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Guanheng Li1, Xiaoli Gu2* and Lin Jin1*

1Department of Ultrasound, Guanghua Hospital Affiliated to Shanghai University of Traditional
Chinese Medicine, Shanghai, China, 2Department of Radiology, Guanghua Hospital Affiliated to
Shanghai University of Traditional Chinese Medicine, Shanghai, China, 3Department of Pulmonary
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Shanghai, China
Objectives: Quantitatively assess the severity and predict the mortality of

interstitial lung disease (ILD) associated with Rheumatoid arthritis (RA) was a

challenge for clinicians. This study aimed to construct a radiomics nomogram

based on chest computed tomography (CT) imaging by using the ILD-GAP

(gender, age, and pulmonary physiology) index system for clinical management.

Methods:ChestCT imagesofpatientswithRA-ILDwereretrospectivelyanalyzedand

staged using the ILD-GAP index system. The balanced dataset was then divided into

training and testing cohorts at a 7:3 ratio. A clinical factor model was created using

demographic and serumanalysis data, anda radiomics signaturewasdeveloped from

radiomics features extracted from the CT images. Combined with the radiomics

signatureand independentclinical factors, anomogrammodelwasestablishedbased

on the Rad-score and clinical factors. The model capabilities were measured by

operating characteristic curves, calibration curves and decision curves analyses.

Results: A total of 177 patients were divided into two groups (Group I, n = 107;

Group II, n = 63). Krebs von den Lungen-6, and nineteen radiomics features were

used to build the nomogram, which showed favorable calibration and

discrimination in the training cohort [AUC, 0.948 (95% CI: 0.910–0.986)] and

the testing validation cohort [AUC, 0.923 (95% CI: 0.853–0.993)]. Decision curve

analysis demonstrated that the nomogram performed well in terms of

clinical usefulness.

Conclusion: The CT-based radiomics nomogram model achieved favorable

efficacy in predicting low-risk RA-ILD patients.
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1 Introduction

Rheumatoid arthritis (RA) is one of the most immune-mediated

diseases that affects 0.5–1% of the global population. It is primarily

characterized by joint swelling and tenderness, leading to the

destruction of synovial joints (1). Beyond the joints, RA is

associated with systemic inflammation that can result in multiple

coexisting conditions and extra-articular manifestations (2).

Pulmonary involvement is recognized as the most prevalent

extra-articular complication in RA, encompassing a broad range

of disorders such as airway diseases, pleural effusions, and

rheumatoid nodules (3–5) . Among these pulmonary

complications, interstitial lung disease (ILD) has the highest

prevalence (6). Importantly, RA-ILD is a significant cause of

mortality among RA patients and contributes to considerable

morbidity (7). Consequently, accurately assessing mortality risk

associated with RA-ILD is of great clinical significance.

The ILD-GAP (gender, age, and pulmonary physiology) index,

initially proposed by Ley et al. in 2012 (8), is a simple scoring system

designed to predict mortality risk in patients with idiopathic

pulmonary fibrosis. Utilizing variables such as gender, age,

predicted forced vital capacity (FVC), and diffusion capacity for

carbon monoxide (DLCO), which has been refined and validated for

various types of ILD (9). Its accuracy in predicting outcomes for

RA-ILD has been confirmed by multiple studies (10–12). However,

pulmonary function tests (PFTs) necessitate active participation

from patients, such as performing deep breaths or forceful

exhalations (13). This can be particularly challenging for special

populations, including those with cognitive impairments or

concurrent pulmonary conditions, potentially compromising the

precision of the test results. To our knowledge, there is an absence of

universal, quantitative, non-invasive techniques for the staging of

RA-ILD.

The current primary method for diagnosing RA-ILD remains

Computed Tomography (CT) scan, owing to its noninvasive and

sensitive nature in detecting lung involvement (14, 15). However,

there are many features to determine the presence of ILD and inter-

reader variability, especially in unexperienced readers, is an issue

(16). Visual analysis of ILDs on CT images faces difficulties in

providing prognosis information, as various stages of RA-ILD

exhibit overlapping imaging features, making the diagnosis and

assessment of severity challenging with conventional imaging

modalities (17, 18). Radiomics technology, capable of extracting

numerous high-dimensional features from CT images, emerges as a

solution to address the limitations of visual assessment. Although

radiomics has predominantly been explored in the context of

various tumors (19, 20), its potential has been demonstrated in

identifying the GAP staging of connective tissue disease-associated

interstitial lung disease (CTD-ILD) (21, 22). However, ILD

associated with different CTDs can be characterized by distinct

clinical manifestations, imaging, and pathological features,

indicating their unique developmental and regression patterns. In

the context of RA-ILD, evidence from a small cohort study

suggested that radiomics may hold the potential for predicting

mortality (23). However, limited studies are focusing on the

application of radiomics in the staging of RA-ILD. Therefore, it is
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still necessary to explore the discriminative value of radiomics in

various stages of RA-ILD.

