cancer. Nivolumab is widely used to treat a variety

of cancers and has shown good efficac (77). Unresectable or

metastatic melanoma, melanoma as adjuvant therapy, resectable

or metastatic non-SCLC, SCLC, advanced renal cell carcinoma,

classical Hodgkin lymphoma, head and neck squamous cell

carcinoma, urothelial carcinoma, metastatic colorectal cancer with

high microsatellite instability or defective mismatch repair, liver cell

carcinoma, esophageal cancer, and others with high microsatellite

instability or defective mismatch repair. Chen et al (71), investigated

the impact of concurrent administration of SRS-SRT and immune

checkpoint inhibitors on prognosis and safety in patients with BM

(metastatic non-SCLC, melanoma, and renal cell carcinoma).

Patients receiving SRS-SRT treatment with anti-cytotoxic T
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lymphocyte-related protein 4 (ipilimumab) and anti-programmed

cell death protein 1 receptor (nivolumab and pembrolizumab) were

included. Patients using immune checkpoint inhibitors in ongoing

or unreported clinical trials were excluded, and concomitant use of

ICIs was defined as ICI use within 2 weeks of SRS-SRT treatment.

Patients were treated with SRS-SRT, SRS-SRT without ICI, or SRS-

SRT with ICI. The results of this study showed that ICI concurrent

with SRS-SRT may reduce the incidence of new BM without

increasing the incidence of adverse events and may result in

favorable survival outcomes. Crinò et al (78), reported the efficacy

and safety of nivolumab in nonsquamous NSCLC. In their study,

nivolumab was indicated for patients with stage IIIB/IV non-

squamous NSCLC whose disease had progressed after at least one

prior therapy. Patients with brain metastases, on the other hand,

were included as long as they were asymptomatic, neurologically

stable, had discontinued corticosteroids, or their prednisone dose

was stable or reduced to less than 10 mg per day. The results of this

study suggest that patients with BMfrom non-squamous NSCLC

are asymptomatic or have controlled brain metastases. Renal cell

carcinoma accounts for approximately 4% of all solid tumors, with

an incidence of approximately 16.1 per 100,000 population;

approximately 1/3 of RCC patients are in an advanced stage at

diagnosis (79, 80). The first-line treatment for advanced renal cell
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carcinoma is targeted therapy combined with immunotherapy, and

metastasectomy, radiofrequency ablation, and targeted therapy are

the preferred treatment for patients with oligometastatic or low

tumor burden trans metastatic renal cell carcinoma (mRCC) (81).

Although these therapies help prolong OS in patients with mRCC,

the side effects of drug therapy affect patients’ quality of life. An

overview of the challenges of brain metastasis in renal cell

carcinoma is shown in Figure 4. Flippot et al (82), evaluated the

activity of nivolumab in patients with brain metastatic clear cell

renal cell carcinoma (ccRCC) after failure of angiogenic therapy.

The study population consisted of patients with previously treated

or untreated brain metastases. The primary endpoint was

intracranial response efficiency in patients. Study results showed

limited activity of nivolumab in patients with untreated ccRCC

brain metastases. Brain imaging and treatment of the lesion should

be considered before using immune checkpoint inhibitors in

patients with metastatic ccRCC. Reardon et al (83) examined the

role and value of bevacizumab and nivolumab monotherapy in

improving survival in patients with recurrent glioblastoma. The

study recruited 439 patients (369 of whom were randomized) with

first recurrence of glioblastoma after treatment with standard

radiation therapy and temozolomide. Patients were randomized

1:1 to either nivolumab 3 mg/kg or bevacizumab 10 mg/kg every 2
FIGURE 4

The overview of the challenges of brain metastasis from renal cell carcinoma. In the microenvironment of renal cancer brain metastases, the BBB
can limit the permeability of therapeutic agents. The number of efflux transporters is significantly reduced during metastasis and radiotherapy
thereby increasing the permeability of peripheral molecules. In addition, tight junctions are impaired by metastatic development leading to increased
permeability of the blood-brain barrier. Gap junctions may allow metabolite transfer between renal cancer cells and astrocytes and induce secretion
of INF-a and TNF by astrocytes, leading to chemoresistance. The molecular characteristics of renal cancer cells, including highly angiogenic
features, molecular inconsistencies between primary and brain metastases, and inherent radio resistance also affect the outcome of renal cancer
brain metastases. (Created with BioRender.com).
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weeks until disease progression, unacceptable toxicity, or death was

