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Introduction: Acute myeloid leukemia (AML) is an aggressive blood cancer with

high heterogeneity and poor prognosis. Although the metabolic reprogramming

of nicotinamide adenine dinucleotide (NAD) has been reported to play a pivotal

role in the pathogenesis of acutemyeloid leukemia (AML), the prognostic value of

NAD metabolism and its correlation with the immune microenvironment in AML

remains unclear.

Methods: We utilized our large-scale RNA-seq data on 655 patients with AML

and the NAD metabolism-related genes to establish a prognostic NAD

metabolism score based on the sparse regression analysis. The signature was

validated across three independent datasets including a total of 1,215 AML

patients. ssGSEA and ESTIMATE algorithms were employed to dissect the

tumor immune microenvironment. Ex vivo drug screening and in vitro

experimental validation were performed to identify potential therapeutic

approaches for the high-risk patients. In vitro knockdown and functional

experiments were employed to investigate the role of SLC25A51, a

mitochondrial NAD+ transporter gene implicated in the signature.

Results: An 8-gene NAD metabolism signature (NADM8) was generated and

demonstrated a robust prognostic value in more than 1,800 patients with AML.

High NADM8 score could efficiently discriminate AML patients with adverse clinical

characteristics and genetic lesions and serve as an independent factor predicting a

poor prognosis. Immune microenvironment analysis revealed significant

enrichment of distinct tumor-infiltrating immune cells and activation of immune

checkpoints in patients with high NADM8 scores, acting as a potential biomarker

for immune response evaluation in AML. Furthermore, ex vivo drug screening and

in vitro experimental validation in a panel of 9 AML cell lines demonstrated that the

patients with high NADM8 scores were more sensitive to the PI3K inhibitor, GDC-

0914. Finally, functional experiments also substantiated the critical pathogenic role

of the SLC25A51 in AML, which could be a promising therapeutic target.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1417398/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1417398/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1417398/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1417398/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1417398&domain=pdf&date_stamp=2024-06-20
mailto:yang_shen@sjtu.edu.cn
mailto:cheng_wenyan@126.com
https://doi.org/10.3389/fimmu.2024.1417398
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1417398
https://www.frontiersin.org/journals/immunology


Cao et al. 10.3389/fimmu.2024.1417398

Frontiers in Immunology
Conclusion: Our study demonstrated that NAD metabolism-related signature

can facilitate risk stratification and prognosis prediction in AML and guide

therapeutic decisions including both immunotherapy and targeted therapies.
KEYWORDS

acute myeloid leukemia, NAD metabolism, prognostic signature, immune
microenvironment, targeted therapy
Introduction

Acute myeloid leukemia (AML) is an aggressive hematopoietic

malignancy characterized by high heterogeneity and poor prognosis

(1). Despite advances in therapeutic approaches, the global 5-year

survival rate remains significantly lower at approximately 30% (2).

Refractory and relapsed AML persist as the major obstacles within

the current treatment paradigms (3). Cytogenetic and molecular

abnormalities are crucial for the evaluation of prognosis and

assignment of therapeutic strategies. However, under current risk

stratification criteria such as the European Leukemia Net (ELN)

recommendations (4), patients within each risk group still

demonstrate substantial heterogeneity in terms of clinical

outcomes and biological abnormalities.

With the widespread adoption of next-generation sequencing

(NGS) technologies, it becomes feasible to comprehensively explore

the genomic and transcriptomic profiles, which may largely promote

the precise classification and prognostic evaluation of AML patients

(5–7). To date, numerous genome- and transcriptome-based AML

prognostic models have been developed, including the 17-gene

stemness score (LSC17) defined by stem cell subsets (8), the 16-

gene AML fitness (AFG16) from large-scale CRISPR-Cas9 screening

(9), and the GENE4 generated by capturing intratumor heterogeneity

of AML (10), indicating that the gene transcriptional data could

capture the heterogeneity of AML patients and largely refine the

traditional risk assignment system. In this context, integrating multi-

omics data offers insights to identify novel molecular markers with

prognostic and therapeutic value in AML, enabling more precise

therapy and refined stratification, which represents a major area of

future research.

Metabolic reprogramming is a prototypical hallmark of tumor

development, which can not only serve as a direct manifestation of the

functional status of tumors but may also play a critical role in the

pathogenesis of various cancers (11). The rewiring of multiple essential

metabolic pathways including glycolysis, lipid metabolism and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been

discovered to be associated with a more aggressive leukemic

phenotype and drug resistance in AML (12–14). Aberrations in key

metabolic enzymes greatly influence the levels of metabolites,

potentially affecting epigenetic processes including DNA methylation,

histone modification, and chromatin remodeling. For instance, in
02
AML, the oncometabolite 2-hydroxyglutarate (2-HG) generated by

IDH1/2mutations competes with a-ketoglutarate (a-KG) for binding,
leading to extensive methylation of DNA and histones, disrupting

crucial hematopoietic signaling pathways and facilitating the onset of

AML (15). Upregulation of the gene SLC2A5, encoding the fructose

transporter protein GLUT5, results in increased fructose uptake,

compensating for the relative fructose deficiency of tumor cells,

thereby promoting leukemia cell survival (16). Currently, inhibitors

targeting aberrant key metabolic enzymes such as IDH, GPX4, and

NAMPT have shown promising anti-tumor effects (17, 18).

Nicotinamide adenine dinucleotide (NAD) is a key mediator

participating in a variety of biological processes, including energy

metabolism, redox reactions, DNA repair, immune responses, and

protein acetylation. Besides, NAD serves as the substrate for

numerous enzymes such as sirtuins and poly ADP-ribose

polymerases (PARPs) (19). Dysregulation of NAD metabolism is

essential in the initiation and progression of various cancers, which

may provide specific adaptations to support the growth and survival

of malignant cells (20–22). It has been reported that the dysregulated

NAD metabolism enables leukemia stem cells (LSCs) to evade

apoptosis, leading to their resistance to multiple drugs including

traditional chemotherapy and BCL2 inhibitor venetoclax (23).

