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Rewiring the T cell-suppressive
cytokine landscape of the
tumor microenvironment:
a new frontier for precision
anti-cancer therapy
Ludovica Lopresti †, Vanessa Tatangelo †, Cosima T. Baldari*

and Laura Patrussi*

Department of Life Sciences, University of Siena, Siena, Italy
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to

function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory

interactions play significant roles in dampening their anti-tumor activities. Recent

studies have revealed that soluble factors released in the TME by immune and

non-immune cells, as well as by tumor cells themselves, contribute to the

exacerbation of T cell exhaustion. Our understanding of the cytokine

landscape of the TME, their interrelationships, and their impact on cancer

development is still at its early stages. In this review, we aim to shed light on

Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-

dependent cytokines harboring T cell-suppressive effects in the TME and

summarize their mechanisms of action. Additionally, we will explore how

advancements in scientific research can help us overcoming the obstacles

posed by cytokines that suppress T cells in tumors, with the ultimate objective

of stimulating further investigations for the development of novel therapeutic

strategies to counteract their tumor-promoting activities.
KEYWORDS

tumor microenvironment, cytokine, interleukin, T cell suppression, cytotoxic T
lymphocyte, TIL, immune checkpoint
1 Introduction

The 3E theory - “Elimination, Equilibrium, Escape” –was first proposed in 2004 by Dunn

and colleagues (1). According to this model, cells and molecules of the immune system

destroy pre-malignant and malignant cells as they emerge (Elimination). Cancer cells that get

over the elimination phase undergo a series of genomic and epigenomic changes and acquire

the ability to survive (Equilibrium), becoming resilient to immune system controls (Escape).

Failure of immune cells to control neoplastic cells represents therefore the foundation of

cancer progression (2).
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T lymphocytes are the host’s most potent “immune weapons”

against cancer. Their effector subtypes, helper T cells (TH) and

cytotoxic T cells (CTLs), fight enemies either indirectly, by secreting

a plethora of soluble factors that activate other immune cells, or

directly, by destroying tumor cells. These mechanisms mainly rely

on the ability of T Cell Receptors (TCRs) to recognize cognate

foreign antigens loaded on major histocompatibility complex

(MHC) molecules. However, efficient immune responses also

require a wide range of safety controls, that include inhibitory

proteins called “immune checkpoints”, expressed on the surface of

T cells where they contribute to ensure self-tolerance (3). In recent

years it has become increasingly clear that inhibitory pathways

elicited by immune checkpoints are double-edged swords, as they

become aberrantly activated in some pathological contexts,

including acute or persistent chronic infections (4, 5) and cancer

(6), thereby suppressing the effector functions of T lymphocytes and

hindering the host’s anti-tumor responses (6).

A vast spectrum of factors that harness T lymphocyte anti-

cancer activities is progressively coming to prominence. Nutrient

deficiency, hypoxia, dysregulated purinergic and bioenergetic

signaling, increased amount of extracellular ATP, adenosine, and

potassium ions, generated or released by dying and/or necrotic

tumor ce l l s and by neighbor ing ce l l s in the tumor

microenvironment (TME), promote tumor immune escape (2).

Cytokines, the quintessential soluble mediators of cell-to-cell

communication, rightfully belong to this heterogeneous list of

extrinsic pro-tumoral factors. Indeed, besides their key roles in

immune cell activation, recruitment and differentiation, which

make them the most important mediators of immune system

functions, they also exert tumor-promoting activities (7). A

subgroup of cytokines released in the TME by immune and non-

immune cells have been found to suppress the effector functions of

T lymphocytes (8). Interestingly, while some of them primarily act

on tumor cells, which subsequently acquire the ability to impair the

anti-tumoral responses of T lymphocytes, a small group of

cytokines directly act on T lymphocytes to hamper their activities,

thereby making T lymphocytes unable to fight against tumor cells.

Here we summarize the most recent findings concerning the small

group of JAK/STAT signaling-dependent cytokines Interleukin (IL)

-6, IL-9, and IL-10, which have been recently implicated in targeting

T lymphocytes and hampering their anti-tumoral functions, briefly

summarizing their mechanisms of action. We moreover discuss

potential strategies to revitalize T lymphocytes in the TME and

augment the clinical benefit of immunotherapy.
2 Positive and negative regulators of
antigen receptor signaling in T cells

Recognition of MHC-loaded foreign antigens by the TCR is the

first step towards T cell activation. However, the TCR is not the sole

molecule involved in the activation of this complex machinery. A

wide number of co-receptors, co-stimulatory receptors and

accessory molecules coordinately concur to generate a polarized

structure at the interface between T cells and antigen-presenting cell

(APC), known as the immune synapse (IS). IS formation consists of
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the timely and precise reorganization of surface receptors and

intracellular molecules that are involved in antigen recognition

and adhesion to APC. Three specialized concentric functional

domains can be found in the mature IS, the central

supramolecular activation cluster (cSMAC), where TCRs and

associated signaling molecules concentrate, the peripheral SMAC

(pSMAC), enriched in LFA-1 and other adhesion molecules, and

the distal SMAC (dSMAC), where large surface receptors are

confined and where an underlying ring of filamentous actin is

localized to stabilize the global IS architecture (9). TCR engagement

by the MHC-bound cognate ligand results in the activation of a

branched signaling pathway that begins with the phosphorylation of

the ITAM motifs in the subunits of the TCR-associated CD3

complexes by the Src family tyrosine kinases Lck and Fyn (10).

