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The levels of circulating
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Background: Neuromyelitis optica spectrum disorder (NMOSD) is an

inflammatory autoimmune disease affecting the central nervous system (CNS).

NMOSD pathogenesis involves systemic inflammation. However, a causal

relationship between circulating cytokine levels and NMOSD remains unclear.

Methods: Mendelian randomization (MR) approaches were used to investigate

the potential association between genetically determined circulating 19

inflammatory cytokines and 12 chemokines levels and the risk of

developing NMOSD.

Results: After Bonferroni correction, the risk of aquaporin 4-antibody (AQP4-

ab)-positive NMOSDwas suggested to be causally associated with the circulating

levels of three cytokines, including interleukin (IL)-4 [odds ratio (OR): 11.01, 95%

confidence interval (CI): 1.16–104.56, P = 0.037], IL-24 (OR: 161.37; 95% CI:

2.46–10569.21, P = 0.017), and C-C motif chemokine 19 (CCL19) (OR: 6.87, 95%

CI: 1.78–26.93, P = 0.006).

Conclusion: These findings suggest that a genetic predisposition to higher levels

of IL-4, IL-24, and CCL19 may exert a causal effect on the risk of AQP4-ab-

positive NMOSD. Further studies are warranted to clarify how these cytokines

affect the development of AQP4-ab-positive NMOSD.
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1 Introduction

Neuromyelitis optica spectrum disorder (NMOSD) is a chronic

autoimmune inflammatory disease that affects the central nervous

system (CNS) and is characterized by recurrent episodes of optic

neuritis and transverse myelitis (1). Serum aquaporin 4-antibody

(AQP4-ab) is positive in more than 80% of patients with NMOSD,

referred to as AQP4-ab-positive NMOSD (2). Patients without

AQP4-ab are considered AQP4-ab-negative NMOSD (3).

The etiology of NMOSD remains elusive. Multiple risk factors,

includinghuman leukocyte antigengeneticpredispositionand infection,

may play pivotal roles in susceptibility to NMOSD (4–6). Numerous

studies have suggested that systemic inflammatory factors, such as

elevated cytokine and chemokine levels, may participate in CNS

demyelinating lesions in NMOSD and may serve as therapeutic

targets (7, 8). Cytokines are low-molecular weight proteins that

regulate immune and inflammatory responses. Cytokines have been

found to play a vital role in the regulation of neuroinflammatory

responses by recruiting and activating different cell types (9). A review

reported higher serum concentrations of interleukin-4 (IL-4), IL-6, IL-

17A, IL-21, IL-23, IL-32, interferon-gamma (IFN-g), and tumornecrosis

factor-alpha (TNF-a) in patients with NMOSD than in controls (7).

Elevated levels of serumchemokines, suchasmonocyte chemoattractant

protein-1 and monocyte chemoattractant protein-4, were observed in

patients with NMOSD (10). Furthermore, IL-6 receptor (IL-6R)-

blocking therapy has demonstrated efficacy in reducing the annualized

relapse rate in patients with NMOSD (11). IFN-g and IL-17A are

potential therapeutic targets for NMOSD (12). However, the

associations between the levels of several cytokines and the risk of

NMOSD remain elusive.

Mendelian randomization (MR) analysis is a useful statistical

framework for assessing causality between exposures and outcomes

by utilizing genetic variants as instrumental variables (IVs) (13).

Considering that genetic variants are fixed and allocated randomly

during conception and that alleles are not influenced by

environmental or lifestyle factors, this method can minimize the

effects of confounding factors and reverse causation (13). Thus, MR

may offer more robust evidence of causal effects (14). Recently, a

genome-wide association study (GWAS) meta-analysis evaluated

the genetic basis of multiple circulating cytokines (15), which

provides an opportunity to investigate their correlations with

NMOSD. Using a two-sample MR method, we comprehensively

assessed the plausible causal relationships between circulating

cytokine levels and susceptibility to NMOSD.
2 Methods

2.1 Data source and study design

This MR study was based on publicly available GWAS

databases and no additional ethical approval was needed.