confirmed. The primary endpoint was OS. The results of this study

suggest that overall mOS values for nivolumab and bevacizumab in

patients with recurrent glioblastoma are similar, and the safety

profile of nivolumab in patients with glioblastoma is consistent with

that of other tumor types. The CheckMate 920 trial investigated the

safety and efficacy of nivolumab plus ipilimumab in patients with

advanced renal cell carcinoma (aRCC) and brain metastases. The

study revealed a 32% objective response rate (ORR) in response-

evaluable patients, with a median duration of response (DOR) of

24.0 months and a median time to response (TTR) of 2.8 months.

Some patients experienced intracranial progression, and the safety

profile of the treatment regimen, including immune-mediated

adverse events, was assessed (83).

3.1.7 Pembrolizumab
Pembrolizumab exerts its antitumor effects by inhibiting the

binding of PD-1 receptors on immune cells to PD-L1 on tumor

cells, thereby restoring the ability of immune cells to attack tumors.

pembrolizumab has been used in the treatment of many different

Nasopharyngeal carcinoma (84) with broad indications for the

treatment of many different types of malignancies. Studies have

shown that pembrolizumab is an alternative to cytotoxic

chemotherapy as first-line therapy in patients with PD-L1 tumor

percentage scores of 50% or greater. The study reported the use of

pembrolizumab in patients with giant cell lung cancer (85). A 69-

year-old female patient with giant cell lung cancer, clinically

classified as IVB (T2bN0M1c, BRA) and with a high percentage

of tumors expressing PD-L1, received stereotactic radiotherapy

targeting two cerebellar metastases, followed by immunotherapy

with an anti-PD-1 antibody (pembrolizumab) for four treatment

cycles. The tumor shrank significantly after 4 cycles of treatment.

However, treatment was discontinued due to renal dysfunction.

This suggests that pembrolizumab combined with radiotherapy also

has a favorable therapeutic effect in giant cell lung cancer. reported

the management of a patient with multiple metastases of NSCLC

with exon 19 deletion and PD-L1 deletion. Pembrolizumab plus

chemotherapy and SBRT were then initiated for the supraclavicular

metastases and spinal cord lesions; examination after four cycles

showed resolution of adenopathy, reduction in lung mass, liver and

spinal cord lesions, and no lesions or new metastases were detected

on brain MRI. The patient then continued treatment with

pembrolizumab plus pemetrexed for almost a year and is now in

good disease control. A study was conducting a phase II trial of

pembrolizumab in untreated NSCLC or melanoma patients with

BM to investigate the activity of PD-1 blocking agents in the central

nervous system (86). Cohort 1 consisted of patients with PD-L1

≥1% and cohort 2 consisted of patients with PD-L1 <1% or not

evaluable. The primary endpoint was the proportion of patients

who achieved a response in brain metastases. The results of this

study showed that pembrolizumab is effective for NSCLC BM with

PD-L1 expression of 1% or greater and is safe in some untreated

patients with brain metastases. Breast cancer is the most common

malignancy in women worldwide, and the incidence of BM from

breast cancer is on the rise, ranging from 5% to 21% (87, 88), as new
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therapeutic agents and imaging techniques advance (Figure 5).

The incidence of BM from breast cancer is highest in HER2-

positive types, accounting for about 30% to 55% (89, 90). There

are mainly parenchymal and meningeal metastases, with

parenchymal metastases being more common (91, 92). The

prognosis for BM from breast cancer is usually very poor because

the BBB severely limits the entry of most chemotherapeutic agents

into the nervous system (93, 94). Local radiation therapy and

surgical treatment can slow the progression of the disease, but it

is difficult to completely kill the cancer cells in the body (95, 96).