Phosphorylated ITAMs become docking sites for the Syk family

tyrosine kinase ZAP-70, that in turn recruits adaptor molecules to

the nascent IS (10). The signaling modules fueled by early activation

events, among which Ca2+-, diacylglycerol (DAG)- and

phosphatidylinositol 4,5-bisphosphate (PIP2)- dependent signals,

eventually converge to control cytoskeletal reorganization, a key

pre-requisite for the formation of mature ISs (11). Translocation of

the microtubule organizing center toward the T-cell/APC interface,

which accompanies IS formation and accounts for the acquisition of

a peculiar T cell polarity, allows for the directional release of vesicles

containing effector molecules in the synaptic cleft (12, 13). Both TH

and CTLs exploit vesicle release as a means to exert their effector

functions. Different TH subtypes release subsets of cytokines which

play highly specialized functions in both innate and adaptive

immune cells , including fostering pathogen lysis and

phagocytosis, tissue repair, release of anti-microbial peptides and

germinal center formation (14). On the other hand, CTLs exploit IS

formation to allow for polarized release of specialized secretory

lysosome, called cytotoxic granules (CGs), characterized by a dense

core of cytotoxic components, including the pore-forming protein

perforin, proteases known as granzymes (GZMs), and the

proteoglycan serglycin (15).

TCR signaling quickly propagates to ensure rapid responses to

foreign antigens. However, after the response has been triggered,

signaling must be equally rapidly turned off to discourage

uncontrolled and potentially tissue-damaging T cell activation.

Signal reversibility is guaranteed by efficient addition/removal of

phosphate groups by ready-to-use phosphatases (16, 17). Among

them SHP-1, a well-known mediator of TCR signaling termination,

which mainly dephosphorylates Lck (18), and the non-receptor

protein tyrosine phosphatases (PTPNs) -3, -4, and -22, which

dephosphorylate both the z-chains of CD3 and ZAP-70 (19, 20).

Enzymes that break down intracellular second messengers are also

implicated in TCR signaling downregulation. This is exemplified by

the inositol phosphatase SHIP-1, which dephosphorylates both

PIP2 and PIP3 to decrease their local concentration (11, 21).

Either lateral mobility along the plasma membrane or polarized

vesicular trafficking deliver a large set of surface immune

checkpoints to the IS, where they implement smart TCR

signaling-interfering mechanisms (22, 23). By recruiting the

tyrosine phosphatase SHP-2 to the immunoreceptor tyrosine-

based switch motif (ITSM) localized in its cytoplasmic tail (24,
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25), which becomes transiently phosphorylated following binding

to its ligands Programmed death-ligand 1/2 (PD-L1 and PD-L2)

expressed on APCs (26), the co-inhibitory checkpoint Programmed

Death-1 (PD-1) is a paradigm of TCR signaling inhibitory

molecules (11). The co-inhibitory checkpoint Cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) binds to B7.1 and

B7.2 and depletes them from neighboring cells by trans-

endocytosis (27, 28). In mature IS, CTLA-4 localizes to the

cSMAC where it interacts with SHP-1 (29) and with the serine/

threonine phosphatase PP2A (30), reverting the phosphorylation of

TCR signaling mediators (3, 31) and impairing IS assembly (22).

The transmembrane molecule Lymphocyte-Activation Gene 3

(LAG-3) also inhibits TCR signaling (32) by associating with the

TCR/CD3 complex and lowering cytoplasmic pH close to the IS,

thereby causing the dissociation of Lck from the CD4 or CD8 co-

receptors and hampering T cell activation (33, 34). To the group of

co-inhibitory surface molecules also belongs T cell Immunoglobulin

and Mucin domain-containing protein 3 (TIM-3) (35), which is

recruited to the IS following T cell activation (36), where it binds the

Lck-inhibitory kinase Csk, thereby suppressing antigen-dependent

signaling (37) (Figure 1).
3 Soluble factors operate T cell
suppression in the TME

The interplay between stimulatory and inhibitory molecules

controls both the duration and outcome of the signaling cascades

initiated by the TCR. This tight balance is significantly influenced

by environmental factors, such as neighboring cells and soluble

molecules, each of them contributing in its own way to ensure T cell

activation, at the same time preventing aberrant T cell responses

(38, 39). However, under certain conditions, environmental factors

suppress effective T cell responses, contributing to disease onset or

development. This “improper resource allocation” is implemented

in the TME, a complex and multifaceted niche where tumor cells

live and grow in close proximity to a plethora of other cells -

fibroblasts, immune and inflammatory cells, stromal cells,

endothelial cells - and in the presence of soluble molecules either

released by resident/recruited cells or infiltrated from nearby

areas (40).

A profound subversion of the balance between stimulatory and

inhibitory molecules is at the basis of the defective activation of key

TCR-dependent signaling molecules (41), altered IS architecture

(42), and impaired effector T cell functions (43, 44) observed in the

TME. In several types of human cancers including, among others,

melanoma (45), ovarian cancer (46), non-small cell lung carcinoma

(47), and hematologic malignancies such as lymphomas (48–50),

recruited tumor-specific effector T cells, which acquire the

definition of tumor-infiltrating lymphocytes (TILs), overexpress

the exhaustion markers CTLA-4, TIM-3, LAG-3 and PD-1 (44,

51–53), which elicit immunosuppressive signaling cascades leading

to T cell dysfunction.

Physical and chemical features of the TME, such as hypoxia, low

pH and high tissue pressure, contribute to generate a tumor-
Frontiers in Immunology 03
promoting environment where TILs, notwithstanding their

antigen specificity, are incapable to carry out efficient anti-tumor

activity (8, 39). The release of dangerous catabolites by

metabolically-rewired tumor cells, as well as competition for

available glucose and aminoacids, also account for T cell

suppression in the TME (39, 54). This is exemplified by the

accumulation of potassium ions [K+], which suppress both TCR

signaling and T cell effector functions by activating PP2A (55).

