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renal transplantation
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Renal transplantation is a life-saving treatment for patients with end-stage renal

disease. However, the challenge of transplant rejection and the complications

associated with immunosuppressants necessitates a deeper understanding of

the underlying immune mechanisms. T cell exhaustion, a state characterized by

impaired effector functions and sustained expression of inhibitory receptors,

plays a dual role in renal transplantation. While moderate T cell exhaustion can

aid in graft acceptance by regulating alloreactive T cell responses, excessive

exhaustion may impair the recipient’s ability to control viral infections and

tumors, posing significant health risks. Moreover, drugs targeting T cell

exhaustion to promote graft tolerance and using immune checkpoint inhibitors

for cancer treatment in transplant recipients are areas deserving of further

attention and research. This review aims to provide a comprehensive

understanding of the changes in T cell exhaustion levels after renal

transplantation and their implications for graft survival and patient outcomes.

We discuss the molecular mechanisms underlying T cell exhaustion, the role of

specific exhaustion markers, the potential impact of immunosuppressive

therapies, and the pharmaceutical intervention on T cell exhaustion levels.

Additionally, we demonstrate the potential to modulate T cell exhaustion

favorably, enhancing graft survival. Future research should focus on the

distinctions of T cell exhaustion across different immune states and subsets, as

well as the interactions between exhausted T cells and other immune cells.

Understanding these dynamics is crucial for optimizing transplant outcomes and

ensuring long-term graft survival while maintaining immune competence.
KEYWORDS
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Introduction

Renal transplantation is the preferred treatment option for end-stage renal disease

(ESRD), offering improved quality of life and survival compared to dialysis (1). However,

rejection remains a formidable challenge to the long-term success of renal transplants,

compounded by the complications arising from the use of immunosuppressants, such as
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infections and tumors (2). Despite the immunosuppression, T cells

remain the central reactive entity against infections and tumors,

underscoring the importance of investigating the functional status

of T cells in this context (3). Rejection episodes in kidney

transplants are characterized by the infiltration of immune cells

into the kidney, with two main types being identified: T cell-

mediated rejection (TCMR) and antibody-mediated rejection

(ABMR) (4). T cells can recognize alloantigens via two distinct

pathways: the direct pathway, where T cells recognize intact

allogeneic major histocompatibility complex (MHC) molecules on

donor cells, and the indirect pathway, where T cells recognize donor

MHC peptides processed and presented by recipient antigen-

presenting cells (APCs) (5). Chronic rejection is hypothesized to

occur after donor dendritic cells (DCs) are replaced by recipient

DCs within the allograft, primarily through the indirect pathway

(6). During chronic rejection, although direct killing of the graft by

T cells is rare, T helper cells and regulatory T cells can contribute to

graft damage and immune conditions by secreting cytokines and

soluble mediators (7).

T cell exhaustion arises during persistent antigen exposure,

characterized by the progressive loss of effector functions

(diminished proliferation, cytokine production, and cytotoxic

capabilities), sustained expression of inhibitory receptors,

dysregulation of metabolism, and a distinct transcriptional state (8).

This phenomenon was first identified in CD8+T cells from murine

models chronically infected with lymphocytic choriomeningitis virus

(9) and has since been extensively studied across various chronic

infections (10, 11), tumors (12–14), and autoimmune diseases (15,

16). Under different circumstances, T cell exhaustion is intricately

regulated by various networks of inhibitory molecules, transcription

factors, and signaling pathways, leading to varying outcomes (17). In

renal transplantation, T cell exhaustion has emerged as a potential

regulatory mechanism for modulating alloreactive T cell responses,

thereby fostering graft acceptance (18, 19). This delicate balance

highlights the need for targeted interventions that can modulate the

immune response precisely, offering a pathway to improved

transplant success rates and recipient health. Developing

therapeutic approaches that can selectively induce exhaustion in

alloreactive T cells, while preserving robust anti-tumor and anti-

pathogen responses, is poised to be a pivotal strategy in enhancing

outcomes for organ transplant recipients. Therefore, a nuanced

comprehension of the molecular underpinnings of T cell

exhaustion after renal transplantation is imperative.
Molecular mechanisms
of T cell exhaustion