Detailed information on the exposure and outcome traits are

presented in Supplementary Table 1. Nineteen inflammatory
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cytokines and 12 chemokines were chosen as exposures from the

largest and most recent GWAS comprising 14, 828 European

individuals to date (15). Summary-level data for NMOSD patients

were extracted from a shared dataset (6). A total of 215 patients with

NMOSD were recruited from the European population, including

132 AQP4-ab-positive patients, 83 AQP4-ab-negative patients, and

1244 healthy participants. These datasets are available upon request.
2.2 Instrument variable selection

First, the relevance assumption was satisfied, as all single

nucleotide polymorphisms (SNPs) achieved genome-wide

significance. A lenient significance threshold (P < 5× 10−6) was

adopted to select instrumental variables (IVs). Second, the

independence assumption was confirmed, as IVs exhibited no

correlation with other confounding factors. Third, in addition to

exposure factors, IVs did not influence outcomes through

alternative pathways (16). The graphical concept of the MR

design is shown in Figure 1.
2.3 Statistical analyses

The selected genetic variants as instruments were strongly

associated with exposure (P < 5 × 10−6) and independent [linkage

disequilibrium (LD) r2 < 0.001], and the datasets were harmonized

in accordance with a prior methodology (17). The F-statistic was

computed to assess the robustness of the IVs (F-statistic > 10) (18).

The variation explained by the individual genetic instrument was

R2, which was calculated using the formula R2¼  ðbeta�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�MAF(1 −MAF))
p 2. The effect of the genetic variant on each

cytokine is beta, and the minor allele frequency is the MAF (19).

Depending on the number of selected genetic instruments in the

primary MR analysis, the Wald ratio or inverse-variance weighted

fixed methods were used to estimate causal effects.

Sensitivity analyses were performed to ensure the robustness of

the primary MR findings. We removed from the initial set of

instruments for which we found biological or statistical evidence of

pleiotropy. Potential directional pleiotropy was evaluated using the

MR-Egger regression intercept and MRPRESSO global test (20, 21).

Leave-one-out (LOO) was conducted to detect horizontal pleiotropy

(22). Funnel and scatter plots were constructed to visually inspect

symmetry and effect estimates. In addition, we used Cochrane Q

statistics to evaluate heterogeneity, and a P-value < 0.05 was

considered to indicate heterogeneity.

Bonferroni correction was employed to correct for multiple

testing and to establish statistical significance at a P-value < 1.56 ×

10−3 (0.05/31), considering the number of cytokines. P-values

within the range of 1.56 × 10−3 to 0.05 were interpreted as

indicative of potential causal associations (23). All the statistical

analyses were performed using R software (v.4.1.1). MR analyses

were conducted using the TwoSampleMR (v.0.5.6) and Mendelian

randomization (v.0.5.1) R packages (24, 25).
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3 Results

First, for AQP4-ab-positive NMOSD, SNPs with P < 5 × 10−8

were selected and clumped at LD r2 = 0.001, and nine cytokines,

including IL-6, IL-8, IL-10, IL-12b, IL-18, CCL4, CCL19, CXCL5,
CXCL6, and CXCL9, were selected for more than one SNP as IVs

(Supplementary Table 2). In addition, only two cytokines (IL-6 and

IL-12b) included more than three SNPs for AQP4-ab-positive

NMOSD. For AQP4-ab-negative NMOSD, at the P < 5 × 10−8

threshold, nine cytokines, including IL-6, IL-8, IL-10, IL-12b, IL-18,
CCL19, CXCL5, CXCL6, and CXCL9, had more than one SNP as an

IV, and three cytokines (IL-6, IL-12b, and CXCL5) had more than

three SNPs as IVs (Supplementary Table 3). Considering the limited

number of SNPs, a liberalizing threshold of a P-value of 5 × 10−6

was adopted to select IVs.

By applying these selection criteria (r2 < 0.001, P < 5 × 10−6),

we identified 338 SNPs associated with 31 cytokines for AQP4-ab-

positive and AQP4-ab-negative NMOSD patients. The F-statistic of

individual variants ranged from 20.83 to 1010.97 for AQP4-ab-

positive NMOSD patients and from 20.84 to 1010.97 for AQP4-ab-

negative NMOSD patients. Instruments for each cytokine explained

the proportional variance from 0.2% to 7.9% for AQP4-ab-positive

NMOSD, and from 0.1% to 7.6% for AQP4-ab-negative NMOSD.