Moreover, TME-populating cells other than tumor cells, such as

tumor-associated macrophages, neutrophils, myeloid-derived

suppressor cells, regulatory T cells (Tregs) and cancer-associated

fibroblasts (CAFs) (7), compete with TILs for nutrients, at the same

time producing immunosuppressive byproducts. Among them,

fumarate has been recently found to impair the activity of ZAP-

70 in CD8+ TILs, contributing to abrogate their anti-tumor

activities (56). In M2 type macrophages, arginase-1 depletes L-

arginine from the TME, while indoleamine-2,3-oxygenase (IDO)

converts tryptophan to immunosuppressive kynurenine derivatives

(57). Moreover, through the CD39/CD73-mediated catalysis of

ATP, Tregs produce adenosine, a suppressive metabolite that

binds to adenosine receptors (A2AR) on TILs and impairs NF-kB
signaling (38, 58). Cholesterol, a metabolic byproduct of tumor cell

metabolism, also contributes to T cell dysfunction by inducing

stress of the endoplasmic reticulum (59). Hence, T cells subjected to

the synergic actions of metabolic byproducts become unable to

efficiently eradicate tumors (Figure 2).
4 The curious case of the cytokines:
unveiling their impact on the TME

The large family of cytokines is subdivided in six groups: i) the

IL‐1 family; ii) tumor necrosis factor (TNF) ‐a and related

molecules; iii) the transforming growth factor (TGF) ‐b subgroup;

iv) chemokines; v) cytokines that signal through receptor tyrosine

kinases, and vi) cytokines that signal through the JAK/STAT

signaling pathway (Morris, Kershaw, and Babon 2018). To the

latter and largest group of cytokines (reviewed in (60)) belong both

immunomodulatory and pro-inflammatory cytokines such as IL‐2

and interferon (IFN)-g. To elicit specific responses in target cells,

each member of this group activates a basic signaling module which

only requires three components: receptor, intracellular kinases and

transcription factors. The cytoplasmic tail of cytokine receptors,

that lacks kinase activity, constitutively associates to tyrosine

kinases belonging to the Janus Kinase (JAK) family (61, 62).

Receptor association to the specific cytokine ligand leads to JAK

trans-phosphorylation and activation, which in turn elicits receptor

phosphorylation on specific tyrosine residues that become docking

sites for transcription factors belonging to the Signal Transducers

and Activators of Transcription (STAT) family. When recruited to

the receptor, STATs are phosphorylated by JAKs, dissociate from

the receptor and translocate to the nucleus to drive the expression of

cytokine‐responsive genes (62, 63) (Figure 3).

Despite their common signal transduction modules, each

cytokine harbors peculiar biological functions, that rely not only
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on the specific members of the JAK and STAT families that

transduce its signaling pathway, but also on target cell sensitivity

and environmental cues. Four members of the JAK family have

been discovered to date, JAK1, JAK2, JAK3 and Tyrosine Kinase 2

(TYK2), with broad tissue expression (62). The STAT family is also

a multicomponent family, which includes seven ubiquitously

expressed members, STAT1, STAT2, STAT3, STAT4, STAT5a,

STAT5b, and STAT6, which either homo- or hetero-dimerize

according to the stimulus (63).

TME-populating immune and non-immune cells, and tumoral

cells themselves, fuel neoplastic progression through the secretion
Frontiers in Immunology 04
of cytokines, that act as intercellular “info carriers” for a wide

variety of processes ranging from hemopoiesis to inflammation and

immune responses (60). It has been estimated that 10-25% of all

cancers develop from chronic inflammatory diseases, that are

characterized by a strong and prolonged dysregulation of pro-

inflammatory cytokines (64, 65). Meta-analysis of more than

10,000 tumor samples collected within The Cancer Genome Atlas

(TCGA) revealed that tumors can be grouped according to

“immune subtypes”, defined not only by both extent and type of

immune cell infiltration in the TME, but also by different mRNA

expression profiles of cytokines and cytokine receptors (66, 67).
FIGURE 1

Positive and negative regulators of TCR signaling. Stimulation of TCR/CD3 complexes by MHC-bound antigens activates an integrated signaling
pathway which delivers proliferation/differentiation/cytoskeleton reorganization signals (Activatory signaling, green box). By suppressing the TCR-
dependent signaling pathways, negative regulators counteract T cell activation (Inhibitory signaling, red box).
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Over the past 30 years it has become clear that malignant

transformation causes a profound subversion of the cytokine

landscape of the TME, where several cytokines, including IFN-g
(68), tumor necrosis factor (TNF)-a (69), TGF-b (70), IL-1 (71), IL-
6 (72), IL-9 (73, 74), IL-10 (75), IL-15 (76), IL-27 (77), and IL-35

(78), abnormally released in the TME, acquire tumor-promoting

activities. Most of them act by directly targeting tumor cells and

activating STAT3-mediated signaling pathways which promote

their survival (79–81). Cytokine-mediated signaling also enhances

the surface expression of PD-L1 in tumor cells, thereby promoting

their immunosuppressive potential (82). IFN-g, a paradigmatic

example of this circuitry, has been demonstrated to enhance PD-

L1 expression in thirty-two tumor cell lines (82). Moreover, IL-27

stimulates Human Mesothelioma Cells to express and secrete PD-

L1 (77). Interestingly, in the TME CD8+ T cells release high

amounts of IFN-g (83, 84), suggesting the existence of a

immunosuppressive circuitry fueled by T cells themselves.

Of note, only a small subgroup of the above-mentioned

cytokines, reviewed hereafter, demonstrated remarkable T cell-

directed suppressive activities in the TME.
Frontiers in Immunology 05
4.1 IL-6

IL-6 is a pleiotropic cytokine whose molecular mass ranges

from 21 to 28 kDa as a result of post-translational modifications

(85, 86). It is secreted by immune and non-immune cells, among

which fibroblasts, monocytes, mesangial cells, endothelial cells,

keratinocytes, and T and B lymphocytes (87). The biological

effects of IL-6 rely on its binding to the receptor Interleukin 6

Receptor (IL-6R), a complex consisting of an IL-6R alpha subunit

(IL-6Ra, also known as CD126), that interacts with the ligand, and

the IL-6 signal transducer Glycoprotein 130 (GP130). Binding of IL-

6Ra to the cytokine leads to GP130 homodimerization (86), which

rapidly activates JAK1, JAK2 and TYK2 to catalyze the

phosphorylation of tyrosine residues within the cytoplasmic

domain of GP130 (88, 89) (Figure 4). These sites act as docking

regions for the STAT family transcription factors STAT1, STAT3

and, to a lesser extent, STAT5 (89). Interestingly, phosphorylated

GP130 recruits and activates both the phosphatidylinositol 3-kinase

(PI3K)/Ak strain transforming (AKT) pathway (90) and the SH2-

domain Containing (SHC) adaptor, which in turn leads to the
FIGURE 2

TME-derived T cell-suppressive factors. Alterations in biochemical composition (light blue), physical features (pink), and cytokine landscape (green)
of the TME contribute to impair the anti-tumoral functions of T cells. Suppressive metabolites: fumarate, kynurenine, cholesterol, adenosine;
Dangerous ions: [K+]; Nutrients: glucose, aminoacids.
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activation of members of the mitogen activated protein (MAP)