Therefore, the development of systemic therapeutics and the

selection of new therapies are crucial for the treatment of brain

metastasis of breast cancer. Wu et al (97),. reported on the

combination of anti-estrogenic drugs and immunotherapy in

patients with HR-positive metastatic breast cancer. The first

patient was a patient with recurrent breast cancer with ovarian

and BM after endocrine therapy. After surgery for the ovarian

lesions and three cycles of chemotherapy, a high degree of T-cell

receptor (TCR) complexes were observed in the tumor. The patient

then received a combination of trazodone and pembrolizumab. The

patient achieved a partial response and had a PFS of more than 21

months; the second patient was a breast cancer patient with

multiple bone metastases. The second patient had multiple bone

metastases and was treated with a combination of tamoxifen and

pembrolizumab because the combination of radiation and

chemotherapy was ineffective. Another patient with BM from

lung cancer underwent local resection of two BM by SRS and

received systemic immunochemotherapy consisting of four cycles of

cisplatin, pemetrexed, and pembrolizumab. The patient then

underwent left posterolateral thoracotomy, left lower lobe

expansion resection, segment 1 wedge resection, and systematic

clearance of hilar, mediastinal, and interlobar lymph nodes.

Maintenance therapy with pembrolizumab was resumed

postoperatively and was uneventful for 2 years. Thirty-five

months after the initial diagnosis, CT scan of the chest and

abdomen and MRI of the cranium showed no signs of local

recurrence or metastasis. The ORR (objective response rate) of

brain metastasis when using pembrolizumab was found to be

28.6%. The PFS (progression-free survival) was reported to be 4.0

months. These outcomes suggest that pembrolizumab may have

some efficacy in the treatment of brain metastasis. However, further

research and clinical trials are needed to establish its effectiveness

and safety in this specific patient population (98).

3.1.8 Sintilimab
Sintilimab is a novel immunotherapeutic agent that is a

humanized monoclonal antibody. Sintilimab is widely used to treat

a variety of malignancies, including but not limited to non-SCLC,

melanoma, ESCC, renal cell carcinoma, and bladder cancer (99, 100).

It is considered an innovative therapy that has the potential to change

the landscape of conventional tumor treatment. Nong et al. Nong

et al (101), reported the diagnosis and treatment with sintilimab in a

patient with lung adenocarcinoma with brain metastases. The patient

had an in-frame insertion of epidermal growth factor receptor exon

20 and was treated with pemetrexed and carboplatin plus the
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programmed cell death-1 inhibitor sintilimab After six cycles of

treatment, the patient received sintilimab plus pemetrexed for

patients received maintenance therapy every 3 weeks with

sintilimab plus pemetrexed, which was effective without toxicity.

This suggests an important role for sintilimab in patients with

brain metastatic NSCLC who have an insertional mutation in exon

20 of the epidermal growth factor receptor.

3.1.9 Tisulizumab
Tislelizumab is a new generation targeted immunotherapy drug

widely used to treat many malignancies. It is a humanized

monoclonal antibody that strengthens a patient’s own immune

system to fight tumor cells by targeting the immune checkpoint

PD-1. It has shown excellent antitumor activity in a wide range of

cancer types (102), including non-SCLC, melanoma, renal cell

carcinoma, esophageal cancer, and nasopharyngeal cancer. The use

of tislelizumab can further improve survival and quality of life for

patients. Fu et al (103),. reported the progress of tislelizumab in a

patient with invasive lung adenocarcinoma with brain metastases.

The patient underwent right upper lung lobectomy and lymph

node dissection. Postoperative pathology revealed invasive

adenocarcinoma (alveolar, papillary, and enhancing) with pleural
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invasion, staged cT0N0M1c, stage IVC. POLE and TP53 mutations

were found. The patient then received two cycles of combination

therapy with pemetrexed + carboplatin + bevacizumab +

tislelizumab. After two cycles of treatment, the patient’s intracranial

metastases became smaller; after four cycles of combination therapy,

the patient’s metastases completely resolved After four cycles of

combination therapy, the patient’s metastases had completely

disappeared. The patient then received two cycles of consolidation

therapy with tislelizumab, pemetrexed, and bevacizumab. 6 cycles of

treatment later, the patient felt fatigue and anorexia. Treatment was

then switched to tislelizumab and bevacizumab for six cycles to date.

The patient responded well and had no treatment-related adverse

events 11 months after starting the combination.