T cell exhaustion is distinguished from other forms of

lymphocyte dysfunction by its unique molecular signatures and

surface phenotypes (20). Unlike an “all or none” phenomenon, T

cell exhaustion unfolds as a gradual, hierarchical process, typically

requiring weeks or months of sustained antigen stimulation to fully

manifest (21, 22). This complex phenomenon involves a diverse

array of inhibitory receptors, transcription factors, and signaling

pathways, which can vary across different conditions and even
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within different phases of the same disease (19, 23). For example,

low oxygen and high lactate levels in the tumor microenvironment

(TME) can promote T cell exhaustion by modulating the eATP–

adenosine axis (24). In the context of transplantation,

immunosuppressants have become a prominent factor affecting T

cell exhaustion. Understanding the molecular mechanisms

underlying T cell exhaustion after renal transplantation is crucial

and could significantly benefit transplantation recipients.

Programmed cell Death 1 (PD-1), a transmembrane receptor

that belongs to the CD28/cytotoxic T-lymphocyte associated protein

4 (CTLA-4) family, acts as a costimulatory signal inhibitor for T cell

receptor (TCR) activation (25). The production of PD-1 is

upregulated via TCR recognition of MHC, thereby preventing the

overactivation of T cells and limiting immune-mediated damage to

native tissue (26). Studies have explored the dynamics of PD-1

expression and its association with T cell exhaustion in the context

of renal transplantation, shedding light on its implications for

transplant outcomes. Yucheng et al. (27) conducted flow

cytometry analysis on whole blood samples from kidney

transplantation recipients and found that PD1+CD57- marked

exhausted T cells were elevated in recipients with stable renal

function but decreased in those experiencing acute rejection.

Thiago et al. studied the effects of PD-1’s presence in mice, and

showed that overexpression of PD-1 on T cells promotes allograft

tolerance in a fully MHC-mismatched cardiac transplant model

(28). Modulating PD-1 signaling could be a strategic approach to

enhancing transplant tolerance while maintaining immune

competence against infections and malignancies.

T-cell immunoglobulin and mucin containing protein-3 (TIM-3)

plays a nuanced role in the immune response, modulating the

function of CD4+CD25+ regulatory T cells, inhibiting aggressive

Th1 cells mediated auto- and allo-immune responses, and promoting

T cell exhaustion (29). Engagement of TIM3 on T cells and DCs

provides different tyrosine phosphorylation patterns, lead to varied

effects (30). Early studies found that TIM-3 mRNA was highly

expressed in graft and urinary samples from acute rejection

patients compared to stable transplants (31, 32). Not only in the

renal graft but a peripheral CD4 T cell-exhausted phenotype,

characterized by increased expression of PD-1 and TIM-3, was also

associated with renal graft survival (33). Moreover, T cell exhaustion

is not only related to graft survival but also affects recovery from

infections after transplantation. A study highlighted that the absence

of PD-1 and TIM-3 exhaustion markers on BK virus-specific T cells

correlated with shorter clearance times for the virus in renal

transplantation patients (34). Further study targeting TIM-3 may

serve as a promising strategy to prevent chronic allograft rejection

and promote tolerance.

T cell immunoreceptor with immunoglobulin and ITIM

domain (TIGIT) plays a significant role in inhibiting T cell

activation, proliferation, and the acquisition of effector functions.

The TIGIT/CD226 axis represents a newly identified pathway that

is critical for regulating T cell activity (35). This axis includes

TIGIT, a co-inhibitory receptor along with CD226, which performs

a co-stimulatory function and shares ligands with TIGIT (36).

