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Integrated machine learning
identifies a cellular senescence-
related prognostic model to
improve outcomes in uterine
corpus endometrial carcinoma
Changqiang Wei1†, Shanshan Lin1†, Yanrong Huang1†,
Yiyun Wei1, Jingxin Mao2* and Jiangtao Fan1*

1Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangxi Medical University,
Guangxi, China, 2Department of Science and Technology Industry, Chongqing Medical and
Pharmaceutical College, Chongqing, China
Background: Uterine Corpus Endometrial Carcinoma (UCEC) stands as one of

the prevalent malignancies impacting women globally. Given its heterogeneous

nature, personalized therapeutic approaches are increasingly significant for

optimizing patient outcomes. This study investigated the prognostic potential

of cellular senescence genes(CSGs) in UCEC, utilizing machine learning

techniques integrated with large-scale genomic data.

Methods: A comprehensive analysis was conducted using transcriptomic and

clinical data from 579 endometrial cancer patients sourced from the Cancer

Genome Atlas (TCGA). A subset of 503 CSGs was assessed through weighted

gene co-expression network analysis (WGCNA) alongside machine learning

algorithms, including Gaussian Mixture Model (GMM), support vector machine

- recursive feature elimination (SVM-RFE), Random Forest, and eXtreme Gradient

Boosting (XGBoost), to identify key differentially expressed cellular senescence

genes. These genes underwent further analysis to construct a prognostic model.

Results: Our analysis revealed two distinct molecular clusters of UCEC with

significant differences in tumor microenvironment and survival outcomes.

Utilizing cellular senescence genes, a prognostic model effectively stratified

patients into high-risk and low-risk categories. Patients in the high-risk group

exhibited compromised overall survival and presented distinct molecular and

immune profiles indicative of tumor progression. Crucially, the prognostic model

demonstrated robust predictive performance and underwent validation in an

independent patient cohort.
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Conclusion: The study emphasized the significance of cellular senescence genes

in UCEC progression and underscored the efficacy of machine learning in

developing reliable prognostic models. Our findings suggested that targeting

cellular senescence holds promise as a strategy in personalized UCEC treatment,

thus warranting further clinical investigation.
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1 Introduction

Uterine Corpus Endometrial Carcinoma (UCEC) stands as one

of the most prevalent malignancies in gynecology. In China, its

incidence ranks second only to cervical cancer (1). In 2023, an

estimated 66,200 new cases and 13,030 deaths are projected in the

United States (2).

The pathogenesis and classification of UCEC have garnered

considerable attention in medical research. It is primarily

categorized into two types based on biological characteristics and

clinical behavior: Type I (estrogen-dependent) and Type II (non-

estrogen dependent) endometrial carcinoma. Recent studies have

further delineated it into four molecular subtypes: POLE

ultramutated, microsatellite instability, copy-number stability, and

p53 abnormal types (3). This molecular classification enriches our

comprehension of UCEC heterogeneity and forms the basis for

devising personalized treatment strategies (4).

Early-stage endometrial cancer commonly involves total

hysterectomy and bilateral salpingo-oophorectomy (5), whereas in

cases of advanced or recurrent endometrial cancer, surgery remains

crucial but must be supplemented with systemic treatments such as

chemotherapy, immunotherapy, targeted therapy, and endocrine

therapy (6). Recent studies have concentrated on molecular markers

like mutations in the PTEN, PIK3CA, ARID1A, and KRAS genes,

prevalent in Type I endometrial cancers, which foster tumor growth

and survival (7). Type II cancers often manifest mutations in the

p53 gene and amplification of the HER2 gene (8). These findings aid

in delineating distinct biological features and therapeutic targets for

various tumor types.

Targeted therapies, including PI3K and mTOR inhibitors, have

become essential in UCEC treatment, significantly improving

outcomes for certain patients (9). For individuals exhibiting

microsatellite instability or mismatch repair deficiencies, immune

checkpoint inhibitors like PD-1/PD-L1 present novel therapeutic

possibilities (10). The efficacy of these strategies highlights the

significance of personalized medicine in UCEC treatment.

However, challenges persist in precisely identifying eligible

patients and devising novel medications.

Cellular senescence constitutes a multifaceted biological process

involving alterations in gene expression, DNA damage
02
accumulation, protein function loss, and cell cycle arrest (11).

Serving as a critical tumor-suppressing mechanism, it inhibits

cancer by constraining the proliferation of damaged or mutated

cells (12). Nonetheless, the accumulation of senescent cells can

foster tumor progression via the secretion of pro-inflammatory and

pro-tumorigenic factors (13). Studies have demonstrated the pivotal

roles of senescence-associated genes, such as p53, RB, and PTEN, in

cancer development (11). Targeting SASP factors presents a novel

perspective for certain cancer treatments (14, 15).

Studies utilizing public databases such as TCGA and Gene

Expression Omnibus have pinpointed specific genes linked to the

prognosis and treatment responses of UCEC (16–18). These genes

can potentially serve as novel biomarkers for refining prognostic

models. Currently, research on cellular senescence related to UCEC

remains limited. Employing advanced bioinformatics to investigate

the relationship between cellular senescence genes and UCEC is

imperative for patient stratification and the identification of new

therapeutic targets and immune treatment strategies.
2 Materials and methods

2.1 Data and patient collection

Figure 1 illustrates the methodology employed in this research.

Transcriptomic and clinical data for 579 endometrial cancer patients,

comprising 544 UCEC cases and 35 control subjects, were obtained

from the TCGA database (https://portal.gdc.cancer.gov/). A total

of 503 cellular senescence genes were sourced from the

CSGene database (https://csgene.bioinfominzhao.org/index.html,

Supplementary Table 1).