3.1.10 Toripalimab
Toripalimab is a PD-1 antibody that inhibits the immune

escape mechanism of melanoma cells by targeting the immune

checkpoint PD-1, a membrane surface receptor that regulates

immune response homeostasis and prevents over-activated

immune cells from attacking normal tissue. In melanoma, tumor

cells normally overexpress PD-L1, which binds to PD-L1 to inhibit

immune cell function and evade immune attack. Reported on the
FIGURE 5

The mechanism of brain metastasis of breast cancer. A small population of breast cancer cells at the primary site acquires stem cell-like properties
and, through epithelial-mesenchymal transition (EMT), invasive properties. Invasive breast cancer cells infiltrate the surrounding tissue through ECM
remodeling and become circulating tumor cells (CTCs) with the help of perivascular macrophages and interactions with vascular endothelial cells
(ECs).CTCs spread throughout the body through the bloodstream and cross the BBB through extravasation after adhering to endothelial cells in the
brain. The majority of the cells die or become dormant, while a small number of cells proliferate in this new microenvironment. this new
microenvironment proliferate. In addition, dormant cells are often reawakened under certain conditions and participate in colonization, leading to
tumor recurrence. (Created with BioRender.com).
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diagnosis and treatment with toripalimab in a patient with SCLC

with brain metastases (104). The patient was diagnosed with

localized stage small cell carcinoma of the left lower lung and

received 6 cycles of initial chemotherapy with etoposide and

nedaplatin followed by adaptive intensity modulated radiation

therapy (IMRT) to the thorax and prophylactic brain radiation

therapy to achieve CR. Approximately 3 months after completion of

radiotherapy, chest CT and brain-enhanced MRI confirmed that

CR was sustained. Approximately 6 months after completion of

radiotherapy, a cranial-weighted MRI showed metastasis in the left

cerebellar hemisphere. The patient was then treated with IMRT and

anlotinib; at the end of IMRT, irinotecan and lopressor were added

to anlotinib. Due to grade 3 adverse events, patients received 3

cycles of maintenance therapy with sindilizumab plus anlotinib

(104). However, 2.5 months after achieving CR, the BM recurred.

Because the recurrent lesion was small and asymptomatic,

treatment with sindilizumab in combination with erlotinib was

continued for 3 more cycles. A skull-weighted MRI showed no

change in the target lesion. The physician then switched from

sindilizumab to toripalimab. After two cycles of treatment with

toripalimab in combination with anlotinib, the recurrent BM

reached CR and were maintained for 6 months. In conclusion,

the safety profile of toripalimab in combination with erlotinib was

favorable and no serious adverse events were observed

during treatment.
3.2 Immune cell therapy

Lymphocytes that possess cytotoxic abilities in vivo encompass

natural killer cells and cytotoxic T cells, both of which can effectively

counteract tumor cell proliferation. Empirical evidence suggests that

several hundred lymphocytes are required to combat a single tumor

cell. Hence, a larger population of lymphocytes confers a greater

capacity for tumor cell elimination and inhibition of tumor cell

production. This fundamental principle forms the basis of cellular

immunotherapy. Presently, cellular biopharmacotherapy, exemplified

by cellular immunotherapy, represents a significant advancement in

the field of tumor biotherapy. Adoptive cellular immunotherapy

(ACI) is the accepted nomenclature for this modality and entails

the infusion of immune cells with antitumor properties (both specific

and nonspecific) into tumor patients, either for direct tumor

eradication or to induce the patient’s immune response to target

tumor cells (105). Clinically, ACI entails the administration of

autologous or allogeneic immune effector cells that have been

activated in vitro, thereby inducing tumor cell death within the

patient’s body (106, 107). In recent years, cellular immunotherapy

has emerged as a vibrant domain within tumor biotherapy,

specifically suited for patients with compromised cellular

immunity, particularly those afflicted with hematologic and

immune system malignancies, such as those arising after intense

chemotherapy, radiotherapy, bone marrow transplantation, or viral

infections leading to depletion and dysfunction of immune cells (108,

109). Cellular immunotherapy possesses the ability to selectively

suppress and eliminate tumor cells, independent of the patient’s

inherent immune function, and can be effectively combined with
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radiation therapy and chemotherapy. The efficacy, specificity, overall