Arnaud et al. discovered a correlation between allospecific T cell

hyporesponsiveness and increased expression of TIGIT
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post-transplantation, implicating the CD226/TIGIT axis in this

process (37). Amy et al. identified TIGIT as a marker for the

polyfunctional donor-reactive CD4+ T cell population, whose

decline following kidney transplantation may contribute to

allograft tolerance (38). These findings suggest that elevated

TIGIT expression could indicate a mechanism through which the

immune system modulates responses to the transplanted organ,

potentially contributing to tolerance and graft survival.

Lymphocyte-activation gene 3 (LAG-3), characterized by a

structural resemblance to CD4, facilitates inhibitory function

through selective interaction with stable complexes of peptides

and MHC class II (39). LAG-3 is highly expressed, particularly on

CD8+ T cells exhibiting an exhausted phenotype in the context of

chronic viral infections and cancer (40, 41). While LAG-3 has been

less directly highlighted in renal transplantation, its co-expression

with PD-1 has been identified as a potent enhancer of T cell

exhaustion, contributing to a decreased likelihood of rejection (42).

CTLA-4, a crucial co-inhibitory molecule rather than a co-

stimulatory one, competes with CD28 for binding to their shared

B7 ligands (CD80/CD86) on APCs. Thereby interfering with TCR-

mediated signal transduction (43). Given CTLA-4’s key role in

regulating allograft rejection and tolerance (44), significant attention

has been focused on the relationship between CTLA-4 genetic

variations and graft outcomes following solid organ transplantation.

Studies on T cell exhaustion after transplantation, based on

characteristic molecules, have shown that exhausted T cells exist

not only in the renal grafts but also in peripheral tissues and the

circulatory system. This presence affects both graft survival and the

overall immune function of post-transplant patients. Further research

and understanding of the molecular mechanisms of T cell exhaustion

could help improve outcomes for renal transplantation recipients.
Transcription factors variation
of T cell exhaustion

Transcription factors such as the nuclear factor of activated

T cells (NFAT), basic leucine zipper ATF-like transcription factor

(BATF), and thymocyte selection-associated high-mobility group

box protein (TOX), play crucial roles in regulating the expression of

inhibitory receptors and the exhaustion program (45, 46). NFAT, in

particular, has been implicated in various T cell states, including

activation (47), exhaustion (48), tolerance (49), and anergy (50).

The context of TCR engagement—whether there’s persistent

antigen stimulation in the absence of positive co-stimulation or in

the presence of negative costimulatory signals—becomes crucial for

determining T cell fate (51, 52).

In vivo studies have revealed that NFAT directly influences CD8+

T cell exhaustion by binding to regulatory regions of genes associated

with exhaustion, such as the promoters of PDCD1 (PD-1) and

HAVCR2 (TIM-3) (45). Transcriptional profiling has indicated

elevated expression of NFATc1 (NFAT2) in exhausted CD8+ T

cells with chronic viral infection (53). Suggesting that increased

transcription of Nfatc1 could correlate with inadequate activation

or translocation of this transcription factor during T cell exhaustion.
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The role of NFAT is particularly relevant in the context of kidney

transplantation, where patients often receive immunosuppressive

treatments including Calcineurin Inhibitors (CNIs). CNIs target the

NFAT phosphorylation process, thereby reducing IL-2-mediated T

lymphocyte activation, proliferation (54) and cytotoxicity (55).

Interestingly, studies involving allogeneic Hematopoietic Stem Cell

Transplantation (HCT) patients (56) and Chimeric antigen

receptor (CAR) T cells (57) have shown that CNI treatment can

inhibit the terminal differentiation of donor exhausted T cells

post-transplantation.

Recent research has illuminated the pivotal role of the TOX in

T cell biology, revealing that while effector and memory T cells can

develop in the absence of TOX, exhausted T cells cannot (58, 59).