Moreover, the inhibition of nicotinamide phosphoribosyltransferase

(NAMPT), a rate-limiting enzyme in the NAD metabolism,

demonstrated selective eradication of LSCs in relapsed AML

patients (24). These results underscore the critical pathogenic role

of NAD metabolism. However, the prognostic significance of NAD

metabolism-related genes and their potential as therapeutic targets in

AML have not been fully elucidated.

Therefore, our study focused on delineating the NAD metabolic

profiles in AML from the perspective of transcriptomics. After

systematically profiling the NAD metabolism-related genes in our

large cohort of AML patients, we innovatively developed an 8-gene

signature which demonstrated a robust prognostic value across

diverse independent validation datasets. The signature could

exquisitely discriminate AML patients with aberrant NAD

metabolism characteristics and poor prognosis. More importantly,

further immune microenvironment investigation and drug

sensitivity exploration provided therapeutic insights for high-risk

AML patients, lending support to the clinical implementation of

this prognostic model.
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Materials and methods

Data availability

The training cohort comprised 655 newly diagnosed AML

patients from three large centers, 442 of these patients were from

Shanghai Institute of Hematology (SIH), 110 from Jiangsu Institute

of Hematology (JIH), and 103 from Zhejiang Institute of

Hematology (ZIH). All bone marrow mononuclear cell (BMMC)

samples from 655 AML patients were collected at diagnosis.

Anonymized RNA sequencing data have been deposited in the

Genome Sequence Archive for Humans (GSA-Human, https://

ngdc.cncb.ac.cn/gsa-human) (HRA002693). The detailed

treatment information of these patients is elaborated in the

Supplementary Methods and Material. The diagnosis and

classification of AML patients were conducted based on the 2022

World Health Organization criteria. This study was approved by the

three participating centers. All patients had given informed consent

for both treatment and cryopreservation of BMMC samples

according to the Declaration of Helsinki.

The validation cohorts were obtained from the TCGA (https://

portal.gdc.cancer.gov/), BeatAML (http://www.vizome.org/), and

HOVON cohort (retrieved from Array Express with Dataset ID: E-

MTAB-3444). Only treatment-naive adult patients were included,

and individuals without available survival information were excluded.
Acquisition of NAD+ metabolism-
related genesets

The NAD+ metabolism-related genes were obtained from the

pathways from Molecular Signatures Database (MSigDB) (25),

including REACTOME_NICOTINATE_METABOLISM(R-HAS-

196807) from Reactome database, KEGG_NICOTINATE_AND_

NICOTINAMIDE_METABOLISM (has00760) from KEGG

database, and GOBP_DE_NOVO_NAD_BIOSYNTHETIC_

PROCESS, GOBP_NAD_TRANSPORT from GO database. After

integrating the genes in these pathways, a total of seventy-seven

genes were selected. Detailed information on the NAD+

metabolism-related genes is provided in Supplementary Table S1.
Development and validation of AML
prognostic model

The least absolute shrinkage selector operator (LASSO) regression

algorithm was employed in the glmnet R package to select the fitness

genes, which ultimately generated eight genes most pertinent to

prognosis. Then, the 8 genes were incorporated into the multivariate

Cox proportional-hazards (CPH) regression and established the

NADM8 model. The NADM8 risk score was calculated using the

formula: NADM8 score = S (bi × expression level of genei), where bi
was the coefficient generated by multivariable CPH regression analysis.

Furthermore, each patient was allocated a risk score according to the

formula and subsequently divided into high-risk and low-risk
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subgroups according to the median cut-off risk score. Kaplan-Meier

survival analysis was employed to assess the prognostic implications of

the NADM8 model using the survival and survminer R package. The

time-dependent ROC curves and area under time-dependent ROC

curve (AUC) were performed using the timeROC package.
Gene set variation analysis and pathway
survival analysis

We systematically collected the NAD metabolism-related

pathways from the “msigdb.v2023.1.Hs.symbols.gmt” in MSigDB

database and conducted Gene Set Variation Analysis (GSVA)

utilizing the GSVA R package to calculate a score of each pathway

for the patients. Then, survival analysis was performed using the

univariate CPH regression analysis and Kaplan-Meier curves to

explore the prognostic value of these pathways.
Tumor immune
microenvironment estimation

We evaluated the abundances of the 28 immune cells infiltrating

the AML microenvironment based on ssGSEA R package and

compared the differences of the immune cell infiltration between

the NADM8low and NADM8high groups. The immune scores of

different risk groups were calculated through the estimate R

package. Then, we computed the correlation coefficients between

the selected immune cells and the 8 NAD genes of the model and

demonstrated by a heatmap.
Drug sensitivity assays

A panel of AML cell lines (HL-60, U937, OCI-AML3, Kasumi-1,

ME1, NB4, MOLM13, OCI-AML2, K562) were exposed to varying

concentrations of GDC-0941 (Selleckchem, S2065) in 96-well plates

at a density of 2 × 104 cells per well. After incubation for 48h, cell

viability was assessed using the Cell Counting Kit-8 (CCK-8) assays.

CCK-8 solution was added to 96 well plates and further incubated

with the cells at 37 °C, 5% CO2 for 4 h. Then, the absorbance of the

samples was measured at 450 nm. The RNA sequencing (RNA-seq)

data of AML cell lines were downloaded from the Cancer Cell Line

Encyclopedia (CCLE) (https://sites.broadinstitute.org/ccle/datasets)

and the risk scores were calculated according to the NADM8

equation. Pearson’s regression analysis was conducted to examine

the correlation between risk scores and IC50 values.