therapeutic effectiveness, and side effect profile of this approach have

shown progressive enhancements during the evolutionary stages of

LAK, TIL, CD3AK, CIK, DC-CIK, and EAAL (110, 111).
3.3 Tumor vaccine

Tumor vaccines have gained significant attention in recent years as

a focal point of research in the medical field. The fundamental concept

behind tumor vaccines involves the administration of tumor antigens

into the patient’s system by various means, such as tumor cells, tumor-

related proteins and peptides, and genetic material encoding tumor

antigens. This approach is aimed at counteracting the immune-

suppressive environment induced by the tumor, enhancing

immunogenicity, and stimulating the patient’s endogenous immune

response. Activation and stimulation of both cellular and humoral

immune responses in the body are crucial components in achieving the

ultimate goal of controlling or eradicating tumors (112, 113). There are

three primary classifications of tumor vaccines: prophylactic tumor

vaccines, therapeutic tumor vaccines, and immuno-cellular therapy

vaccines (114). Prophylactic tumor vaccines are primarily utilized to

prevent the development of specific malignancies, such as cervical and

liver cancer vaccines. In contrast, therapeutic tumor vaccines are

designed for the treatment of patients with existing tumors.

Examples of therapeutic tumor vaccines encompass tumor cell

vaccines and tumor-associated antigen vaccines. Finally, immuno-

cellular therapeutic vaccines involve the manipulation of the patient’s

immune cells to combat tumors, including tumor-infiltrating

lymphocyte vaccines and dendritic cell vaccines.

As scientific knowledge and technological capabilities continue

to progress, the categorization of tumor vaccines is evolving,

presenting new possibilities and optimism for tumor prevention

and treatment. Current research predominantly concentrates on the

advancement and assessment of tumor vaccines as a potential

therapeutic modality for a range of malignancies. In recent times,

there have been significant advancements in comprehending the

mechanisms through which tumors evade the immune system and

devising strategies to overcome these challenges. Various types of

tumor vaccines, such as peptide-based, dendritic cell-based, and

whole tumor cell-based vaccines, are undergoing scrutiny in

preclinical and clinical trials. These vaccines are designed to

provoke a targeted immune response against tumor antigens, with

the objective of facilitating the specific destruction of tumor cells,

averting tumor recurrence, and enhancing patient outcomes.

While early-phase trials have shown promise, further

exploration and refinement of vaccine design, delivery modalities,

and patient selection are imperative to amplify their effectiveness

and delineate their role in cancer management. Consequently,

ongoing research in this domain holds substantial promise for

introducing novel therapeutic avenues to combat malignancies

and elevate the quality of patient care.

In summary, immune checkpoint inhibitors, such as CTLA-4

inhibitors (e.g., Ipilimumab), PD-1 inhibitors (e.g., Pembrolizumab,

Nivolumab), PD-L1 inhibitors (e.g., Atezolizumab, Durvalumab),

LAG-3 inhibitors (e.g., Relatlimab), and TIM-3 inhibitors (e.g.,
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Sabatolimab), have distinct characteristics and mechanisms of

action. These inhibitors target specific receptors on T cells or

ligands on cancer cells, aiming to enhance the immune response

against cancer by restoring T cell activity, promoting anti-tumor

immune responses, and potentially reversing T cell exhaustion.

Immune checkpoint inhibitors play a vital role in cancer

immunotherapy, offering potential in improving the body’s ability

to combat cancer (Table 2). Immune checkpoint inhibitors are

pivotal in modulating the immune response directed towards

cancer cells through the targeting of specific regulatory

checkpoints governing T cell functionality. Integral to cancer

immunotherapy, these agents exhibit significant potential in

bolstering the host’s anti-cancer defenses.
4 Discussion

The tumor microenvironment (TME) is a complex and dynamic

system that plays a crucial role in tumor development and growth. It

consists of four major components: non-tumor cells, extracellular

matrix, vasculature, and soluble products (115, 116). Non-tumor cells

in the TME include immune cells, fibroblasts, endothelial cells, and

neurons. The extracellular matrix provides structural support for cells

and regulates their functions through a network of proteins. The

vasculature supplies oxygen and nutrients to tumor cells, often

forming a dense network around tumors. Soluble products, such as

chemokines, within the TME significantly influence cellular activities

(117). The interactions among these components have profound

effects on tumorigenesis, metastasis, and drug resistance, ultimately

impacting the metabolic patterns and immune responses within the

TME. Brain metastases (BM) are a common and challenging

complication in cancer patients, affecting over 10% of patients at

diagnosis and escalating to 30-40% during disease progression (118,

119). Patients with BM have a grim prognosis, marked by high
Frontiers in Immunology 13
mortality rates, poor quality of life, and a median overall survival of