kinase family (91). Phosphorylated GP130 also recruits SHP-2,

which has been suggested to be involved in the termination of IL-

6-mediated signaling (92) (Figure 4). While IL-6Ra expression is

restricted to hepatocytes, megakaryocytes, and leukocytes such as

monocytes, macrophages, and B and T lymphocytes (93, 94),

GP130 is broadly expressed, with the notable exception of Tregs,

which are therefore less sensitive to IL-6 with respect to the other T

cell subsets (95).

IL-6 regulates a plethora of biological processes, including

hematopoiesis, bone metabolism, embryonic development, and

innate and adaptive immune responses, but most of all it is

considered as a pro-inflammatory cytokine, as demonstrated by

its abnormally high levels in sera of patients with chronic

inflammatory diseases (93). Of note, it has been found to also

accumulate in sera of patients with hematopoietic malignancies and

solid tumors as a result of its secretion in the TME by various cell
Frontiers in Immunology 06
types, including cancer cells, CAFs and immune cells (87, 96).

Clinical studies demonstrated that serum levels of IL-6 correlate

with both stage and size of tumors, and predict both metastatic

potential and patient survival (96). The pro-tumoral activities of IL-

6 are related to its ability to directly act on tumor cells by activating

STAT3, which in turn promotes their proliferation, survival, and

invasive potential (72, 97). Interestingly, the STAT3-stimulating

activities of IL-6 have been also recently associated to the

suppression of T-cell anti-tumor activities (98). Increased IL-6 in

sera of chronic lymphocytic leukemia (CLL) patients correlates with

STAT3-dependent dampening of T cell proliferation and IL-2

production (99, 100). Huseni and colleagues recently reported

that CD8+ T cells purified from peripheral blood of kidney and

bladder cancer patients with high plasma IL-6 levels display a

STAT3-dependent exhausted and repressed functional profile,

with lower expression of genes involved in CTL activation,

including CD28, and cell-to-cell cross-talk such as CD40L, and
FIGURE 3

Phases of the cytokine-dependent JAK/STAT signaling cascade. 1: binding of cytokines to their corresponding surface receptors induces receptor
dimerization, bringing two associated JAKs into proximity. 2: receptor bound JAKs undergo autophosphorylation and activation. Activated JAKs
phosphorylate tyrosine residues on the receptor, providing docking sites for STATs. 3: STATs recruited to the phosphorylated receptor are
phosphorylated and activated by JAKs. 4: phosphorylated STATs form homo/heterodimers. 5: STATs translocate to the nucleus and regulate
transcription of target genes.
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enhanced expression of the inhibitory receptors CTLA-4 and

TIGIT, of the immunosuppressive cytokine IL-10 and of the

transcription factors BATF, FOXO1, HIF-1a, and TOX2, which

restrain effector differentiation of CD8+ T cells (101). The IL-6-

STAT3 signaling axis also inhibits CTL differentiation in vitro,

counteracting the TCR-dependent enhancement of GZMB, TNF-a
and IFN-g expression (101). Moreover, IL-6 released in the TME

also suppresses the differentiation of IFN-g-producing TH cells by

attenuating both surface expression of MHC-II and secretion of IL-

12 in dendritic cells of tumor-bearing mice, in a STAT3-dependent

manner (102–104). On the other hand, il-6 deletion in tumor-

bearing mice promotes the anti-tumor activities of effector T cells

and inhibits tumorigenesis in vivo (101, 104). Interestingly, in lung

cancer, macrophage-derived IL-6 promotes CD8+ T cell exhaustion

by enhancing the STAT3-dependent PD-1 expression (105, 106).

This is in line with the decreased PD-1 expression and inhibited

effector functions of T cells isolated from STAT3 conditional

knock-out mice (107). These data provide evidence that IL-6, by

activating STAT3, enhances the expression of PD-1, which in turn
Frontiers in Immunology 07
interferes with the TCR-dependent signaling pathway, thereby

suppressing the anti-tumoral activities of T cells in the TME.

It is worth noting that, alongside its pro-tumoral functions, IL-6

has been observed to exert T cell-stimulating effects (108).

Specifically, in T cells isolated from the peritoneum of mice

exposed to pro-inflammatory stimuli, IL-6 promotes T cell

proliferation (109) and induces the expression of the chemokine

receptors CCR3, CCR4, CCR5, and CXCR3, which facilitate

homing of T cells to lymphoid and non-lymphoid organs (110).

IL-6 released by dendritic cells enhances activation, expansion,

survival and polarization of T cells (108), while simultaneously

inhibiting T cell apoptosis by upregulating the anti-apoptotic BCL-2

family proteins BCL-2 and BCL-2L1 (111). Moreover, the T cell-

stimulating properties of IL-6 include inhibition of the

immunosuppressive capacity of Tregs and interference with their

differentiation from naïve T cells (112). Therefore, it is plausible

that, within the intricate niche of the TME, the T cell-promoting

effects of IL-6 may be overridden by the actions of other surface or

soluble factors, resulting in T cell suppression. However, given the
FIGURE 4

Signaling cascades of T cell-suppressive cytokines. Schematic representation of the signaling pathways elicited by IL-6, IL-9, and IL-10.
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complexity of this topic, further investigations are needed to fully