Furthermore, 20 endometrial cancer tissues and 20 non-

cancerous endometrial tissues were collected from the First

Affiliated Hospital of Guangxi Medical University. All UCEC

diagnoses were confirmed by experienced pathologists, with

pertinent clinical details provided in Supplementary Table 2.

Following surgery, tissues were promptly transferred to a petri

dish using forceps and rinsed thoroughly with physiological saline

to eliminate surrounding blood clots. Subsequently, approximately

5g samples were dissected using a surgical blade for subsequent RT-
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qPCR and Western blot experiments. Additionally, roughly 10g of

tissue was placed in 4% paraformaldehyde fixative, fixed for 24

hours, and then subjected to dehydration and paraffin embedding

for sectioning. The study received ethical approval (No. 2023-S033–

01), and all participants provided informed consent before

undergoing surgery.
2.2 Differential expression analysis

In this study, we utilized the “limma” package (19) in R software

to perform differential expression analysis on the UCEC dataset.

The filtering criteria were set as: |log2FoldChange|≥1.5, and P<0.05.

Subsequently, the differentially expressed genes and cellular
Frontiers in Immunology 03
senescence genes were intersected to yield a series of Differentially

Expressed Cellular Senescence Genes (DECSGs).
2.3 Consensus clustering and
subtype analysis

To identify UCEC subtypes associated with DECSGs, we

utilized the “ConsensusClusterPlus” R package for consensus

clustering analysis (20). This approach evaluated consistency

across multiple clustering runs to determine a more stable final

clustering structure, commonly employed in data analysis and

bioinformatics. The clustering criteria were as follows: enhanced

correlation within subtypes post-clustering, and weakened
FIGURE 1

The flow diagram of the study.
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correlation between subtypes. We ensured the reliability of our

results through 1,000 iterations and utilized the Probably

Approximately Correct (PAC) method to determine the optimal

number of clusters. Specifically, the PAC method initially generated

a set of random datasets and conducted cluster analysis on these

datasets to obtain a range of random cluster numbers. The PAC

value quantified the dissimilarity between observed clustering

results and random clustering results. A higher PAC value

indicated greater dissimilarity between the observed clustering

structure and random results, indicating a more robust and

reliable clustering structure.

Subsequently, we employed principal component analysis

(PCA) to discern variations in gene expression patterns among

the clusters. Additionally, we conducted differential expression

analysis across the clusters and utilized the “ClusterProfiler” (21)

and “org.Hs.eg.db” packages to explore potential biological

mechanisms through Gene Ontology (GO), Kyoto Encyclopedia

of Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA).

Furthermore, the “survival” and ‘‘survminer” packages (22) were

utilized to analyze the overall survival (OS) and progression-free

survival (PFS) rates across the different clusters. The tumor

microenvironment (TME) of endometrial cancer was assessed

using the “estimate” package to understand its characteristics

deeply. Based on the “CIBERSORT” package (23), we analyzed

the infiltration levels of 22 immune cell types to identify differences

in immune cell infiltration across clusters. Lastly, we investigated

the expression differences in key immune checkpoint genes and

human leukocyte antigen (HLA)-related genes between clusters.

This exploration aimed to elucidate mechanisms by which tumors

evade immune surveillance, providing valuable insights for the

development of novel immunotherapeutic strategies.
2.4 Co-expression network construction

WGCNA was conducted using the “WGCNA” package (24) to

construct a scale-free network associated with clinical phenotypes.

The process commenced with hierarchical clustering to filter the

cases, followed by the selection of an appropriate soft threshold to

construct a weighted adjacency matrix. This matrix was

then transformed into a topological overlap matrix (TOM),

represented with colors and module eigengenes. Additionally, the

Pearson correlation coefficient between the module eigengenes and

clinical features was calculated to unveil potential links between

gene expression patterns and clinical manifestations.
2.5 Cox regression analysis and machine
learning algorithms

In this study, we intersected genes from key modules identified

by WGCNA with DECSGs to pinpoint key DECSGs. Patients from

the TCGA database with complete clinical information and survival
Frontiers in Immunology 04
times exceeding 30 days were selected for univariate Cox regression

analysis to identify prognostically relevant DECSGs.

To accurately identify hub genes associated with UCEC, we

employed four machine learning algorithms: GMM, SVM-RFE,

Random Forest, and XGBoost. Firstly, GMM analysis was

conducted utilizing the “SimDesign” package (25). This method

examined the probability distribution of gene expression data and

fit it to multiple Gaussian distributions, revealing complex

underlying biological information. Subsequently, the SVM-RFE

method (26) was implemented using the “e1071,” “kernlab,” and

“caret” packages. This technique constructed a model based on

SVM and optimized the feature set by recursively removing the least

impactful features. Next, we employed the Random Forest

algorithm via the “randomForest” package and the XGBoost

algorithm using the “xgboost” package (27, 28). Random Forest is

a robust ensemble learning algorithm that builds multiple decision

trees and combines their predictions to enhance model accuracy

and robustness, widely utilized in classification and regression tasks.

XGBoost is an efficient ensemble learning algorithm that

incrementally constructs decision trees and corrects errors to

optimize model performance, identifying core features. The

common genes identified by these algorithms were determined to

be the core DECSGs. Finally, the relationship between these core

DECSGs and the prognosis of endometrial cancer was analyzed

using the external survival prognosis database Kaplan-Meier Plotter

(https://kmplot.com/analysis/index.php?p=background).
2.6 Construction and validation of the
cellular senescence-relate risk score model

UCEC samples were randomly divided into a training set and a

testing set at a ratio of 7:3. Based on the expression of key DECSGs,

a prognostic model was constructed within the training set using the

LASSO Cox regression method.