In order to validate the therapeutic efficacy of the PI3K inhibitor

GDC-0941 in primary AML samples, we randomly selected BMMC

samples from three NADM8high and three NADM8low AML

patients in our RJAML cohort. BMMCs were plated in a 96-well

plate at the density of 1×104 cells per well and exposed to GDC-

0941 at gradient concentrations. After incubation for 48h, cell

viability was evaluated by CCK-8, and the IC50 value

was calculated.
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Functional experiments in AML cell lines

Knockdown of the SLC25A51 gene was constructed by virtue of

a pLVX plasmid carrying shRNA, which along with psPAX2 and

pMD2.G package plasmids were co-transfected into HEK293T cells

using Lipofectamine 2000. The supernatant was collected at 24h

and 48h post-transfection to obtain the viral particles. Subsequently,

THP-1 and U937 cells were transfected with lentiviral supernatant

in the presence of 8 mg/ml polybrene, and subjected to centrifugation
at 1200g for 90 minutes at 30°C–32°C. After 48 hours, GFP

positivity was assessed by flow cytometry to determine

transduction efficiency. RNA was extracted to evaluate the

knockdown efficiency through quantitative methods. At 72 hours

post-transduction, flow cytometry was employed to assess the

apoptosis (Invitrogen™ eBioscience™ Annexin V Apoptosis

Detection Kits) and cell cycle distribution (Cell Cycle Staining

Kit, Multi Science). Cell proliferation was monitored for four

consecutive days using the CCK-8 assay (Cell Counting Kit-

8, DOJINDO).
Statistical analyses

For the statistical significance estimation of clinical

characteristics and outcome, the Student’s t-test was applied for

normally distributed quantitative data, the Wilcoxon test for non-

normally distributed continuous variables, and the Fisher’s exact

test for categorical data. The Cochran-Mantel-Haenszel (CMH) test

was employed to assess unidirectional ordered contingency tables.

The mutational profile was analyzed via the maftools package. The

mutation waterfall plot was drawn using the R package

complexheatmap. Utilizing the survival, regplot and rms R

packages, we constructed a nomogram and generated the

calibration curve. The GO and KEGG analysis were performed by

R package clusterProfler with the reference gene sets from

“c5.all.v2023.2.Hs.symbols.gmt” and “c2.cp.kegg.v7.5.1.symbols”,

which were downloaded from MSigDB. All statistical analyses in

this study were conducted by R 4.3.1, and bilateral P value<0.05 was

determined as statistically significant.
Results

Construction of an AML prognostic model
based on NAD metabolism-related genes

The workflow showed the processes of developing a prognostic

signature associated with NAD metabolism in AML (Figure 1A).

Ahead of this, we systematically deciphered the global dysregulation

of NAD metabolism in AML. We firstly collected the NAD

metabolism-related pathways from the MSigDB database and

conducted Gene Set Enrichment Analysis (GSEA) based on the

TCGA-LAML cohort. We found that the NAD metabolism

signaling was significantly enriched in patients who succumbed

within 2 years compared to those who survived (Figure 1B, p=0.039,
Frontiers in Immunology 04
NES=1.412). We also employed the GSVA algorithm to quantify the

activity of NAD metabolism-related pathways in individual patient

samples. Further univariate CPH regression analysis using the

GSVA calculated activity score revealed that NAD metabolism-

related pathways were significantly associated with a poor prognosis

(Supplementary Figures S1A–D, Hazard Ratio>1, P<0.05). Then we

aimed to construct a transcriptome-based prognostic model to

precisely identify high-risk patients with dysregulated

NAD metabolism.

A set of 77 NAD metabolism-related genes were obtained by

integrating these pathways (Supplementary Table S1). Univariate

CPH regression analysis was performed for each gene in our cohort

of 655 newly diagnosed AML patients (Supplementary Table S2).

We then employed the LASSO regression machine learning

algorithm to perform an unbiased shrinkage of the 77 genes,

which yielded 8 genes with the most prognostic relevance

(Figures 1C, D). These genes were then incorporated into a

multivariable Cox model, termed the 8-gene NAD metabolism

score (NADM8), which is calculated as: NADM8 = NT5M*

(-0.1451) + NMNAT2*(0.9138) + SIRT2*(0.1724) + ACMSD*

(-0.5692) + HAAO*(-0.1707) + NUDT13*(-0.3434) + SARM1*

(0.5218) + SLC25A51*(0.5287).

We assigned a risk score to each patient according to the

NADM8 model and stratified the 655 patients into high-risk

(NADM8high) and low-risk (NADM8low) groups by the median

value as the cutoff. Patients with higher NADM8 risk scores

exhibited significantly poorer overall survival (OS) and event-free

survival (EFS) compared to those with lower risk scores (Figures 1E,

F). In addition, the area under the curve (AUC) of the time-

dependent receiver operating characteristic (ROC) curve at the 1-

year, 2-year and 3-year overall survival was 0.69, 0.68 and 0.69,

respectively, indicating the prognostic significance of the NADM8

signature (Figure 1G).
Comparison of clinical features and
molecular landscapes between NADM8high

and NADM8low patients

Comparison of clinical characteristics of patients in the two

groups showed that patients with high NADM8 scores were older

(51.00 vs 46.00, P<0.001) and more frequently classified into the

intermediate and adverse European LeukemiaNet (ELN) risk

groups (Favorable 14.3% vs 45.1%, Intermediate 34.7% vs 22.4%,

Adverse 45.9% vs 23.9%, P<0.001). Besides, patients with high

NADM8 scores harbored more unfavorable cytogenetic

aberrations such as complex karyotypes (11.2% vs 5.2%, P=0.004)

and monosomal karyotypes (10.9% vs 5.8%, P=0.017). As for the

French-American-British (FAB) classification, high-risk patients

were significantly enriched in the M5 subtype, also termed acute

monocytic leukemia (34% vs 16.3%, P<0.001) (Table 1).