understand the impact of IL-6 on anti-tumoral T cell functions in

specific pathological contexts.
4.2 IL-9

IL-9 is secreted by a number of cell subsets, including TH2 and

TH17 cells, Tregs, the type 2 innate lymphoid cells (ILC2s), NK-T

cells, and TH9 cells, a peculiar effector T cell population that

differentiates starting from either naïve T cells in the presence of

IL-1b, IL-4 and TGF-b, or from TH2 cells in the presence of TGF-b
alone (74, 113). Recently, other cell populations have been found to

secrete IL-9, among which TC9 (114), a modified CTL population

that differentiates in an IL-9-enriched microenvironment and that

expresses CTL-specific molecules, such as GZMB, the transcription

factors EOMES and T-BET, and IFN-g (74).
IL-9 is a member of the g-chain family of cytokines. It binds to

the heterodimeric surface receptor IL-9R, which is composed of a

common gc chain and an IL-9Ra-specific chain that provides the

ligand binding domain (115). IL-9 binding to the receptor induces

its dimerization and cross-phosphorylation through both JAK1 and

JAK3, which then promote recruitment and activation of STAT1,

STAT3 and STAT5 (116) (Figure 4). Moreover, in hematopoietic

cells IL-9 also activates the Insulin Receptor Substrates IRS-1 and

IRS-2, large adaptor molecules that interact with the p85 regulatory

subunit of PI3K, thereby activating downstream signaling molecules

among which AKT, that in turn promotes T cell survival and

prevents apoptosis (117). Weak activation of the MAPK pathway

has been also reported in lymphoid and mast cell lines stimulated

with IL-9, as a consequence of recruitment of the adaptors SHC and

Growth factor receptor-bound protein 2 (GRB2) to the receptor

(118) (Figure 4).

IL‐9Ra can be found at the surface of TH17 cells, Tregs, and

CTLs and its binding to environmental IL-9 leads to a variety of

cellular effects ranging from stimulation of TH17 differentiation

and proliferation to enhancement of the suppressive activities of

Tregs and modulation of CTL cytotoxicity (119). It is noteworthy

that, in different disease contexts, this wide variety of effects

differently impinge on T cell-mediated responses. In allergic

diseases, IL-9 exerts a detrimental pro-inflammatory activity by

promoting the expression of the chemokines CCL17 and CCL22 by

TH2 lymphocytes (120). Moreover, overexpression of IL-9 and IL-

9Ra in interstitial fluids and tissues isolated from patients with

autoimmune diseases has been related to the degree of tissue

inflammation (121, 122). On the other hand, IL-9 expression

exerts an anti-inflammatory activity in some types of

autoimmune diseases, such as multiple sclerosis, where it impairs

the secretion of Granulocyte-Macrophage Colony-Stimulating

Factor (GM-CSF) by CD4+ T cells, thereby reducing autoimmune

neuroinflammation (123).

In the majority of solid tumors IL-9 acts as an anti-tumoral

factor by promoting tumor cell apoptosis and activating innate and

adaptive anti-tumoral immune responses (124, 125). In mouse
Frontiers in Immunology 08
models of melanoma, injection of recombinant IL-9 inhibits

tumor growth (126). Moreover, in mouse models of melanoma

and breast cancer IL-9 released in the TME forces macrophages to

release the chemokines MIP-1 and CXCR3, which in turn attract T

cells, thereby enhancing anti-tumor immune responses (127). In

gastric cancer patients, its high intra-tumoral expression has been

associated with increased numbers and elevated killing activities of

CD8+ TILs, enhanced efficacy of anti-PD-1 immunotherapy based

on the monoclonal antibody Pembrolizumab, and increased overall

survival (128). Colon cancer patients show a strong correlation

between IL-9 expression and disease progression, with the better

prognosis shown by patients with the highest levels of IL-9 in cancer

tissues (129). Furthermore, increased IL-9 concentrations in

peripheral blood of breast cancer patients promote cytotoxicity of

tumor-specific CTLs (130). In a mouse model of colorectal cancer,

IL-9 suppressed tumor growth through CD8+ T cell activation

(131). Similar findings were observed in mouse melanoma

models, where in vivo IL-9 blockade promoted melanoma

progression, while on the other hand recombinant IL-9 enhanced

the cytotoxic ability of murine melanoma-specific CD8+ T cells

(132). Therefore, we can hypothesize that the role of IL-9 in

hampering the anti-tumoral activities of T cells depends on the

specific cancer type (133).

As opposed to solid tumors, IL-9 mainly exerts a pro-tumoral

effect in B and T cell hematologic malignancies, which results from

its ability to trigger the JAK/STAT pathways, that eventually

stimulate neoplastic cell accumulation and promote disease

progression (125, 134). Enhanced expression of IL-9 and IL-9Ra
is detectable in biopsies and sera from patients with several

hematologic neoplasias and correlates with adverse prognostic

markers of the diseases (extensively reviewed in (122)). Neoplastic

cells from T-ALL and Cutaneous T-Cell Lymphoma patients are

highly sensitive to IL-9, which promotes Ras/MAPK signaling and

enhances their proliferation and survival (135, 136). Upregulation

of IL-9 levels in the plasma of multiple myeloma patients correlates

with disease severity (137). In the context of CLL, high amounts of

IL-9 secreted by TH9 and leukemic cells correlate with hallmarks of

aggressive disease and lower overall survival (74). IL-9 released at

abnormally high levels in the TME of CLL acts on stromal cells by

enhancing their secretion of homing chemokines, which in turn

favor leukemic cell accumulation in the pro-survival and

chemoprotective lymphoid niche (74, 122).

Very limited information is available concerning the ability of

IL-9 to interfere with the anti-tumor functions of T cells. In mouse

models of non-small cell lung cancer, IL-9 demonstrated a CD8+ T

cell-suppressive activity, which was mediated by its ability to

enhance PD-1 expression, an effect which was neutralized by PD-

1-neutralizing antibodies (138). In these disease models, IL-9 was

found to target both CD4+ and CD8+ TILs, suppressing their

secretory ability and impairing their anti-tumoral functions (139).