This differentiation underscores TOX’s unique role in T cell

exhaustion. TOX essentially translates the early and sustained

activity of NFAT2 (a form of NFAT) into a later, calcineurin-

independent, TOX-driven molecular and epigenetic program

characteristic of exhausted T cells (60). In doing so, TOX not

only suppresses terminal effector T cell-specific epigenetic events

but also initiates critical exhausted T cell-specific epigenetic

modifications (61, 62). These findings position TOX as an

essential transcriptional and epigenetic orchestrator of the T cell

exhaustion program. In the context of renal transplantation, the

calcineurin-NFAT2 pathway emerges as a critical initiator required

to induce TOX expression. Consequently, the use of CNIs in

transplant recipients may inadvertently impede the transcriptional

and epigenetic frameworks essential for fostering T cell exhaustion

(58, 63). Given that T cell exhaustion plays a role in modulating

immune responses to the transplant, preventing graft rejection, and

maintaining tolerance, the impact of CNIs on this process is of

particular significance (Figure 1).
T cell exhaustion and graft survival

The dynamics between T cell exhaustion and the long-term

survival of renal transplants are complex and multifaceted, making

it a focal point of ongoing research. On one hand, evidence suggests

that repeated exposure to alloantigens leads to the gradual

exhaustion of T cells, potentially aiding in the acceptance of the

graft (64–66). Complementing these findings, Miguel et al. revealed

that the proportion of exhausted T cells six months post-transplant

was positively associated with the estimated glomerular filtration

rate (eGFR) at the same timeframe of 26 renal transplantation

recipients (67). Through the male-to-female skin transplant model,

researchers found that both CD8+ and CD4+ T cells exhibited

exhaustion signatures positively correlated with alloantigen load,

promoting transplant acceptance (68). This observation may help

explain why organs with high antigen loads, such as the liver, tend

to be better tolerated by the recipient’s immune system compared to

smaller organs. On the other hand, excessive exhaustion might

compromise the immune system’s capacity to fend off viral

infections and combat tumors, potentially heightening the risk of

adverse outcomes and graft rejection (69). Further emphasizing the

double-edged sword of T cell exhaustion, Mysore et al. presented a
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longitudinal study of liver transplant patients, establishing a strong

link between exhausted T cells and the occurrence of infectious

episodes (70). Collectively, these studies illuminate the delicate

balance in transplant immunology: T cell exhaustion can facilitate

transplant acceptance but may also diminish the immune system’s

efficacy against chronic infections and tumors, presenting a

challenge in managing transplant patient health optimally.

However, there is much to discuss regarding the protection of

grafts by exhausted T cells. Studies using mouse models for kidney

and islet transplants have shown that tissue-resident memory

(TRM) cells migrate to the transplant site and engage in chronic

rejection processes, with only a small proportion exhibiting signs of

exhaustion (71, 72). This suggests that while T cell exhaustion may

play a role in promoting graft tolerance, the presence and activity

of non-exhausted TRM cells could counteract this effect by

contributing to the processes leading to chronic rejection.

Masahiro etal (73), conducted a study on acute graft-versus-host

disease (aGVHD) in murine models, focusing on direct renal

damage mediated by allogeneic donor T cells. They found that

donor MHC+ T cells, encompassing both CD4+ and CD8+ subsets,

exhibited heightened activation and exhaustion markers, alongside

increased secretion of pro-inflammatory cytokines and cytotoxic

proteins, contributing to injury in renal endothelial and tubular

epithelial cells. Notably, despite the elevated exhaustion markers,

these T cells retained their cytotoxic capabilities, underscoring that

the presence of inhibitory receptors does not necessarily equate to
Frontiers in Immunology 04
functional exhaustion. This distinction is crucial in research to

accurately identify the state of T cell exhaustion.