To obtain a more comprehensive insight into the mutational

landscape associated with the NADM8 score, the frequency of

common genetic lesions was compared between NADM8high and

NADM8low groups (Figure 2A). Notably, KMT2A rearrangements,
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FLT3 internal tandem duplication (FLT3-ITD), and mutations of

NPM1, DNMT3A, IDH2, RUNX1, ASXL1, SF3B1, PTPN11,

KMT2C, U2AF1, TET2, BCOR1, ETV6, TP53 genes were more

frequently observed in the NADM8high group. In contrast, patients

in the NADM8low group harbored more bZIP CEBPA mutations

and core-binding factor (CBF) fusions, including RUNX1::

RUNX1T1 and CBFB::MYH11 (Figure 2B).

Differentially expressed genes (DEGs) analysis identified 95

upregulated genes and 66 downregulated genes in the

NADM8high group in comparison with the NADM8low group

(Supplementary Figures S2A, B; Supplementary Table S5).

Remarkably, HOX family genes, including HOXA9, HOXA10,

HOXA6, and HOXA5 involved in the development of AML, were

notably enriched in the high-risk group.
Frontiers in Immunology 05
Independent prognostic value assessment
of the NADM8 model and
nomogram establishment

In Multivariate CPH models, the NADM8 risk score retained

significant prognost ic value independent of common

clinical predictors including age, gender, white blood cell (WBC)

count, Hemoglobin (HGB), platelet (PLT), bone marrow (BM)

blasts, and ELN risk stratification (Figure 3A). Furthermore,

the integration of NADM8 could raise the Concordance index

(C-index) of the CPH model in our AML cohort from 0.74 to

0.76 (Supplementary Table S6). These results indicate that the

NADM8 signature could facilitate prognostic assessment as an

independent risk factor.
A

B D

E F G

C

FIGURE 1

Development of the NAD metabolism-related AML prognostic model (A) Flow diagram of this research. (B) GSEA shows the enrichment of
“GOBP_NAD_METABOLIC_PROCESS” in the patients dead within two years after diagnosis compared to those who survived in the TCGA cohort
(P=0.039, NES=1.412). (C, D) The LASSO regression algorithm was employed to identify the fitness genes. 77 NAD metabolism-related genes were
initially inputted and 8 genes were selected for further model construction (C) The partial likelihood deviance in the LASSO analysis. (D) LASSO
coefficient profiles of the eight screened NAD metabolism-related genes. (E, F) Kaplan-Meier estimates of overall survival (OS) (G) and event-free
survival (EFS) according to the NADM8 score in the training cohort. (G) Time-dependent ROC curves show the 1-year, 2-year, and 3-year prediction
accuracy of the NADM8 score.
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TABLE 1 Clinical characteristics in the development cohort.

Characteristic Overall (n=655) NADM8high (n=329) NADM8low (n=326) P-value

Age (median [IQR]) 48.00 [34.00, 60.00] 51.00 [37.00, 63.00] 46.00 [33.00, 58.00] <0.001 #

WBC (median [IQR]) 12.40 [3.52, 43.95] 13.06 [3.06, 42.73] 12.33 [3.95, 46.04] 0.456 #

BM Blast (median [IQR]) 68.00 [45.00, 84.00] 66.00 [38.00, 83.00] 69.60 [52.00, 84.00] 0.012 #

HGB (median [IQR]) 86.00 [68.00, 106.50] 83.00 [67.00, 102.00] 90.50 [68.00, 109.75] 0.009 #

PLT (median [IQR]) 40.00 [23.00, 78.00] 52.00 [29.00, 90.00] 33.00 [20.00, 61.00] <0.001 #

Gender, n (%) 0.085 $

Female 316 (48.2) 170 (51.7) 146 (44.8)

Male 339 (51.8) 159 (48.3) 180 (55.2)

ELN2022, n (%) <0.001 &

Favorable 194 (29.6) 47 (14.3) 147 (45.1)

Intermediate 187 (28.5) 114 (34.7) 73 (22.4)

Adverse 229 (35.0) 151 (45.9) 78 (23.9)

FAB subtype, n (%)

M0 2 (0.3) 2 (0.6) 0 (0) /

M1 33 (5.0) 10 (3) 23 (7.1) 0.031 $

M2 136 (20.8) 51 (15.5) 85 (26) 0.008 $

M3 56 (8.5) 20 (6.1) 36 (11) 0.050 $

M4 189 (28.9) 81 (24.6) 108 (33.1) 0.083 $

M5 165 (25.2) 112 (34) 53 (16.3) <0.001 $

M6 1 (0.2) 0 (0) 1 (0.3) /

M7 1 (0.2) 1 (0.3) 0 (0) /

AML, NOS 72 (11) 52 (15.8) 20 (6.1) /

FLT3-ITD, n (%) <0.001 $

Wild type 526 (80.3) 243 (73.9) 283 (86.8)

Mutation 169 (25.8) 86 (26.1) 43 (13.1)

RUNX1::RUNX1T1, n (%) <0.001 $

Negative 602 (91.9) 317 (96.4) 285 (87.4)

Positive 53 (8.1) 12 (3.6) 41 (12.6)

CBFb::MYH11, n (%) <0.001 $

Negative 603 (92.1) 322 (97.9) 281 (86.2)

Positive 52 (7.9) 7 (2.1) 45 (13.8)

KMT2A-rearranged, n (%)

Negative 615 (93.9) 301 (91.5) 314 (96.3) 0.014 $

Positive 40 (6.1) 28 (8.5) 12 (3.7)

Complex karyotype, n (%) 0.004 $

Negative 580 (88.5) 279 (84.8) 301 (92.3)

Positive 54 (8.2) 37 (11.2) 17 (5.2)

Monosomal karyotype, n (%) 0.017 $

Negative 579 (88.4) 280 (85.1) 299 (91.7)