We have recently dissected the molecular mechanism underlying

the T cell-suppressive function of IL-9 in CLL. We reported that IL-

9, aberrantly secreted by leukemic cells isolated from peripheral

blood of CLL patients, promotes PD-1 expression in CTLs, thereby
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strongly affecting their ability to form productive ISs and to kill

target cells (44). Altogether, these results suggest that IL-9 exerts

opposite effects on T cell suppression according to the type of

neoplastic cell and to its microenvironmental niche (113).
4.3 IL-10

In its biologically active form, interleukin-10 (IL-10) exists as a

homodimer that binds to the tetrameric heterodimer IL-10 receptor

(IL-10R) (140). Upon ligand binding, IL-10R promotes the

phosphorylation of JAK1 and TYK2, allowing the recruitment of

STAT1, STAT3, and STAT5 (8). Of note, while STAT1 and STAT5

are activated through the “classical” JAK/STAT module, IL-10-

dependent STAT3 activation seems to be mainly mediated by AMP-

activated protein kinase (AMPK) (141). In addition to STAT3,

AMPK also promotes the activation of the PI3K/Akt signaling

cascade in macrophages (142) (Figure 4).

Secreted by several immune cell types, including activated T

cells, and mostly Tregs, monocytes, macrophages, dendritic cells,

NK cells and B cells, IL-10 mainly targets immune cells themselves,

result ing in a broad range of anti- inflammatory and

immunosuppressive activities associated with the resolution of

inflammatory diseases (75, 143, 144). These activities rely on the

ability of IL-10 to inhibit the secretion of i) IFN-g and IL-2 by TH1

lymphocytes, ii) IL-4 and IL-5 by TH2 lymphocytes, iii) IL-1b, IL-6,
IL-8, IL-12, and TNF-a by phagocytes, and iv) IFN-g and TNF-a by

NK cells (145). The suppressive functions of IL-10 on TH cells have

been ascribed to its ability to suppress the expression of the co-

stimulatory molecules CD28 and ICOS, thereby interfering with

cytokine production (146). IL-10 also indirectly suppresses TH cell

functions by interfering with the expression of MHC-II and of the

co-stimulatory molecules B7.1/2 by APCs, thereby impairing their

ability to provide the accessory signals necessary for TH cell

activation (147).

The anti-inflammatory functions of IL-10 initially fueled the

idea that it acts as a suppressor of immune responses in the tumor

context, thereby favoring tumor development. This idea was

corroborated by the finding that IL-10 promotes both survival

and proliferation of tumor cells by stimulating STAT3 activation,

at the same time hampering tumor antigen presentation to immune

cells, which enhances evasion of immune surveillance (148). High

amounts of IL-10 in sera of diffuse large B-cell lymphoma (DLBCL)

(80), CLL (149), glioma (150), and cutaneous T cell lymphoma

(151) patients are considered as a marker of unfavorable prognosis.

DLBCL cells express both IL-10 and its receptor, eliciting an

autocrine pathway of STAT3 activation that fuels tumor cell

proliferation (80). Recently, IL-10 has been also implicated in

shifting macrophage polarization toward the tumor-promoting

M2-like phenotype, that in turn secretes TGF-b and IL-6 (7, 152,

153). Moreover, high degrees of IL-10+ TAM infiltrates associate

with CD8+ T cells exhaustion and worst prognosis in muscle-

invasive bladder cancer patients (154). This concept is

corroborated by the ability of IL-10 to promote both

differentiation and suppressive functions of Tregs, which in turn

secrete large amounts of IL-10 in the TME (155). This positive
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feedback loop supports the establishment of an immunosuppressive

microenvironment that favors tumor growth and progression (155)

by enhancing the expression of PD-1 and promoting the

transcriptomic signature of exhaustion in CD8+ TILs (156).

Of note, the outcomes of IL-10 depend on both cell types and

environmental conditions. Indeed, in B cells it stimulates

proliferation and promotes immunoglobulin secretion and isotype

switch (145, 157). IL-10 also induces activatory signals in CD8+ T

cells, where it promotes target cell killing during acute infection

(158). Hence, IL-10 enhances both cytotoxic and humoral

responses against pathogens, at the same time suppressing the

helper activities of CD4+ T cells.

In the TME, where chronic inflammation fuels tumor growth,

the anti-inflammatory activities of IL-10 have been implicated in

harnessing the anti-tumoral functions of CD8+ T cells (8, 159). In

mice with colorectal cancer cell-derived liver metastases, IL-10

upregulates PD-L1 expression in monocytes, which in turn

reduces CD8+ T cell infiltration and anti-tumor immunity (160).

In CLL and breast cancer patients, reduced IL-10 expression or

impaired IL-10R-STAT3 signaling is correlated with increased

frequencies of exhausted CD8+ T cells (161). Sun and colleagues

demonstrated that STAT3, activated by IL-10 released in the TME,

enhances the anti-tumoral activities of CTLs and promotes their

differentiation in mouse models of melanoma (162). Moreover,

mice and humans deficient in IL-10 signaling components

spontaneously develop tumors. Interestingly, TCR stimulation in

CD8+ T cells leads to upregulated expression of IL-10R, thereby

enhancing both IL-10 sensitivity and IL-10-mediated STAT3

activation, which have been both related to enhanced CD8+ T cell

survival (148, 163). Collectively, these data provide evidence that

cancer type-specific TME-associated factors govern the ability of IL-

10 to act as either a pro- or an anti-tumoral cytokine, and highlight

the need for further studies to clarify the functions of IL-10 in

specific pathological contexts.
5 Rewiring the cytokine landscape
of the TME as new pharmacological
anti-cancer tool

Chemotherapy and radiation therapy have been the mainstay of

cancer treatment for decades, notwithstanding their significant side

effects and their uncertain benefits in terms of cancer growth

control (164). In recent years several approaches have been

applied to implement traditional clinical practice by targeting

cancer cells at the same time leaving untouched normal cells.

After the discovery of immune checkpoint expression and

functions, pharmacological targeting of immune checkpoints

seemed a viable option to counteract T cell suppression in cancer.