The results of the IVW method regarding the associations between

the 31 cytokines and AQP4-ab-positive and AQP4-ab-negative

NMOSD patients are illustrated in Figures 2A, B. Following

Bonferroni correction, only two inflammatory cytokines (IL-4 and

IL-24) and one chemokine (CCL19) exhibited suggestive
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associations with the risk of AQP4-ab-positive NMOSD.

Summary data for the genetic variants associated with IL-4, IL-24,

and CCL19 are presented in Supplementary Table 4.

The IVWmethod provided suggestive evidence that an elevated

IL-4 level was associated with an increased risk of NMOSD [odds

ratio (OR): 11.01, 95% confidence interval (CI): 1.16–104.56, P =

0.037]. Furthermore, our findings suggested an association between

a genetically determined higher circulating level of IL-24 and an

increased risk of AQP4-ab-NMOSD using the Wald ratio method

(OR: 1.10, 95% CI: 1.03–1.17, P = 0.005). Sensitivity analysis and the

GWAS Catalog did not indicate documented pleiotropy of

genetic variants.

Among the 12 chemokines, we observed suggestive evidence

that circulating levels of CCL19 were positively associated with

AQP4-ab-positive NMOSD risk (OR: 6.87, 95% CI: 1.75–26.93,

P = 0.006). Sensitivity analyses revealed consistent trends

(OR: 15.45, 95% CI: 1.20–199.40, P = 0.099 by simple mode

method; OR: 6.68, 95% CI: 1.15–38.71, P = 0.034 by weighted

median method). No heterogeneity was observed according to

Cochran’s Q test. No evidence of SNPs disproportionally affecting

MR estimates was detected by single-SNP or LOO analysis

(data not shown).
4 Discussion

A potential connection between cytokines and the development

of NMOSD has been suggested by previous observational studies.
FIGURE 1

Overall design of the present study. GWAS, genome-wide association study; MRPRESSO, MR pleiotropy residual sum and outlier test; NMOSD,
neuromyelitis optica spectrum disorder.
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However, the influence of confounding factors and reverse

causation can undermine reliability of these observational studies.

In this study, we assessed a possible causal relationship between

circulating levels of 31 cytokines and the risk of NMOSD using an

MR design, which is a method that probe potential causality on the

effect of exposures on outcomes by leveraging genetic information.

Our findings provide suggestive evidence that genetically predicted

circulating levels of T helper 2 cell (Th2)-type inflammatory

cytokines (IL-4 and IL-24) and CCL19 are linked to susceptibility

to AQP4-ab-positive NMOSD, revealing the involvement of the

Th2 response in the development of AQP4-ab-positive NMOSD.

Th2 predominance may be involved in the pathogenesis of

NMOSD (26). IL-4, a pleiotropic cytokine, is responsible for the

polarization of Th2 (27). IL-4 also serves as a B-cell stimulating

factor that induces the differentiation of B cells (28). In asthmatic

animals, IL-4 leads to a systemic inflammatory response in

peripheral blood neutrophils by increasing the production of

proinflammatory IL-8 and TNF-a (29). Anti-IL-4 monoclonal

antibodies reduce the severity of experimental autoimmune

myocarditis (30). In contrast, IL-4 exerts an anti-inflammatory

effect that suppresses the development multiple sclerosis in mouse
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models (31, 32). These data suggest that IL-4 may play a dual role in

autoimmune diseases. Elevated serum IL-4 levels were observed in

patients with NMOSD (33). Further comprehensive experimental

studies are needed to elucidate the role of IL-4 in NMOSD.

IL-24 belongs to the IL-20 subfamily of cytokines and is a

member of the IL-10 cytokine family (34). IL-24 is primarily

produced by Th2 cells and is classified as a Th2-type cytokine

(35). Transcription factors, such as signal transducer and activator

of transcription 6 STAT6 and GATA-binding protein 3, are

presumed to regulate IL-24 expression (36). IL-24 can regulate

various types of immune cells, including T cells (37), B cells (38),

and natural killer cells (39). Increased levels of IL-24 are associated

with chronic autoimmune diseases, such as psoriasis (40),

rheumatoid arthritis (41), and inflammatory bowel disease (42).

However, the role of IL-24 in NMOSD has not been reported.