(Continued)
F
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In pursuit of a clinically applicable and convenient tool to

predict the survival of AML patients, we constructed a nomogram

model based on the multivariate CPH model, integrating both

clinical covariates and the NADM8 risk score (Figure 3B). The 1-,
Frontiers in Immunology 07
2- and 3-year calibration curves exhibited a high consistency

between the actual and predicted probabilities of OS, suggesting

that the nomogram possesses excellent concordance in predicting

the prognosis of AML patients (Figures 3C–E).
TABLE 1 Continued

Characteristic Overall (n=655) NADM8high (n=329) NADM8low (n=326) P-value

Positive 55 (8.4) 36 (10.9) 19 (5.8)

Chemotherapy responses, n (%) <0.001 $

Response 251 (38.3) 111 (33.7) 140 (42.9)

Non-response 84 (12.8) 58 (17.6) 26 (8.0)
# P value calculated using the Wilcoxon rank-sum test.
$ P value calculated using the Fisher’s exact test.
& P value calculated by Cochran-Mantel-Haenszel Statistics (CMH) test.
P value less than 0.05 is shown in bold.
A

B

FIGURE 2

Comparison of mutational landscape and clinical features between NADM8high and NADM8low patients (A) Heatmap shows the clinical information
and somatic mutations between NADM8high and NADM8low patient groups. (B) Forest plot manifests genetic mutations that occur at significantly
different frequencies between NADM8high and NADM8low groups.
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The NADM8 model is robustly associated
with overall survival in multiple
independent AML cohorts

Subsequently, we sought to comprehensively assess the

prognostic performance of NADM8 model across several

independent validation cohorts, including the TCGA (n=179),

BeatAML (n=418), and HOVON (n=618) datasets. Of note, the

NADM8 score was consistently correlated with a significantly worse

OS in different AML cohorts (TCGA: P=0.0006, BeatAML:

P=0.0057, HOVON: P=0.0018) (Figures 4A–C). Additionally, the

calibration curves for the 1-, 2- and 3-year OS rates demonstrated a

high consistency between the actual and predicted probabilities

(Figures 4D, E). These results highlight the effectiveness of the

NADM8 model as a reliable prognostic tool.

Next, we examined the differences between the two risk groups

within the validation datasets (Supplementary Tables S3, 4;

Supplementary Figures S3A–D). Within both the TCGA and

BeatAML cohorts, the NADM8high group was associated with a

significantly older age and higher proportion of ELN intermediate-

and high-risk patients, as well as a higher frequency of TP53mutations,
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complex karyotype, and FAB-M5 subtype. Additionally, in the

BeatAML cohort, the frequency of SF3B1, RUNX1, FLT3-ITD

mutations and KMT2A rearrangements was higher in the

NADM8high group, while CEBPA mutations and CBFB::MYH11

were relatively scarce. Collectively, the discrepancies between the two

groups were consistent with the results in the development cohort.
NADM8 outperforms other transcriptome-
based risk models

To further ascertain the strength and robustness of our model, we

compared the NADM8 score with previously reported transcriptome-

based prognostic models, such as the 17-gene stemness score (LSC17)

(8) and the 16-gene AML fitness (AFG16) (9). When adjusting for

common clinical covariates, the NADM8 model exhibited generally

superior performance in multiple datasets (TCGA, BeatAML, and

HOVON cohorts), as reflected in the most significant P value in all

multivariate Cox models, whereas other models only retained

significant prognostic value in a subset of these cohorts. On the

other hand, the CPH model showed a slightly higher Harrell C-
A B

D EC

FIGURE 3

Establishment of a Nomogram integrating NADM8 score and common clinical parameters. (A) Multivariate Cox proportional-hazards regression analysis
indicates that NADM8 score is prognostically independent of common clinical factors (p<0.001) (B) A nomogram integrating NADM8 and clinical
parameters such as WBC and ELN risk for the 1-year, 2-year, and 3-year overall survival probability prediction. (C–E) Calibration curves show the
predicted and actual 1-year, 2-year, and 3-year survival probabilities in the training cohort. WBC, white blood cell count; ELN, European LeukaemiaNet.
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index when integrating the NADM8 score across the three cohorts

(BeatAML, NADM8: 0.71, LSC17: 0.70, AFG16: 0.71, and TCGA,

NADM8: 0.74, LSC17: 0.73, AFG16: 0.73) (Supplementary Tables S7,

8). Overall, these results suggest that the NADM8 score is independent

of common clinical factors and could be a robust prognostic predictor

of AML survival.
Assessment of tumor immune infiltration
landscapes between the two risk groups

To investigate the impact of the NADM8 score on the immune

microenvironment in AML, we examined the abundance of 28 types

of immune cells between the two NADM8 risk groups. The results
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demonstrate that higher NADM8 scores were significantly correlated

with increased infiltration of various immune cells, including central

memory CD4 T cell, natural killer cell, CD56dim natural killer cell,

macrophage, plasmacytoid dendritic cell, activated dendritic cell, type

17 T helper cell, natural killer T cell, monocyte, T follicular helper cell,

neutrophil, type 1 T helper cell, CD56bright natural killer cell, central

memory CD8 T cell, activated CD4 T cell, myeloid-derived

suppressor cells (MDSCs), Gamma delta T cell, immature B cell,

immature dendritic cell, regulatory T cell and eosinophil (P < 0.05)

(Figure 5A). In addition, NADM8high patients have a higher immune

score calculated through the “estimate” algorithm (Figure 5B).