A notable exception to the typical effects of T cell exhaustion

involves CD4+FOXP3+ regulatory T cells (Tregs). Research indicates

that conditions of chronic immune activation, whether due to

autoimmune diseases or persistent infections, can lead to an

accumulation of PD-1-expressing Tregs that exhibit diminished

functional activity (74, 75). Tan et al. identified reduced signaling

through the PI3K–AKT pathway as a mechanism underlying the

enhanced suppressive capacity of PD-1–deficient Treg cells (76). This

phenomenon of potential Treg exhaustion could paradoxically

increase the risk of harmful T cell responses against the

transplanted kidney. Instead of promoting tolerance and protecting

the graft, exhausted Tregs may lose their regulatory capacity, thus

failing to prevent damaging immune responses that could

compromise transplant survival (27, 77). This highlights the

complexity of immune regulation in transplantation, where not

only the quantity but the quality and functional state of regulatory

cells are crucial for maintaining the balance between acceptance and

rejection of the graft.
Immune exhaustion

Although exhaustion has most commonly been studied in the

context of CD8 T cell responses, recent studies indicate that chronic
FIGURE 1

T cell exhaustion in patients after renal transplantation. Persistent antigen stimulation of the TCR activates the calcineurin pathway. Calcineurin
dephosphorylates cytoplasmic NFAT, which then moves into the nucleus to regulate genes that govern either T cell effector function or T cell
exhaustion. CNIs, used in transplantation recipients, can inhibit this process. Furthermore, NFAT induces the transcription factors such as TOX, which
drive the exhaustion program, expressing exhaustion molecules. Thus, the transmission of extracellular signals by NFAT is a critical step in T cell
exhaustion. TCR, T cell receptor; CNIs, calcineurin inhibitors; PD1, programmed death-1; LAG-3, lymphocyte-activation gene 3; TIM-3, T-cell
immunoglobulin-3; TIGIT, T-cell immunoglobulin and ITIM domain; CTLA4, cytolytic T lymphocyte-associated antigen 4; NFAT, nuclear factor of
activated T cells; TOX, thymocyte selection-associated high-mobility group box protein.
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antigen exposure may also affect B cells, NK cells, and CD4 T cells in

a parallel manner. For instance, exhausted NK cell have been

associated with the expression of TIGIT but not CTLA-4 and PD-1

in tumor patients (78). In the study of malaria, exhausted CD4 T cell

was found to exhibit reduced T-bet expression and mTORc1 activity

(79). An exhausted phenotype of Th2 cells was recognized after

allergen-specific immunotherapy, the elevated exhaustion markers

(PD-1, CTLA-4) enhanced Th2 response and even exacerbated

allergic airway inflammation (80). Moreover, in the immune

microenvironment, exhausted T cells also interact with other cells.

For example, T follicular helper cells (Tfh) are essential to sustain

functions of exhausted T cells. Studies of tumor microenvironment

showed that exhausted T cells recruit Tfh, through CXCL13 and

BLIMP1/TCF1 axis, and regain cytotoxicity (81, 82). These studies

highlight that research on immune exhaustion in transplant patients

is far less developed than research on tumor infection and

autoimmunity. A deeper understanding of the depletion of different

immune cells and their roles in the context of exhausted effector T

cells can help transplant patients better control graft rejection and

fight against tumors and infections.
Therapeutic modulation
of T cell exhaustion

To enhance graft survival, pharmaceutical developments are

focusing on drugs that target key molecules involved in T cell

exhaustion. Belatacept, a high-affinity variant of CTLA4-Ig

represents a significant advancement in this area and has been

approved for kidney transplant recipients (83). Belatacept inhibits

T lymphocyte proliferation and the production of cytokines such as

interleukin-2, interferon-g, interleukin-4, and TNF-a by binding to

CD80 and CD86 on antigen-presenting cells, thereby blocking CD28-

mediated costimulation of T cells (84). A long-term study reported

the outcome of belatacept in renal transplantation, seven years after

transplantation, patient and graft survival and the mean eGFR were

significantly higher with belatacept than with cyclosporine (85). The

use of belatacept exemplifies the ongoing efforts to modulate the

molecule of T cell exhaustion post-transplant in a manner that

preserves the graft while minimizing adverse outcomes. However,

Budde and colleagues (86) highlighted the clinical implications of

belatacept over a two-year follow-up period, showing that 5.4% of

patients treated with CNIs developed cancer, compared to 8.1% in the

belatacept group. This difference sheds light on the complex trade-

offs involved in immunosuppressive therapy, balancing the reduction

of rejection risks against potential side effects, including an increased

risk of developing cancer.