merely 4-6 months. The blood-brain barrier (BBB) poses challenges

for the treatment of BM by limiting the efficacy of systemic

chemotherapy. Current treatment options for BM include surgical

resection, stereotactic radiosurgery, and whole-brain radiation

therapy. However, their effectiveness varies depending on the

number and size of metastatic brain lesions, with whole-brain

radiation therapy typically yielding response rates between 50% and

75%, and survival rates ranging from 4 to 9 months Recent advances

in tumor immunology research have led to the development of

targeted therapies, such as CTLA-4 and PD-1/PD-L1 inhibitors,

which have shown promising efficacy rates compared to traditional

chemotherapeutic agents (120, 121). However, the effectiveness of

immunotherapy alone may be limited due to immunosuppressive

factors in tumor patients. Therefore, combination therapies involving

tumor immunotherapy and other treatment modalities have become

a future direction in cancer treatment (122, 123). Although

immunotherapy has demonstrated significant benefits in treating

advanced tumors, its efficacy is limited to certain tumor types, and

individual differences may result in poor response rates. Immune-

related complications are also common. Therefore, efforts to improve

the efficiency and reduce the risk of tumor recurrence of

immunotherapy, particularly PD-1/PD-L1 inhibitors, are needed

(124, 125). Predictive markers and an understanding of drug

resistance mechanisms are crucial for treatment selection and

prognostic assessment.

The presence of the BBB poses a challenge for conventional

chemotherapeutic agents to effectively reach brain metastases. The

successful application of immune checkpoint inhibitors (ICIs) in

patients with brain metastatic cancer has raised expectations for the

potential of immunotherapy in the treatment of primary and

metastatic brain cancer. However, the clinical implementation of

immunotherapy in patients with brain metastases faces substantial

obstacles due to the lack of robust predictors and appropriate animal

models for evaluating efficacy. A comprehensive understanding of

the biological underpinnings and specific mechanisms of

immunosuppression in brain metastatic cancer is imperative for the

development of novel immunological interventions. Clinical trials are

needed to establish the effectiveness of immunotherapy in treating

brain metastatic cancer and to identify precise biomarkers for patient

selection. Furthermore, the heterogeneity of brain metastases and the

limited infiltration of immune cells present challenges for effective

immunotherapy. Strategies to enhance the penetration of

immunotherapeutic agents through the BBB and to increase

immune cell recruitment and infiltration into brain metastases are

being explored. Resistance mechanisms, such as immune checkpoint

upregulation and alterations in antigen presentation, can also develop

in brain metastases. Combination therapies that target multiple

resistance mechanisms and immunotherapies are necessary to

overcome resistance and improve treatment outcomes. Managing

immune-related adverse events and developing more targeted and

selective immunotherapies are essential for the safe and effective use

of immunotherapy in brain metastases. Combination therapies,

targeted delivery systems, and personalized immunotherapies are

being investigated to improve the efficacy and safety of

immunotherapy for brain metastases.
TABLE 2 Immune checkpoint inhibitors along with the
biological characteristics.

Classification Representatives Mechanisms

CTLA-4 Inhibitors Ipilimumab

Blocks CTLA-4 receptor on T
cells, enhancing immune

response against cancer cells.

PD-1 Inhibitors
Pembrolizumab,

Nivolumab

Targets PD-1 receptor on T
cells, prevents interaction with
PD-L1 on cancer cells, restores
T cell activity against tumors.

PD-L1 Inhibitors
Atezolizumab,
Durvalumab

Targets PD-L1 ligand on cancer
cells, disrupts binding with PD-
1 on T cells, promotes anti-
tumor immune responses.

LAG-3 Inhibitors Relatlimab

Targets LAG-3 receptor on T
cells, enhances T cell function
and anti-tumor immunity.

TIM-3 Inhibitors Sabatolimab

Blocks TIM-3 receptor on T
cells, potentially reverses T cell
exhaustion, improves anti-

tumor responses.
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In conclusion, immunotherapy holds promise as a treatment

approach for brain metastases. However, challenges related to the

BBB, tumor heterogeneity, limited immune cell infiltration, resistance

mechanisms, and immune-related adverse events need to be

addressed to optimize the efficacy and safety of immunotherapy in

patients with brain metastases. Various strategies, such as enhanced

BBB penetration, combination therapies, and personalized

immunotherapies, are being explored to overcome these challenges

and improve treatment outcomes.
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