Immune checkpoint molecules are pivotal targets for

immunotherapy and crucial indicators of the efficacy of

immunotherapy. The expression levels of common immune
A B

D

E

C

FIGURE 4

Validation of the prognostic value of the NADM8 score across multiple independent datasets. (A-C) Kaplan-Meier estimates of OS according to the
NADM8 score in the BeatAML cohort (A), TCGA cohort (B), and HOVON cohort (C). (D, E) Calibration curves of the nomogram model show the
predicted and actual 1-year, 2-year, and 3-year survival probabilities in the BeatAML cohort (D) and TCGA cohort (E).
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checkpoints, including CTLA4, PDCD1, PDCD1LG2, LAG3 and

TIGIT were significantly higher in high-risk individuals than in

low-risk patients (Figure 5C). The heatmap showed the correlation

between the 8 NAD-related genes of the model and the level of
Frontiers in Immunology 10
immune cell infiltration (Figure 5D). Overall, these findings

underscore the significance of the NADM8 score as a potential

biomarker for immune response evaluation in AML, providing

insights for the development of novel therapeutic approaches.
A

B

D

C

FIGURE 5

Correlations of immune microenvironment features with the NADM8 signature. (A) The differential infiltration of multiple immune cells between
NADM8high and NADM8low samples. (B) Comparison of immune activity between NADM8high and NADM8low samples via the ESTIMATE algorithm.
(C) The expression levels of immune checkpoint molecules between the NADM8high and NADM8low groups (D) The correlation between the 8 NAD-
related genes and infiltrated immune cells in the TME. TME, tumor microenvironment. * means p < 0.05; ** means p < 0.01; *** means p < 0.001;
**** means p < 0.0001; ns means no significance.
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High NADM8 score indicates the potential
therapeutic efficacy of specific small-
molecule inhibitors

Exploration of the treatment responses after two courses of

induction chemotherapy of 335 AML patients in our training cohort

manifested that the complete remission (CR) rate of the NADM8high

group was significantly lower than that in the NADM8low group

(P<0.001) (Figures 6A, B; Supplementary Table S9), indicating a less

sensitivity of high-risk patients to conventional chemotherapy. In

addition, in the univariate logistic regression model, the NADM8

score demonstrated predictive power for chemotherapy resistance

(Figure 6C, AUC=0.67, P<0.001).

Therefore, there is an urgent need to identify novel potential

agents that could serve as alternative therapeutic options for these

high-risk AML patients. To meet this clinical exigency, we exploited

the ex vivo drug sensitivity profiles of AML samples to a panel of

small-molecule inhibitors from the BeatAML cohort (26)

(Figure 6D). Pearson’s correlation analysis was applied between

the area under the dose-response curve (AUC) of each drug and the

NADM8 score of AML patients. Two drugs, GDC-0941 (Pictilisib)

and AT7519, were identified to be potential effective therapeutic

agents for high-risk patients, whose AUC were negatively correlated

with the risk score (both P<0.05) (Figures 6E, F).

GDC-0941, a pan-phosphatidylinositol-3-kinase (PI3K)

inhibitor, has been incorporated into clinical trials in combination

with paclitaxel for metastatic breast cancer (NCT01740336,

NCT00960960) (27, 28), and with either paclitaxel, carboplatin, or

cisplatin for advanced non-small-cell lung cancer (29). Besides,

GDC-0941 has been validated to induce growth arrest and

apoptosis of AML cells. AT7519, a novel multi-cyclin-dependent

kinase inhibitor, could induce cell apoptosis in multiple myeloma

(30) and glioblastoma (31). In concordance with this, the PI3K-

AKT-mTOR and MAPK signaling pathways were significantly

upregulated in NADM8high patients (Figures 6G, H). Accordingly,

we hypothesize that a high NADM8 score probably reflects certain

biological features of AML blasts, which might confer greater

sensitivity to these two targeted therapies. Overall, these findings

suggest that the NADM8 score could be employed to facilitate the

effective use of drug candidates like GDC-0941 and AT7519 for

AML patients who may poorly respond to conventional

induction chemotherapy.

To further validate the therapeutic efficacy of the predicted

drugs, we profiled the sensitivity of 9 AML cell lines to PI3K

inhibitor GDC-0941 through in vitro experiment. (Supplementary

Figures S4A–I). Meanwhile, the NADM8 score of each AML cell

line was calculated using the RNA-seq data from the Cancer Cell

Line Encyclopedia (CCLE) dataset (32) (Figure 6I). Notably, a

significant negative correlation between the NADM8 score and

Inhibitory Concentration 50 (IC50) was observed, implying that a

high NADM8 score might indicate potential sensitivity to the PI3K

inhibitor GDC-0941 (Figure 6J). Furthermore, we verified the

therapeutic efficacy of GDC-0941 in primary AML samples.

Results suggested that patients in the NADM8high group tend to

be more sensitive to the treatment of PI3K inhibitor GDC-0941 as
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compared with the NADM8low group, although it is borderline

significant (P = 0.0556) due to the limited sample size (Figure 6K).
Functional exploration of the core gene
SLC25A51 in the NADM8 model

To further investigate the functional mechanisms of the NAD-

related genes in AML, we conducted an in-depth analysis of the

CRISPR-Cas9 screen dataset of 26 AML cell lines from the

Dependency Map (DepMap) portal. The average CRISPR score of

SLC25A51 across AML cell lines is the lowest (-0.92) among the 8

genes in the NADM8 model, which suggests that SLC25A51 is the

most essential gene for the survival of AML cells (Figure 7A).

SLC25A51, the first identified mammalian mitochondrial NAD+

transporter, has been reported to be involved in the development of

various malignancies through disrupting NAD+ transport and

inducing mitochondrial metabolic dysregulation (33–36).