Over the past decade immune checkpoint-neutralizing antibodies,

now widely known as “immune checkpoint inhibitors”, showed

promising results in clinical trials as promoters of T cell anti-

tumoral functions, and were approved by the US Food and Drug

Administration (FDA) to treat some cancer types, including

melanoma and bladder and lung cancers (165). However,
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notwithstanding their clear-cut therapeutic success, a high

percentage of tumors remain innately resistant to immune

checkpoint inhibitors, or become resistant throughout treatment

programs (166).

CAR T-cell therapy, which involves extracting T cells from a

patient’s blood, genetically modifying them to recognize and attack

tumor cells, and reintroducing them into the patient’s body, also

falls under the classification of immunotherapy. Engineered T cells

acquire tumor-specific features that enable them to localize and

eliminate tumor cells. Unfortunately, the therapeutical success of

CAR T cell-based therapies for the treatment of some hematological

neoplasms such as B-acute lymphoblastic leukemia (ALL) and large

B cell lymphoma, are challenging to replicate in other tumoral

contexts, particularly solid tumors (167). Although the exact

reasons for the therapeutic failure of CAR T cells remain to be

fully elucidated, the mechanisms employed by the TME to suppress

the anti-tumoral activities of CTLs may also contribute to the

suppression of CAR T cells. A comprehensive understanding of

the mechanisms utilized by the TME to inhibit CTL (and CAR T

cell) anti-tumoral activity is therefore necessary to expand our

treatment options.

In the last decade, cytokines which appeared to impair the anti-

tumoral functions of T cells have been explored as potential targets

for immunotherapy. Large clinical trials demonstrated that high

amounts of IL-6 found in sera of advanced kidney, breast, and

hepatocellular carcinoma, non-small cell lung cancer and bladder

cancer patients correlate with poor response to the anti-PD-L1

antibody atezolizumab (101, 168–170). In vivo administration of

monoclonal anti-IL-6R neutralizing antibodies in tumor-bearing

mouse models enhanced T cell responses and inhibited tumor

growth (103, 104) (Figure 5A). Moreover, combined PD-L1 and
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solid tumors, improving CTL anti-tumor responses compared with

anti-PD-L1 alone (101) (Figure 5B). In a recent phase I clinical trial

using the anti-IL-6R mAb tocilizumab in combination with

carboplatin/doxorubicin conducted in patients with recurrent

epithelial ovarian cancer, T cells of IL-6R mAb-treated patients

exhibited features of enhanced activation and secreted high

amounts of effector cytokines (171). These successful experiments

supported the idea that IL-6/IL-6R neutralization may by exploited

to reactivate the T cell compartment and counteract tumor

development. Clinical trials combining tocilizumab with either

carboplatin (ClinicalTrials.gov Identifier: NCT05846789), or with

atezolizumab (ClinicalTrials.gov Identifier: NCT04691817) are

currently recruiting tumor patients refractory to first-line line

immune checkpoint inhibitor-based therapies. Hopefully, these

trials will soon provide insights into the efficacy and safety of IL-

6/IL-6R neutralization as a therapeutic strategy for reactivating the

T cell compartment and combating tumor development in patients

refractory to first-line immune checkpoint inhibitor-based

therapies (Figure 5A, B).

The anti-tumor efficacy of IL-9 neutralization has been also

recently explored. Encouraging results, obtained by administrating

anti-IL-9 antibodies in Em-TCL1 mice, the mouse model of CLL

(122), demonstrate that this approach counteracts leukemia

progression by on the one hand decreasing PD-1 expression in

CD8+ T cells (44) and on the other hand lowering the expression of

homing chemokines by stromal cells of lymphoid organs (74).

Hence, IL-9 neutralization counteracts IL-9-dependent T cell

exhaustion, at the same time preventing leukemic cell homing to

the pro-survival niche of lymphoid organs. Moreover, neutralizing

anti-IL-9 or anti-IL-9R antibodies significantly inhibit tumor
FIGURE 5

Schematic overview of available therapies and new perspectives for T cell reactivation. (A) Neutralization of immunosuppressive cytokines by specific
antibodies. (B) Combined immune checkpoint inhibition and cytokine/cytokine receptor neutralization through specific antibodies. ICI, Immune
checkpoint inhibitor; CR, Cytokine receptor.
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growth in mouse models of lymphoma (172). These data open to

the possibility of exploring IL-9 and IL-9R neutralization as a new

anti-tumor approach (Figure 5A).

Combined treatments targeting either Tregs or IL-10 along with

the PD-1 checkpoint pathway reversed T cell exhaustion during

viral infections (173, 174), suggesting that similar pharmacological

approaches might be applicable also to the tumoral context. Indeed,

using organotypic cell culture approaches, Sullivan and colleagues

found that IL-10 blockade potentiates anti-tumor T cell responses

and decreases the percentage of exhausted CD8+ T cells in human

colorectal cancer liver metastases. Interestingly, IL-10

neutralization also rescued both proliferation and cytotoxicity of

tumor-specific CAR T cells (175). Moreover, IL-10 suppression

enhanced both anti-tumor activity and responses to checkpoint

blockade in CLL (176, 177) (Figure 5B). Therefore, neutralizing the

effects of IL-10 holds therapeutic potential not only as a stand-alone

treatment but also to enhance the function of adoptively transferred

CAR T cells (Figure 5A). The ability of IL-10, but not of IL-6, to fuel

the immunosuppressive functions of Tregs (112, 155), makes IL-10

neutralization in tumoral contexts even more promising.

As mentioned above, IL-10 also exerts anti-tumoral activities,

which are being exploited as potential therapeutical strategy. Both IL-

10 overexpression and treatment with pegylated IL-10 (PEG-IL-10),

lead to enhanced expression of IFN-g and GZMs in tumor-resident

CD8+ T cells, thereby promoting their long-lasting cytotoxic ability and

favoring tumor rejection in a subset of patients with intermediate to

poor risk in renal cell cancer (163). More recently, mouse models of

solid tumors treated with a IL-10/Fc fusion protein showed expansion

and increased effector functions of exhausted CD8+ TILs, which

resulted in tumor eradication (178). Zhao and colleagues engineered

CAR T cells to secrete IL-10, and tested them in syngeneic and

xenograft mouse models of colon cancer, breast cancer, pancreatic

cancer and melanoma, where IL-10 secretion promoted both

proliferation and effector functions of CAR T cells, leading to

complete regression of established solid tumors and metastatic

cancers (179). These findings highlight IL-10 as a key player in anti-

tumor immunity and provide a strong rationale for further exploration

of IL-10-based therapies in clinical settings.