This methodology entails an initial fitting of gene expression

data and survival time via LASSO regression, followed by cross-

validation utilizing the “cv.glmnet” function. Subsequently, the

“coef” function is utilized to extract and compute the weights of

the selected genes within the model. The model predicts patient

survival prognosis through the calculation of a risk score,

formulated as: Risk score = S (Xi*Yi), where X represents the

coefficient of each gene in the model, and Y denotes the expression

level of the corresponding gene. Within the training set, UCEC

samples were stratified into high-risk and low-risk clusters based on

the risk score. Kaplan-Meier survival analysis was employed to

compare the OS between these groups, thereby validating the

performance of the risk score model. ROC curve analysis,

facilitated by the “timeROC” package (29), was conducted to

assess the model’s accuracy in predicting patient survival rates.

Finally, the model’s accuracy was further validated utilizing the

independent testing set from TCGA, as well as the entire

TCGA dataset.
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2.7 Differences in immune characteristics
and molecular biology between the high-
risk and low-risk groups

Using the “GSEABase” and “GSVA” packages, we analyzed the

infiltration fractions and immune-related functions of tumor-

infiltrating immune cells in UCEC cases. Differences in immune

cell infiltration between low-risk and high-risk groups were

compared employing the Wilcoxon test. Moreover, the

correlation between the risk score and the expression levels of

immune checkpoint genes was investigated using Pearson

correlation coefficients. Furthermore, comparisons of risk scores

across different stages, grades, and subgroups were conducted to

assess the prognostic value of the risk score.
2.8 Drug sensitivity analyses

To investigate the association between chemotherapeutic

responsiveness and the risk score model, we employed the

“oncoPredict” package (30), leveraging data from the Genomics of

Drug Sensitivity in Cancer (GDSC) database (www.cancerRxgene.org).

This enabled an analysis of drug sensitivity. Subsequently, we

conducted comparative analyses of IC50 values across two distinct

groups to assess differential therapeutic outcomes, with the aim of

identifying potentially efficacious drugs for the treatment of UCEC.
2.9 Reverse transcription quantitative
polymerase chain reaction

Total RNA was extracted using TRIzol reagent (Takara, Japan)

and reverse-transcribed into cDNA. PCR was performed using the

SYBR Green Master Mix kit (Qiagen, Germany), with the

expression level of glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) serving as the internal reference. The primer sequences

were provided in Table 1. The experiment was conducted with at

least three technical replicates. We employed the 2-DDCT method to

calculate the relative mRNA expression levels of hub genes. A CT
Frontiers in Immunology 05
value difference within 0.5 between replicate wells of the same

sample was considered acceptable for analysis.
2.10 Western blotting

Cells and clinical samples were lysed with RIPA lysis buffer

(Solarbio, China), and the protein concentrations were quantified

with a BCA protein quantification kit (NCM Biotech, China). The

protein samples were then loaded onto a 10% SDS-PAGE gel for

electrophoretic separation, followed by transfer to PVDF

membranes (Millipore, USA). After blocking with 5% BSA

(Solarbio, China) for 1 hour, the membranes were washed three

times with Tris-buffered saline containing 0.1% Tween-20 (TBST),

with each wash lasting 5 minutes. Next, the PVDF membrane was

incubated overnight at 4°C with specific primary antibodies (anti-b-
actin, Sigma, USA, 1/10000; MYBL2, Abcam, UK,1/1000; CPEB1,

abways, China, 1/1000). The following day, the membrane was

incubated for 1 hour at room temperature with HRP-conjugated

goat anti-rabbit IgG. Finally, the target protein band was visualized

by laser scanning (Thermo Fisher, USA).
2.11 Immunofluorescence assay

Clinical samples were prepared into slides and deparaffinized in

xylene, followed by rehydrated in 100% ethanol and sequentially

dehydrated in 95%, 85%, and 75% ethanol concentrations. Antigen

retrieval was carried out using sodium citrate in a microwave. To block

endogenous peroxidases, the samples were treated with 3% hydrogen

peroxide (H2O2), followed by incubation in a 3% Bovine Serum

Albumin (BSA) solution (Solarbio, China) for blocking purposes.

Subsequently, the tissues were incubated with primary antibodies

(MYBL2, Abcam, UK, 1/200; CPEB1, abways, China, 1/200))

overnight at 4°C. After the primary antibody incubation, the tissues

underwent incubation with secondary antibodies (Goat Anti-Rabbit

IgGH&L/AF555 and Goat Anti-Mouse IgGH&L/AF488) for 1 hour at

room temperature. DAPI (Solarbio, China) was added, and the samples

were briefly incubated before being washed with phosphate-buffered

saline. Finally, images were acquired at 400-fold magnification using a

confocal microscope (Nikon AIR, Japan).
2.12 Statistical analysis

Data processing, analysis, and visualization were conducted using

R (version 4.3.0) and GraphPad Prism (Version 9.4). Differential

analysis in R was primarily conducted utilizing the “limma” package.

Visualization of data was predominantly achieved through the

“ggplot2”, “ggpubr”, and “enrichplot” packages. Time-dependent

ROC curves were calculated and plotted using the “timeROC”

package, facilitating comparisons between different models. Statistical

comparisons of experimental results between different groups were

executed using theWilcoxon test, with statistical significance set as a p-

value of less than 0.05.
TABLE 1 The primers of hub DEERGs and GAPDH.