The interplay between immunosuppressive drugs used in renal

transplantation and immune checkpoint inhibitor (ICI) therapy for

cancer creates a complex scenario regarding T cell exhaustion in the

tumor microenvironment post-transplant. The rate of rejection after

ICIs is highest among renal transplantation compared to liver, heart,

and lung transplant patients and ranges from 41 to 48% (87).

Sandhya et al. (88) emphasized the urgent need for awareness

regarding the heightened risk of acute allograft rejection/failure
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review, 40.9% (18/44) of patients were reported to have acute

rejection with the median time from ICI initiation to acute

rejection diagnosis of 24 days. A multi-center study by Murakami

et al. (89) showed that, although there were potential improvements

in cancer outcomes, ICIs were associated with a higher risk of

rejection in kidney transplant recipients, with a 42% acute rejection

rate in ICI-treated patients compared to 5.4% in non-ICI patients.

Conversely, Robert and colleagues found no irretrievable allograft

rejection without evidence of tumor response in 17 renal

transplantation tumor patients (90). The CONTRAC-1 study also

showed encouraging results concerning the use of anti-PD-1 for

advanced cutaneous squamous cell carcinoma in renal transplant

recipients, with an overall response rate of 46% (5/11) and no

allograft rejection occurring (91).

The use of ICIs in renal transplant recipients poses a significant

risk of allograft rejection, necessitating vigilant monitoring.

Maintaining baseline immunosuppression before treatment with an

immune checkpoint inhibitor in kidney transplant recipients might

not affect expected efficacy and might reduce the risk of allograft

rejection mediated by ICIs. Traditionally, T cell dysfunction within

tumors and protein expression levels of immune checkpoints like

PD-1 and CTLA-4 have been predictive markers for the efficacy of

ICI therapy (92, 93). Barsch et al. (94) advanced the understanding

within the hepatocellular carcinoma context, finding that high levels

of exhausted T cells with increased expression of PD-1, LAG-3, and

CTLA-4 negatively influenced patient prognoses, whereas memory T

cells, expressing fewer immune checkpoints, correlated with better

survival outcomes. Further complicating this landscape, Garnett et al.

(95) observed in melanoma patients post-renal transplantation

receiving ICI therapy, an expansion of alloreactive CD8+ T cells.

This expansion, induced by ICI therapy, overlapped with cases of ICI-

associated organ rejection, highlighting the delicate balance between

treating cancer and maintaining graft survival. This complex

interaction underscores the need for large-scale prospective studies

to identify optimal immunosuppressive strategies that can both

mitigate rejection risks and enhance cancer treatment outcomes,

ensuring the well-being of transplant recipients undergoing cancer

therapy (Table 1).
Conclusion

T cell exhaustion occupies a nuanced position in the context of

renal transplantation, presenting both advantageous and detrimental

implications. Moderate levels of exhaustion may contribute to the

regulation of alloreactive T-cell responses and promote graft

acceptance, while excessive exhaustion may compromise the ability

to control viral infections and tumors, posing potential risks to

transplant recipients. The expression patterns of exhaustion

markers and the impact of immunosuppressive therapies on T cell

exhaustion levels warrant further investigation.

In recent years, the application of technologies such as

implantable artificial kidneys (96), xenotransplantation of kidneys

(97), and renal regeneration using bioengineered organoids (98) has
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become increasingly widespread in experimental settings. As we

continue to explore these non-traditional kidney transplantation

approaches, there is a growing need to pay closer attention to T cell

exhaustion status in these contexts. Future research should

prioritize understanding the differences in T cell exhaustion

under different states (transplantation vs. tumor or infection), and

the distinctions of exhaustion within T cell subsets themselves.

Although non-memory T, B lymphocytes, and NK cells have a short

life span and it is difficult to study their exhaustion phenomenon,

their interaction with exhausted T cells is still worthy of attention.

Elucidating the optimal levels of T cell exhaustion, for achieving

long-term graft survival while maintaining protective immunity.
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