Molecular components of the JAK/STAT signal transduction

pathways are increasingly recognized as potential therapeutic

targets against tumors (63). Cytokine-dependent alterations in

these pathways have been associated with various cancers, such as

cutaneous T-cell lymphoma, lung cancer, gastric cancer and colon

cancer (180, 181). Notably, aberrant activation of STAT3, as

described earlier, is widely implicated in cancer cell survival,

immunosuppression and persistent inflammation within the TME

(182). Targeting JAK and STAT proteins with specific inhibitors,

either alone or in combination with anti-PD-1/PD-L1 neutralizing

antibodies, represents a promising emerging therapeutic approach

against cancer. The strong potential of these classes of inhibitors

was demonstrated in preclinical models of colorectal cancer treated

in vivo with nanoparticles loaded with the STAT3 inhibitor BBI608,

which resulted in enhanced infiltration of CD4+ and CD8+ TILs at
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tumor sites and tumor regression (183). The development of JAK/

STAT inhibitors has progressed rapidly, with several molecules

currently under evaluation in clinical trials for cancer treatment.

Among them, the JAK1/2 inhibitor Ruxolitinib has demonstrated

remarkable anti-cancer effects, alone or in combination with the

anti-PD-1 antibody nivolumab, in patients with multiple myeloma

and Hodgkin lymphoma, including enhancing the cytotoxic

capacity of T cells against tumor cells (184, 185). Clinical trials

are currently underway to investigate the effects of the STAT3

inhibitor Napabucasin alone or in combination with PD-1

neutralizing antibodies in metastatic colorectal cancer

(ClinicalTrials.gov Identifiers: NCT03522649, NCT02753127).

Notwithstanding the large number of existing data linking these

drugs to impaired T cell responses (186), results obtained from

these recent clinical studies might provide valuable insights into the

therapeutic potential of JAK/STAT inhibitors and their

combination strategies in improving outcomes for cancer patients.

In addition to classical pharmacological approaches, gene

engineering techniques are being explored as a means to interfere

with cytokine-dependent signaling and reactivate T lymphocytes

and CAR T cells against cancer. T cells expressing a chimeric

receptor containing the extracellular domain of IL-2R fused with

the intracellular domain of IL-9R acquire features of effector T cells

and show anti-tumor activity when adoptively transferred in

syngeneic mouse models of melanoma and pancreatic cancer

(187). Liang and colleagues co-expressed SMAD7, an inhibitor of

signaling pathways elicited by the immunosuppressive cytokine

TGF-b (188), with a human epidermal receptor (HER) 2-targeted

CAR in engineered T cells. SMAD7-engineered CAR T cells showed

decreased exhaustion in vitro and demonstrated enhanced anti-

tumoral effects in mouse xenograft models of solid tumors (189).

We can hypothesize that a similar approach may be applicable to

the T cell-suppressive JAK/STAT-dependent signaling pathways

elicited by the cytokines described above, making it suitable for the

treatment of tumors with peculiar cytokine landscapes of the TME.

However, the large overlap of cytokine-dependent signaling

pathways makes these pharmacological approaches potentially

detrimental, suggesting that additional investigation is required to

avoid undesired side-effects.

As extensively reviewed in (190), the intrinsic 3D structure of

hematologic neoplasms, where tumor cells and T cells are in close

physical contact, substantiates immunosuppressive cytokine

neutralization and/or signaling cascade inhibition as efficient

strategies to reactivate anti-tumoral T cell functions. However,

solid tumor tissues usually impair T cell infiltration in the TME,

thereby potentially frustrating the implementation of these

therapeutic approaches. New microphysiological systems are

currently under development for the evaluation of drugs that

counteract T cell exclusion in the TME of solid tumors (190).

These drugs, in combination with therapies aimed at neutralizing

the T cell suppressive activities of IL-6, IL-9 and/or IL-10, may

reasonably help reducing immune evasion of tumor cells, thereby

ameliorating the clinical management of the disease.
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6 Conclusions

Rewiring the TME to a non-permissive environment for tumor

growth has emerged as a significant research challenge. However,

notwithstanding remarkable breakthroughs obtained by applying

precision medicine, nanomedicine and immunotherapy to multiple

tumor types (191), we are still far from achieving complete success

(192). Profound differences among tumor cells, as well as among their

tissue of origin, generate tumor niches of peculiar compositions,

where a multitude of cells interact in complex and sometimes

unpredictable ways. Additionally, the landscape of released

cytokines varies considerably across different TMEs, exerting

diverse and occasionally opposite effects on their target cells.

A common observation across most tumor niches is the suppression

of T cell-mediated anti-tumor responses. In this comprehensive review,

we elucidated the current understanding of the mechanisms orchestrated

by IL-6, IL-9, and IL-10, of which high amounts have been found within

the TME of specific tumors, effectively hindering the anti-tumoral

functions of T cells. Furthermore, we explore the contrasting roles of

these cytokines in various tumoral contexts, highlighting the dynamic

nature of the cytokine expression profile within the TME. This profile

not only varies from one tumor to another but also exhibits inter-patient

heterogeneity, suggesting a significant contribution to

immunosuppression in a tumor-selective manner.

In this scenario, unveiling the cytokine landscape of each tumor

type becomes critical for identifying and characterizing soluble

factors that suppress of CTL-mediated killing. Moreover,

understanding these factors would shed light on their potential

implications in the poor response to CAR T cell therapies,

facilitating the development of more effective treatments and

improving outcomes for cancer patients.
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