Gene
name

Primer
orientation

Sequences

MYBL2
Forward CTTGAGCGAGTCCAAAGACTG

Reverse AGTTGGTCAGAAGACTTCCCT

CPEB1
Forward GTCCTCCCAAAGGTAATATGCC

Reverse TGCAGAGCACCGACAAACA

GAPDH
Forward CAGGAGGCATTGCTGATGAT

Reverse GAAGGCTGGGGCTCATTT
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3 Results

3.1 Identification of different expression
cellular senescence genes

Differential expression analysis was performed on the TCGA-

UCEC dataset. The findings revealed 1,132 upregulated genes and

3,839 downregulated genes in the endometrial carcinoma tissues

compared to the control group (Figures 2A, B). Intersection analysis

of differentially expressed genes with those associated with cellular

senescence identified a total of 104 DECSGs (Figure 2C).
3.2 Construction and analysis of cellular
senescence gene-related molecular
clusters for UCEC

Consensus clustering was conducted based on the expression of

DECSGs. As shown in the Figures 3A–C and Supplementary

Figure 1, the PAC algorithm determined the optimal number of

clusters to be k=2, yielding clusters denoted as C1 (n=229) and C2

(n=315). PCA affirmed the robust intergroup segregation between

cluster C2 and cluster C1 (Figure 3D). Subsequent differential

analysis of these subtypes identified 1,375 genes exhibiting

differential expression. GO enrichment analysis underscored the

significant involvement of these DEGs in pathways vital for nuclear

division, precise chromosome segregation, and cytoskeleton

functions (Figure 3E; Supplementary Table 3). Moreover, KEGG

pathway analysis delineated their predominant roles in cell cycle

regulation, motor proteins, cellular senescence, and protein

digestion and absorption processes (Figure 3F). GSEA further

elucidated that cluster C2 is significantly associated with pivotal

biological processes encompassing the cell cycle, focal adhesion,

pathways pertinent to cancer, spliceosome activity, and ubiquitin-

mediated proteolysis (Figure 3G).

Survival analysis between the clusters revealed that patients in

cluster C2 exhibit a shorter OS and PFS compared to those in

cluster C1 (Figures 3H, I). Analysis of the tumor microenvironment

indicated that cluster C2 demonstrates lower immune scores,

stromal scores, and ESTIMATE scores, alongside higher tumor
Frontiers in Immunology 06
purity (Figures 3J–M). Further exploration of the immune

landscapes among UCEC patients in the two clusters involved

calculating the relative proportions of immune cells using the

CIBERSORT algorithm. In comparison to cluster C1, cluster C2

exhibited significantly elevated levels of infiltration by follicular

helper T cells, M1 macrophages, M2 macrophages, and activated

dendritic cells, while levels of CD8 T cells and regulatory T cells

(Tregs) were diminished (Figure 4A).

The majority of immune checkpoint genes (CD274, SIGLEC15,

HAVCR2, TIGIT, LAG3, and PDCD1LG2) were highly expressed

in cluster C2, while CTLA4 and PDCD1 showed no significant

statistical difference between the two risk groups (Figure 4B).

Furthermore, the expression levels of most HLA-related genes

were significantly elevated in cluster C2, with the exception of

HLA-L, which demonstrated decreased expression (Figure 4C).
3.3 Screening of hub prognostic DEGs

In the WGCNA, a b value of 7 (R2 = 0.75) was chosen to

construct a scale-free network (Figures 5A–C), resulting in the

identification of 15 modules (Figure 5D). Among these, the

darkgreen, royal blue, and salmon modules exhibited the highest

correlation with endometrial carcinoma and were selected as hub

modules (Figure 5E). By intersecting the WGCNA results with

DECSGs, 40 critical genes were identified. Through univariate Cox

regression model analysis, 20 DECSGs that displayed prognostic

significance were singled out (Figure 6A). Further refinement was

conducted using machine learning algorithms to identify hub

prognostic DECSGs from these 20 genes, ensuring a more

focused selection of genes with significant prognostic value. The

XGBoost algorithm ultimately identified 7 central genes with a Gain

> 0.01 (Figure 6B). In the GMM regression analysis, after 220

iterations for 20 genes, the model with the highest accuracy

(AUC=0.99) was determined, comprising 8 key genes (Figure 6C).

In the SVM-RFE process, the classifier error was minimized when

the number of signatures was reduced to 6; thus, these 6 genes were

identified as central signatures (Figures 6E, F). The Random Forest

algorithm, by integrating multiple decision trees, ultimately

identified 12 genes with importance scores >1.0 as central features
A B C

FIGURE 2

(A, B) The heatmap and volcano plot of differential analysis. (C) Intersection map of cell senescence genes and differentially expressed genes.
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(Figures 6G, H). The intersection of these selected feature genes

identified CPEB1 and MYBL2 as hub prognostic DECSGs

(Figure 6D). Survival analyses from the Kaplan-Meier Plotter

database revealed a significant decrease in OS of patients with

endometrial carcinoma as the expression levels of CPEB1 and

MYBL2 increased (Figures 6I, J). Compared to the control group,
Frontiers in Immunology 07
the expression of MYBL2 was upregulated in endometrial

carcinoma, whereas CPEB1 expression was downregulated

(Figures 6K, L). ROC curve analysis showed the areas under the

curve (AUC) values for CPEB1 and MYBL2 are 0.979 and 0.974,

respectively, indicating excellent diagnostic value for UCEC

(Supplementary Figure 2).
A B C

D E F

G H I

J K L M

FIGURE 3

(A) Consensus clustering matrix when k = 2. (B) Relative alterations in CDF delta area curves. (C) Consensus CDF curves when k=2 to 9. (D) Three-
dimensional Principal Component Analysis delineating the segregation between Cluster C1 and Cluster C2. (E–G) GO term enrichment, KEGG
pathway analysis, and GSEA results in two clusters. (H, I) The difference in OS and PFS between the two clusters. (J–M) Differences in
ESTIMATEScore, immune scores, stromal scores, and tumor purity between the two clusters (*p<0.05; ***p<0.001).
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3.4 Development and validation of a novel
cellular senescence-related
prognostic model