Collectively, SLC25A51 may play a pivotal role in the

pathogenesis of AML and hold great promise as a potential

therapeutic target. Therefore, we selected SLC25A51 for further

exploration. The prognosis analysis showed a significant association

between SLC25A51 expression level and poor overall survival

(Figures 7B, C). Subsequently, in vitro experiments were

conducted to elucidate the functional role SLC25A51 plays in the

pathogenesis of AML. Two AML cell lines (U937 and THP-1)

showing a high expression level of SLC25A51 were selected for

further functional assays. Following the knockdown of SLC25A51 in

cell lines, we observed a significant decrease in cell proliferation

capacity (Figures 7D–G), as well as an increase in apoptosis

(Figures 7H, I). Our findings underscored the pivotal oncogenic

role of SLC25A51 in the pathogenesis of AML, highlighting its

potential as a promising candidate for targeted therapeutic

intervention in AML.
Discussion

Metabolic reprogramming is crucial in the pathogenesis and

adaptation of tumors. The Warburg effect, which delineates

abnormal aerobic glycolysis in malignant cells, is the first

discovery that relates tumor biology to metabolism (37). NAD

acts as a coenzyme and mediates energy metabolism and redox

reactions in a wide range of metabolic pathways including

glycolysis, which has been reported to facilitate the malignant

proliferation of cells and play a pivotal role in many diseases (20).

AML exhibits abnormalities in numerous crucial metabolic

pathways, however, there is a dearth of systematical research that

links the impact of metabolic perturbations to refined risk

stratification and tailored management decisions for AML

patients. In this study, we substantiated the prognostic value of

NAD metabolism profiles in AML, and innovatively developed a

transcriptome-based prognostic model comprising eight core NAD

metabolism-related genes. For instance, SLC25A51 serves as an

important mammalian mitochondrial NAD+ transporter (33).
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FIGURE 6

Exploration of effective specific small-molecule inhibitors for the NADM8high patients. (A) Bar plot shows the distribution of chemotherapy response
rate between the NADM8high and NADM8low patients in all the RJAML cohort and (B) the patients who received the “3 + 7”-based regimens as initial
induction in the development cohort. (C) ROC curve indicates the prediction power of NADM8 for chemotherapy resistance in the univariate logistic
regression model (AUC=0.67, P<0.001). (D) Illustrative diagram of ex vivo drug sensitivity data in AML patients from the BeatAML cohort. The freshly
isolated mononuclear cells from patients were exposed to 155 small-molecule inhibitors at different concentrations and the drug sensitivity of these
patient-derived cells was further determined. (E, F) Pearson’s correlation analysis identifies the potential drugs, GDC-0941 and AT-7519, that exert
therapeutic effect in NADM8high patients. Significant inhibitors were determined using the threshold of p-value < 0.05. (G, H) GSEA shows the
enrichment of PI3K-AKT-mTOR signaling and MAPK signaling pathway in NADM8high patients. (I) Heatmap depicts the expression level of the 8
NAD-related genes in AML cell lines. (J) The Pearson’s correlation plot shows that the NADM8 scores of the 9 AML cell lines are negatively
associated with the IC50 score of GDC-0941 generated from in vitro drug sensitivity assays. (K) Boxplot showing IC50(mM) between samples of
NADM8high and NADM8low patients against GDC-0941.
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SIRT2, a member of the Sirtuin family, has recently been reported as

a molecular marker in predicting the poor prognosis of AML (38).

NMNAT2, a nicotinamide nucleotide adenylyl-transferase,

catalyzes an essential step in NAD/NADP biosynthetic pathway.

Additionally, SARM1 is an important NAD hydrolase that is deeply

investigated in neurodegenerative disease (39, 40).

The advantages of the established NADM8 model lie in the

following aspects. Firstly, the NADM8 model was trained based on

a multi-center, large-scale AML cohort, which encompassed all

adult age groups, FAB subtypes, and ELN risk groups. Its prognostic

value was subsequently validated in multiple independent AML

cohorts. Secondly, our model exhibited superior performance

compared to other transcriptome-based models in terms of both

discrimination and predictive accuracy. Moreover, this simple

model utilized a small number of NAD-related genes to efficiently

capture the metabolic dysregulation in AML and further provided

appropriate therapeutic interventions. Collectively, these findings
Frontiers in Immunology 13
underscore the reliability and convenience of the NADM8

prognostic model in clinical practice.

It is noteworthy that the NADM8 model can effectively

distinguish a subset of AML patients with unfavorable clinical

and molecular features. Patients with high NADM8 scores were

older and exhibited a higher frequency of specific gene mutations in

the ELN adverse risk group (e.g., TP53, SF3B1, ASXL1, U2AF1),

which were reported to be enriched in elderly AML patients (41–

43). Consistently, previous reports unveiled that dysregulated NAD

metabolism was linked to numerous aging-related diseases (22).

Moreover, the NADM8high group showed higher abundance of

FAB-M5 subtype across all training and validation cohorts, which

may mirror potential distinctive metabolic properties associated

with this specific subtype. It has been reported that monocytes rely

on glutamine as a crucial energy source (44). Additionally,

monocytic AML subclones exhibit resistance to BCL2 inhibitor

venetoclax due to inherent molecular and metabolic characteristics
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FIGURE 7

The functional exploration of SLC25A51 in AML. (A) Boxplot showing the average CRISPR scores across AML cell lines of the 8 genes in the NADM8
model. (B) Kaplan-Meier estimates of overall survival (OS) according to the expression level of SLC25A51 in the whole RJAML training cohort. (C) The
overall survival status of the RJAML intermediate-risk patients between the two risk groups categorized by the median expression level of SLC25A51.
(D, F) The knockdown efficiency of the SLC25A51 gene expression level in U937 cell line (D) and THP-1 cell line (F). (E, G) The proliferative capacity
of U937 and THP-1 cells following stable knockdown of SLC25A51 as measured by CCK8 assays, with red and blue lines representing the
knockdown and control vector group, respectively. (H, I) Knockdown of SLC25A51 could strongly induce apoptosis of U937 and THP-1 cells, as
measured by annexin V/PI flow cytometric analyses. The histogram depicts the quantification of the total proportion of cells in the early (annexin V
+/PI–) and late apoptotic (annexin V+/PI+) stages. All plots are representative of at least three independent experiments performed in duplicate and
presented as the means ± standard deviation. (*p < 0.05, **p <0.01 and ***p < 0.001).
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(45). Such metabolic preference and dependency might provide a

plausible explanation for the multidrug resistance and poor

prognosis of NADM8high AML patients, and further functional

and mechanism experiments are warranted.