The chemokine CCL19, alternatively referred to as macrophage

inflammatory protein-3 or EBV-induced molecule 1 ligand, is

predominantly synthesized in lymphoid tissues (43, 44).

The receptor of CCL19 is C-C motif chemokine receptor 7,

which is expressed on mature dendritic cells, B cells, naïve T cells,

and central memory T cells (45). In allergic diseases, CCL19
A B

FIGURE 2

Forest plot of the Mendelian randomization analyses for the associations between circulating cytokine levels and the risk of neuromyelitis optica
spectrum disorder. Forest plot of the MR results for the relationships between circulating cytokines and the risk of AQP4-ab-positive NMOSD (A) and
AQP4-ab-negative NMOSD (B). No., number; OR, odds ratio; CI, confidence interval; IL-1a, interleukin-1a; IL-2, interleukin-2; IL-2Rb, interleukin-2
receptor b; IL-4, interleukin-4; IL-6, interleukin-6; IL-7, interleukin-7; IL-8. interleukin-8; IL-10, interleukin-10; IL-10Ra, interleukin-10 receptor a;
IL-10Rb, interleukin-10 receptor b; IL-12b, interleukin-12b; IL-13, interleukin-13; IL-17A, interleukin-17A; IL-18, interleukin-18; IL-20, interleukin-20; IL-24,
interleukin-24; IL-33, interleukin-33; IFN-g, interferon-gamma; TGF-b, transforming growth factor b; CCL4, C-C motif chemokine 4; CCL19, C-C motif
chemokine 19; CCL20, C-C motif chemokine 20; CCL23, C-C motif chemokine 23; CCL25, C-C motif chemokine 25; CCL28, C-C motif chemokine 28;
CXCL1, C-X-C motif chemokine 1; CXCL5, C-X-C motif chemokine 5; CXCL6, C-X-C motif chemokine 6; CXCL9, C-X-C motif chemokine 9; CXCL10,
C-X-C motif chemokine 10; CXCL11, C-X-C motif chemokine 11; SNPs, single nucleotide polymorphisms.
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facilitates Th2 differentiation and contributes to allergic airway

inflammation (46). A previous study demonstrated elevated CCL19

levels in the cerebrospinal fluid of patients with NMOSD during the

relapse phase (47). Nevertheless, further investigation is warranted

to elucidate the role of CCL19 in NMOSD.

However, this study had several limitations. First, all the

participants included in our study were of European ancestry,

which may limit the generalizability of our findings to other racial

groups. Second, a relaxed significance threshold of P < 5 × 10−6 was

applied to select IVs, which may cause false-positive variants and

bias. However, the F-statistics of the IVs were all > 10, indicating a

reduced probability of weak instrument bias. Similarly, the same

significance threshold (P < 5 × 10−6) was adopted by several other

studies that explored the correlations between cytokine levels and

Alzheimer’s disease (48), ALS (49), and cognitive decline (50).

Third, although we attempted to identify potential secondary

phenotypes of IVs using the GWAS catalog, pleiotropy cannot be

completely ruled out. Fourth, MR results indicated that none of the

cytokines exhibited a statistically significant association with the

risk of NMOSD. After Bonferroni correction, only three of these

cytokines (IL-4, IL-24, and CCL19) showed suggestive associations.

Moreover, we were only able to access the GWAS dataset for

NMOSD, which included 215 patients with NMOSD, consisting

of 132 AQP4-ab-positive patients and 83 AQP4-ab-negative

patients. Given the low incidence of NMOSD in European

countries, the number of enrolled patients was relatively low. As a

result, the potential association between these cytokines and

NMOSD risk requires further validation using GWAS datasets

with larger cohorts. Finally, although these included cytokines

may not directly contribute to the risk of NMOSD, they can affect

disease progression or survival. For instance, inhibition of IL-6R

activity effectively prevents NMOSD relapse (11). However, this

association was not addressed in our MR analysis. Therefore,

further studies are needed to ascertain whether cytokines play a

role in exacerbating or ameliorating NMOSD.
5 Conclusion

Our MR study supported the suggestive causal associations

between the circulating levels of three cytokines (IL-4, IL-24, and

CCL19) and an increased risk of AQP4-ab-positive NMOSD.

Further researches are necessary to validate these findings and

determine whether they could be potential therapeutic targets.
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