After random division, the TCGA training set included 355

patients, while the testing set comprised 156 patients. Utilizing

CPEB1 and MYBL2, a risk model incorporating two hub gene risk

features was developed through LASSO Cox regression analysis in

the TCGA training set (Figures 7A, B). The risk score was calculated

as follows: Risk score = (0.1279 × expression of MYBL2) + (0.0879 ×

expression of CPEB1). UCEC patients were then categorized into

high-risk and low-risk groups based on the median risk score.

Figures 7C, F, I showed the distribution of risk scores and survival

times across the training cohort, testing cohort, and the entire

TCGA cohort. Survival analysis results demonstrated a positive

correlation between higher risk scores and increased mortality in
Frontiers in Immunology 08
the training cohort, test cohort, and the entire TCGA cohort.

According to Kaplan-Meier analysis, the overall survival of the

high-risk group was significantly shorter than that of the low-risk

group, indicating a worse prognosis for the high-risk group (Figures

7D, G, J). ROC curves demonstrated that the AUC for the 3-year

time-dependent ROC for the three cohorts were 0.624, 0.768, and

0.661, respectively, indicating that the prognostic model exhibits

good predictive performance (Figures 7E, H, K).
3.5 Evaluation of TME and drug sensitivity
between the two risk score groups

The results obtained from the ssGSEA algorithm revealed

distinctive immune infiltration patterns between the high-risk and

low-risk groups. Specifically, compared to the low-risk group, the
A

B

C

FIGURE 4

(A) The diagram of the difference in immune cell infiltration levels between the two clusters. (B, C) The different expression levels of immune
checkpoint genes and HLA-related genes in two clusters, respectively (*p < 0.05; **p < 0.01; ***p < 0.001).
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high-risk group exhibited a unique immune infiltration

pattern characterized by significantly lower abundance of most

tumor-infiltrating immune cells, except for natural killer cells

(Figure 8A). Regarding immune function activity, apart from

macrophages and parainflammation, most immune functions

were significantly higher in the low-risk group compared to the

high-risk group (Figure 8B).

Additionally, our differential analysis of IC50 values between

the groups revealed notable differences. Specifically, the IC50

values for Trametinib, PD0325901, Dactolisib, Docetaxel, and
Frontiers in Immunology 09
Camptothecin were substantially higher in the high-risk group

compared to the low-risk group (Figures 8C–G). This suggests

that patients with lower risk scores may derive enhanced benefits

from these drugs. Conversely, IC50 values for Vincristine, BI-2536,

BMS-754807, Bortezomib, and Daporinad were found to be lower

in the high-risk group (Figures 8H–L), indicating that these drugs

might be particularly effective for patients classified as high risk.

These insights highlight the importance of risk stratification in

tailoring chemotherapeutic strategies to individual patient profiles,

potentially optimizing treatment outcomes.
A B

C D

E

FIGURE 5

WGCNA results. (A) The scale-free fit index for various soft-thresholding powers (b) and the mean connectivity for various soft-thresholding powers.
(B) Histogram of connectivity distribution and the scale-free topology when b=7. (C) Dendrogram of genes clustered via the dissimilarity measure.
(D) Heatmap of the correlation between module and clinical traits. (E) Bar plot of gene significance across WGCNA modules.
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3.6 Correlation of risk scores with clinical
information, cellular senescence-related
subtypes and immune checkpoints

We conducted a comparison of risk score levels across clinical

stages and grades in patients. In the TCGA-UCEC dataset, we

observed that higher grades were associated with higher risk scores

(Figure 9A). Regarding clinical stages, risk scores for patients in

stages II, III, and IV were significantly higher than those in stage I.

However, there were no statistical differences in risk scores between

stages II, III, and IV (Figure 9B). Subsequently, we explored the

correlation between the expression levels of immune checkpoint

genes and prognostic risk scores. Notably, there was a significant

difference in risk scores between the two subtypes established

through cellular senescence genes (Figure 9C). As illustrated in

Figure 9D, the expression of most immune checkpoint genes, except

for CTLA4, was positively correlated with risk scores. An alluvial

diagram illustrated the variations in cellular senescence-related

clusters, risk scores, and life states (Figure 9E).
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3.7 Verification of the expression of CPEB1
and MYBL2