NAD metabolism is crucial for tumor microenvironment (TME)

and it has been reported that NAD+ replenishment combined with

PD-1/PD-L1 antibody provides a promising therapeutic strategy for

immunotherapy-resistant tumors (46) and supplement of NAD+

could boost T cell-based immunotherapy (47). Analysis of the

immune microenvironment yielded a surprising revelation that

NADM8 high-risk patients exhibited not only an enrichment of

immune cell infiltration but also a higher expression of immune

checkpoint markers relative to low risk patients. Since previous

studies have indicated that AML resides in an immunosuppressive

state, with minimal efficacy observed in immune therapies such as

immune checkpoint inhibitors. The NADM8 signature may identify

patients with a unique immune state potentially yielding a higher

response rate to immune therapies.

In order to deliver alternative tailored therapies on the NAD

risk-based assessment, we explored in vitro drug sensitivity data

obtained from the BeatAML dataset. Of particular note, two

potential small-molecule inhibitors, the pan-PI3K inhibitor GDC-

0941 and cell cycle inhibitor AT-7519, were predicted to exert

therapeutic effect in NADM8high patients. In line with this, the

PI3K-AKT-mTOR pathway is significantly upregulated in the

NADM8high group through GSEA. This is one of the most

frequently activated signaling pathways in cancer, which exerts a

substantial influence on crucial cellular processes including cell

growth, apoptosis, and metabolism, particularly glycolysis and

reactive oxygen species (ROS) metabolism (48). Of note, drug

sensitivity experiments on 9 AML cell lines, which showed that

their sensitivity to GDC-0941 is significantly correlated with the

NADM8 score, further underscored the promising potential of

GDC-0941 as an effective therapeutic option for NADM8high

patients. To summarize, the NADM8 score could effectively

characterize the specific wiring of the NAD metabolic biological

process and the activation of the PI3K pathway. Patients with these

features may be more susceptible to medications that interfere with

this pathway, which provides a potentially effective treatment for

high-risk AML patients.

Finally, we delved into the most significant gene SLC25A51 in

the NADM8 model via a series of functional studies. In vitro

knockdown experiments demonstrated that SLC25A51 may exert

a pivotal impact on the proliferation and apoptosis of AML cells.

SLC25A51 protein is localized on the mitochondrial membrane and

can transport NAD+ from cytoplasm to mitochondria (33, 49).

Abnormal expression of SLC25A51 may impair the mitochondria

respiratory processes, which is associated with the pathogenesis of a

variety of malignancies. It has recently been discovered that

SLC25A51 could sustain mitochondria acetylation homeostasis

and proline biogenesis by promoting the deacetylation function of

Sirtuin 3 (SIRT3), which may ultimately prompt the proliferative

capacity of tumor cells. Additionally, a marked decrease of proline

abundance can be detected after knockdown of SLC25A51, leading

to the inactivation of the AKT/mTOR pathway (34). Taken

together, we hypothesize that the oncogenic potential of
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SLC25A51 in AML may be attributed to its capacity to transfer

NAD+ into mitochondria, thereby enhancing the activity of the

NAD-dependent enzymes SIRT3, SIRT4, and SIRT5 located in

mitochondria, which ultimately promotes the malignant

proliferation of AML cells (50). Further exploration of drugs

directly target key genes in the NAD metabolism pathway may

offer novel therapeutic options for high-risk patients.
Conclusion

In summary, we established a NAD metabolism-related gene

model in AML and validated its robustness and prognostic value in

multiple large cohorts comprising 1870 AML patients. High

NADM8 score is an independent risk factor and efficiently

discriminates patients with unfavorable clinical and molecular

features. Further investigations have identified potential treatment

options for NADM8 high-risk patients, holding great promise to

guide therapeutic decisions including both immunotherapy and

targeted therapies.
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SUPPLEMENTARY FIGURE 1

NAD-related metabolism pathways are associated with poor prognosis in
AML. (A) Forestplot demonstrates the univariate Cox survival results of the

NAD metabolism-related pathways according to the GSVA score. (B-D)
Kaplan-Meier estimates of prognostic value of the NAD metabolism-related
pathways according to the GSVA score.

SUPPLEMENTARY FIGURE 2

Comparison of gene expression landscape between NADM8high and
NADM8low patients. (A, B) Heatmap (A) and Volcano plots (B) show the

differentially expressed genes (DEGs) between NADM8high and NADM8low

patient groups. Significant genes were determined using the threshold of |
log2(fold change) | >=1 and P < 0.05.

SUPPLEMENTARY FIGURE 3

Comparison of clinical information and mutational landscape between
NADM8high and NADM8low patients in the validation cohort. (A, B) Waterfall

plot shows the clinical information and somatic mutations between

NADM8high and NADM8low patient groups in the BeatAML dataset (A) and
TCGA dataset (B). (C, D) Forest plot shows the mutations that occur at

significantly different frequencies between NADM8high and NADM8low

groups in the BeatAML dataset (C) and TCGA dataset (D).

SUPPLEMENTARY FIGURE 4

The ex vivo drug sensitivity assays of GDC-0941 in a panel of AML cell lines.

(A-I) The viability curves show the inhibition rate of different concentrations of
GDC-0941 to a panel of AML cell lines (OCI-AML2, K562, OCI-AML3, U937,

M13, KASUMI-1, HL-60, ME1, NB4) as measured by CCK8 assays. The IC50
score of GDC-0941 for each cell line was calculated by the Prism software.
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