We conducted further analysis to assess the relative mRNA and

protein expression levels of the hub genes CPEB1 and MYBL2 in

clinical samples. PCR results indicated that at the transcriptomic level,

the relative mRNA expression of MYBL2 was significantly higher in

UCEC compared to normal tissue (Figure 10A), while the relative

expression of CPEB1 was significantly down-regulated in UCEC

(Figure 10B). Results from WB analyses (Figures 10C, D) and

immunofluorescence staining (Figures 10E, F) corroborated these

findings, demonstrating that the protein expression levels of the two

hub genes were consistent with the RT-qPCR results (Figures 9A–D).
4 Discussion

Uterine corpus endometrial carcinoma has been demonstrated

to exhibit high levels of heterogeneity (31). The tumor
A B C D

E F G H

I J K L

FIGURE 6

(A) Univariate COX analysis shows 20 genes associated with overall survival. (B) Screening of diagnostic biomarkers based on XGBoost algorithm
(n=7). (C) Variable selection in GMM model (n=8); (D) Venn diagram of four machine learning results. (E, F) Through SVF- RFE algorithm selects the
best biomarkers (n=6). (G, H) Important features selected by random forest algorithm (n=12). (I, J) K-M curves of CPEB1 and MYBL2 in UCEC.
(K, L) Violin plot show the expression levels of CPEB1 and MYBL2 in TCGA-UCEC cohort(***p < 0.001).
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microenvironment, comprising malignant, immune, endothelial,

and stromal components (32), plays a pivotal role in the

progression of the cancer and its sensitivity to therapeutic agents

(33). The molecular attributes of endometrial cancer cells,

along with the composition and dynamics of the tumor

microenvironment, significantly influence these processes.
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The widespread utilization of genomic sequencing has

generated a plethora of biological data, offering enhanced

diagnostic and prognostic capabil i t ies across various

malignancies. In recent years, researchers have developed diverse

prognostic models utilizing gene expression profiles sourced from

databases, employing a range of bioinformatics analysis
A B

C D E

F G H

I J K

FIGURE 7

Construction and validation of the risk score model. (A, B) Constructed a prognostic model in the TCGA-train cohort through LASSO COX
regression analysis. (C, F, I) Risk scores distribution and survival status of each patient in the TCGA-train cohort, TCGA-train cohort, and all-TCGA
cohort, respectively. (D, G, J) Kaplan–Meier curves for the OS of the two subtypes in the TCGA-train cohort, TCGA-train cohort, and all-TCGA
cohort, respectively. (E, H, K) ROC curves illustrated the predictive efficacy of the risk score for 1-, 3-, and 5-year survival in the TCGA-train cohort,
TCGA-train cohort, and all-TCGA cohort, respectively.
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methodologies. These models have provided valuable insights into

guiding personalized treatment strategies for UCEC (34, 35).

Cellular senescence plays a crucial role in maintaining tissue

stability, internal equilibrium, and serves as a natural mechanism to

prevent cancer. However, under certain conditions, it can also

promote tumor development (36). It has been closely associated

with the onset and progression of various diseases and serves as an

effective means of stratifying cancer patients (37).

Previous studies have investigated the association between

cellular senescence and endometrial cancer. Gao et al. (38)

conducted a bioinformatics study focusing on the role of cell

senescence-related genes in UCEC and made significant progress.

However, their study has certain limitations. Primarily, although

they utilized various datasets from TCGA-UCEC and GEO to

expand the sample size for analysis, it’s worth noting that

GSE119041 dataset includes cases of undifferentiated uterine

sarcoma. UCEC encompasses pure endometrioid cancer as well as

carcinomas with high-risk endometrial histology, including

sarcoma. Sarcomas represent uncommon subtypes with a

generally poorer prognosis, and the TCGA-UCEC dataset

comprises only a l imited number of sarcoma cases .

Incorporating data from GSE119041 into the analysis may lead to

unreliable conclusions.

In our study, all samples were sourced from TCGA-UCEC,

avoiding heterogeneity between diseases and samples, as well as

batch effects stemming from different datasets. Unlike previous
Frontiers in Immunology 12
approaches that solely relied on LASSO regression to select feature

genes, we employed a stepwise selection process for UCEC feature

genes using methods such as WGCNA, Cox regression, and

machine learning. Our findings hold promise as diagnostic and

prognostic markers for UCEC. WGCNA facilitated the

identification of co-expression gene modules in cancer samples,

offering a refined and systematic perspective on understanding the

molecular mechanisms of cancer by establishing network

relationships between genes. Furthermore, the utilization of

machine learning, especially in managing and analyzing large

biomedical datasets, significantly enhanced the accuracy of

analysis and the performance of predictive models. Leveraging

these advanced algorithms allowed for the more precise

identification of genes closely associated with UCEC. Lastly, we

conducted multidimensional experimental validations including

PCR, WB, and IF, thereby further confirming the abnormal

expression of hub genes. Our study results yielded divergent

findings from Gao et al., expanding the realm of research on cell

senescence genes and their implications in endometrial cancer.

In this study, we conducted an in-depth exploration of the

relationship between UCEC and cellular senescence genes. Utilizing

104 differentially expressed cellular senescence genes, we performed

a consensus clustering analysis, ultimately categorizing UCEC into

two clusters. We observed significant differences between clusters

C1 and C2 in terms of biological functions, prognostic outcomes,

tumor microenvironment, immune cell infiltration, immune
A B

C D E F G

H I J K L

FIGURE 8

The differences of immune infiltrating cells (A) and immune function (B) between high- and low- risk groups. (C–L) Chemotherapy and
immunotherapy sensitivity prediction between the low-risk and the high-risk groups (*p < 0.05; **p < 0.01; ***p < 0.001).
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checkpoints, and HLA gene expression. This underscores the

presence of substantial tumor heterogeneity within UCEC. The

KEGG results indicated that the differentially expressed genes in

clusters C1 and C2 were primarily implicated in the cellular

senescence pathway, highlighting the pivotal role of cellular

senescence genes in UCEC. Furthermore, both KEGG and GSEA

analyses indicated the activation of the cell cycle pathway.

In cluster C2, we speculated that aberrant expression of cellular

senescence genes may enable damaged or potentially malignant

cells to evade senescence defenses and enter a state of uncontrolled

proliferation. This not only disrupted crucial cell cycle checkpoints

but may also impact the expression and activity of cyclin-dependent

kinases (CDKs) and cyclins, as well as their inhibitors, thereby

enhancing tumor cells’ ability to override growth inhibitory signals.

This propensity for unbridled proliferation facilitated the rapid

expansion of cluster C2 tumor cells, exacerbating genomic

instability and promoting the survival and division of DNA-

damaged cells. Consequently, this promoted the malignant

transformation of the C2 cluster, ultimately resulting in

poor prognosis.

In the tumor microenvironment of cluster C2, we noted a

higher tumor purity alongside a lower immune score.

Furthermore, most of the HLA class I and class II molecules in

cluster C2 were found to be upregulated. HLA class I molecules

typically present endogenous antigens to CD8+ T cells, while HLA
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class II molecules present exogenous antigens to CD4+ T cells (39).

Generally, increased expression of HLA molecules should facilitate

more effective T-cell-mediated immune responses, thereby

enhancing the recognition and elimination of tumor cells,

ultimately improving patients’ prognosis (40). However, the

results from CIBERSORT analysis revealed a decrease in the

infiltration levels of CD8 T cells and regulatory T cells in cluster

C2, with no significant difference observed in CD4 T cells.

Conversely, the proportion of follicular helper T cells, M1

macrophages, and activated dendritic cells was found to increase.

Follicular helper T cells, primarily found in secondary lymphoid

tissues, play a pivotal role in facilitating B cells interactions, thereby

promoting antibody production and the formation of memory B

cells (41). M1 macrophages represent an activated state of

macrophages that bolster immune responses by eliminating

tumor cells and pathogens (42). Activated dendritic cells capture

and present antigens, thereby initiating immune responses in T cells

and B cells (43). In cluster C2, combined with the upregulation of

most immune checkpoint genes, these immune checkpoint

molecules, typically expressed on the surface of immune cells,

possessed the capacity to inhibit the activation and proliferation

of T cells, fostering a tumor-promoting environment conducive to

immune evasion (44). We speculated that despite adequate antigen

presentation in cluster C2, the predominant influence of immune

checkpoint molecules in UCEC progression renders related T cell
A B C

D E

FIGURE 9

(A–C) The difference in risk scores between pathologic grades, clinical stages, and the two subtypes. (D) Correlation between the expression levels
of immune checkpoint genes and risk score. (E) Alluvial diagram of subtype distributions and prognosis of UCEC patients. *, means p-values less
than 0.05.
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activation ineffective. Moreover, under the influence of abnormally

high expression of immune checkpoint molecules, although

follicular helper T cells and M1 macrophages showed an

increased proportion, their functionality may be compromised by

the immunosuppressive environment, thus limiting their anti-

tumor activity. Consequently, the anti-tumor immune response in

cluster C2 appeared weakened, thereby facilitating tumor growth

and dissemination. This underscored the potential utility of

immune checkpoint inhibitors in patients within Cluster C2, as
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these therapeutic agents may help restore the anti-tumor immune

response and impede tumor progression.

In summary, the observed upregulation of HLA genes in cluster

C2, combined with the decrease in CD8+ T cells and Treg levels,

alongside the heightened expression of immune checkpoint genes,

revealed a complex immune regulatory network. While

theoretically, this network should enhance anti-tumor immune

responses, it may inadvertently lead to immune suppression due

to tumor cells’ strategies for immune evasion. This phenomenon
A B

C

D

E

F

FIGURE 10

The expression levels of 2 hub genes in UCEC tissues and normal tissues were validated by RT-qPCR, WB, and immunofluorescence. (A, B) RT-
qPCR. (C, D) WB assay. (E, F) immunofluorescence. *, and ***, means p-values less than 0.05, and 0.001, respectively.
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underscored the importance of emphasizing the value of immune

checkpoint inhibitors in exploring immune-based therapeutic

strategies for UCEC, aiming to circumvent these inhibitory

mechanisms within the tumor microenvironment.

Through the application of WGCNA and Cox regression

analysis, in conjunction with a series of advanced machine

learning algorithms, we successfully identified CPEB1 and

MYBL2 and developed a prognostic risk model. Internal

validation results indicated that patients with high-risk scores

exhibited significantly worse OS across the training cohort, testing

cohort, and the entire TCGA cohort. Furthermore, we observed

significant variations in risk scores across two clusters, clinical

stages, and grades. These findings suggested that the prognostic

risk model holds substantial clinical value in identifying high-

risk patients.

MYBL2, a member of the MYB transcription factor family,

plays a crucial role in regulating the cell cycle, particularly during

DNA replication and mitosis. As a central regulator in

tumorigenesis, MYBL2 is involved in the proliferation, apoptosis,

and differentiation of cancer cells. Elevated expression of MYBL2 in

various tumors is often associated with poor prognosis (45, 46),

rendering it a potential therapeutic target in cancer treatment. As a

prognostic indicator of unfavorable outcomes in osteosarcoma and

a universal marker for immune infiltration across various cancers,

MYBL2 exerts regulatory control over proliferation, tumor

advancement, and immune cell infiltration within osteosarcoma

and broader cancer contexts (47). In clear cell renal carcinoma,

MYBL2 promotes malignant characteristics and impedes apoptosis

through activation of the hedgehog signaling pathway (48). Within

gastric cancer, MYBL2 modulates DNA damage via UBEC2

activation, thereby promoting tumor progression and resistance

to cisplatin therapy (49). In ovarian cancer, the MYBL2-CCL2 axis

promotes tumor progression and confers resistance to PD-1 therapy

by inducing immunosuppressive macrophages (50). In colorectal

cancer, MYBL2 expedites cancer progression through an interactive

feed-forward activation with E2F2 (51). In our investigation, we

observed upregulated expression of MYBL2 in UCEC tissues, thus

suggesting its potential utility as a prognostic marker for

this malignancy.

CPEB1, also known as Cytoplasmic Polyadenylation Element

Binding Protein 1, exerts influence over the stability and translation

of its target mRNA molecules, significantly impacting fundamental

cellular processes such as growth, differentiation, and apoptosis

(52). The expression and function of CPEB1 have garnered

considerable attention due to its diverse expression patterns and

roles across various types of cancer (53). Research into colorectal

cancer metastasis has revealed a novel tumor-suppressive role for

CPEB1. High methylation of the CPEB1 promoter, restricting

chromatin accessibility and transcription factor binding,

diminishes its expression, thereby influencing colorectal cancer

progression (54). Additionally, studies have demonstrated that

CPEB1 can directly target SIRT1, suppressing its translation and

mediating cancer stemness in vitro and in vivo, suggesting its

potential as a therapeutic target in hepatocellular carcinoma

(HCC) (55). Overall, recent research has increasingly recognized
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the multifaceted role of CPEB1 in cellular processes and its impact

on various cancers. Currently, there is a lack of research on CPEB1

in the context of endometrial cancer in the existing literature. Our

analysis revealed downregulation of CPEB1 expression in

endometrial cancer, a finding supported by PCR, WB, and IF

assays. While we are the first to report its association with

endometrial cancer, further experimental investigations are

warranted to fully elucidate the underlying mechanisms.

Carboplatin, in combination with paclitaxel, has emerged as the

frontline chemotherapy regimen for endometrial cancer (56).

Nonetheless, substantial variability exists among patients in their

responses to chemotherapy. Through drug sensitivity analysis, we

have identified several drugs that hold promise for UCEC

treatment. Significant differences in IC50 values of these drugs

observed between distinct risk groups indicate the substantial

predictive capacity of our model in predicting drug responses

among patients with endometrial cancer.

Immunotherapy, particularly checkpoint inhibitors, has

demonstrated high efficacy and generally favorable safety and

tolerability profiles. In several clinical trials, checkpoint inhibitors

have shown substantial therapeutic effects in patients with recurrent

endometrial cancer, especially in those unresponsive to

chemotherapy (57). Moreover, studies indicate that the use of

checkpoint inhibitors can significantly enhance long-term survival

rates in endometrial cancer patients characterized by specific

molecular markers (58). Currently, immunotherapy drugs are

increasingly being incorporated into the clinical management of

endometrial cancer. PD-1 inhibitors, such as pembrolizumab and

dostarlimab, have shown efficacy in treating unresectable or

metastatic solid tumors with MSI-H or dMMR status.

Concurrently, PD-L1 inhibitors, including atezolizumab and

avelumab, are under evaluation in clinical trials for their potential

in endometrial cancer therapy. Combination therapy, such as

pembrolizumab combined with multikinase inhibitors like

lenvatinib, is being utilized for endometrial cancer patients

experiencing disease progression after prior systemic therapy.

Moreover, CTLA-4 inhibitors like ipilimumab are being

investigated in combination with PD-1 inhibitors to assess their

efficacy in endometrial cancer treatment (59). The advent of

immune checkpoint inhibitors (ICIs) has significantly

transformed the therapeutic landscape for endometrial cancer,

highlighting the substantial immune heterogeneity within UCEC

(60). Additionally, a recent review revealed that the addition ICIs to

chemotherapy can improve PFS in the overall population compared

to chemotherapy alone (61). New treatment guidelines are also

being formulated to explore the use of immune checkpoint

inhibitors across the four molecular categories of endometrial

cancer and their potential prognostic effects (62). However, not

all endometrial cancer patients respond favorably to checkpoint

inhibitors, particularly those with microsatellite stable (MSS)

tumors or low tumor mutational burden (63). Additionally, the

high costs and potential toxicities associated with these therapies

limit their accessibility to all UCEC patients. Our analysis unveiled

that cluster C2 exhibits elevated levels of immune checkpoint genes

and a positive correlation between risk scores and immune
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checkpoint expression, suggesting that patients in the high-risk

group may derive greater benefits from treatment with immune

checkpoint inhibitors.

Our advanced bioinformatics analyses, based on a prognostic

model centered on cellular senescence genes, provide novel

perspectives on UCEC and present opportunities for personalized

immune therapies to advance treatment strategies. Nevertheless,

our study is not without limitations. Firstly, its retrospective nature

and reliance on bioinformatics methodologies underscore the need

for further investigations with larger patient cohorts to enhance the

generalizability of the results. Additionally, while we validated the

dysregulated expression of hub genes at the transcriptomic and

proteomic levels, understanding their biological functions and

interactions within the tumor microenvironment, particularly

with regard to immune checkpoints, necessitates additional

experimental exploration.

In summary, our diverse bioinformatics analyses based on

senescence-associated genes have unveiled two distinct molecular

subtypes of UCEC exhibiting significantly different tumor

microenvironments and prognoses. Moreover, the prognostic risk

model we established has demonstrated remarkable efficacy in

predicting the prognosis and responsiveness to chemotherapy

among UCEC patients, indicating its potential clinical applicability.
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