In this retrospective study, we aimed to establish a novel CT-

based radiomics nomogram to differentiate between the different

stages of RA-ILD.
2 Materials and methods

2.1 Patients

The study included patients clinically diagnosed with RA-ILD

between April 2020 and December 2023 at Guanghua Hospital

Affiliated with Shanghai University of Traditional Chinese

Medicine. Inclusion criteria comprised patients meeting all of the

following conditions: 1) diagnosed with RA according to the 2010

American College of Rheumatology criteria for RA (24); 2)

diagnosed with ILD according to the American Thoracic Society,

European Respiratory Society, Japanese Respiratory Society, and

Latin American Thoracic Society (ATS/ERS/JRS/ALAT) criteria for

ILD (25); 3) underwent a CT scan showing signs of ILD within 3

months after clinical diagnosis; and 4) underwent pulmonary

function tests and laboratory examination within 30 days before

or after the CT scan. Exclusion criteria were applied for patients

meeting any of the following conditions: 1) those with pulmonary

edema, infection, drug toxicity, allergy tumor, or heart disease; 2)

diagnosed with a combination of other types of CTD; 3) incomplete

demographic or clinical data. The flowchart of the study subjects is

shown in Figure 1.
2.2 Pulmonary function test

The routine PFTs were conducted using the Master Screen

Diffusion Pulmonary Function Instrument (Eric Jaeger, Germany).

The following indicators were assessed: the percentage predicted

values (% predicted) of forced expiratory volume in 1 s (FEV1),

FVC, total lung capacity (TLC), and DLCO. The ILD-GAP index

was calculated in accordance with the method proposed by Ryerson

et al. (9). Subsequently, patients were categorized into two groups:

Group I comprised patients with an ILD-GAP index ≤1, while

Group II included patients with an ILD-GAP index >1.
2.3 CT image acquisition and evaluation

All enrolled patients underwent nonenhanced chest CT

examinations using one of two multidetector CT systems:

SOMATOM Definition Flash (Siemens Healthcare, Tokyo, Japan)

or Access CT (Philips Healthcare, Andover, Massachusetts, USA).

The parameters used for CT scanning were as follows: tube voltage

of 120 kVp and tube current-time product of 60-220 mAs with

automatic dose modulation; detector collimation of 64 × 0.6 mm;

rotation time of 1.0 second; and matrix size of 512 × 512. All CT

scans were reconstructed with a 1-mm slice thickness and lung

convolution kernels. The semiquantitative CT (SQCT) assessment
frontiersin.org
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was carried out to calculate Goh score for each CT scan (26). RA-

ILD findings from HRCT were classified as UIP or non-UIP

patterns following recent IPF guidelines (25).
2.4 Three-dimensional lung segmentation

All image segmentation was executed using 3D Slicer software

(version 5.6.1, www.slicer.org). The preprocessing steps were

carried out as follows: 1) All CT images were reprocessed using

the “Resample Scalar Volume” module by resampling them into 1-

mm thick slices and normalizing the intensity values within the

range of [–1, 1]. 2) Using the “Radiomics” module, the voxel

intensity values were discretized with a fixed bin width of 25 HU

to reduce noise and standardize intensity across the images. 3) Z-

score normalization was performed on the image gray values to

reduce the impact of inconsistent imaging parameters on the

variability of radiomics features. 4) The region of interest (ROI)

of the bilateral lungs was automatically segmented, encompassing

blood vessels and the trachea in the lung lobes (window width =

1,250; window level = -875). A threshold-based region growing

method was utilized. The seeding strategy involved the placement of

a total of 13 seed points across different anatomical planes. On the

axial plane, three seed points were positioned in the peripheral

regions of the left and right lungs, respectively. A similar approach

was adopted on the coronal plane. Additionally, one seed point was

positioned at the location of the main bronchus. Subsequently, the

segmentation results underwent manual correction by a radiologist
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with 5 years of experience in imaging diagnosis of chest diseases,

and confirmation was obtained from another radiologist with 8

years of experience in imaging diagnosis of chest diseases.

Interclass and intraclass correlation coefficients (ICCs) were

employed in the following manner: A total of 20 cases were

randomly selected for region of interest (ROI) segmentation by

Radiologist 1. Radiologist 2 then replicated the segmentation for

these 20 cases. Subsequently, Radiologist 1 repeated the

segmentation after a one-month interval. The segmentation was

deemed well-matched in terms of interobserver reliability and

intraobserver reproducibility when the ICC value surpassed 0.75.
2.5 Radiomics feature extraction and
model establishment

Figure 2 shows the workflow of radiomics analysis in this study.

The patient cohort was randomly split into training and test cohorts

at a ratio of 7:3. Feature extraction was performed utilizing the

open-source Pyradiomics software package (http://pypi.org/

project/pyradiomics/). This package facilitates the extraction of a

comprehensive suite of radiomics features, categorized into seven

distinct classes: Gray Level Dependence Matrix (GLDM), Gray

Level Co-occurrence Matrix (GLCM), Gray Level Run Length

Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),

Neighboring Gray Tone Difference Matrix (NGTDM), First Order

Statistics, and Shape-based features (3D). A detailed description of

the extracted features is accessible via the Pyradiomics
FIGURE 1

Flowchart of the patient cohort.
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documentation (http://pyradiomics.readthedocs.io). A total of

1,834 radiomics features were extracted from the ROIs. Statistical

analysis involved the Student’s t-test for normally distributed

features and the Mann-Whitney U test for others. Features with a

p-value ≤ 0.05 were retained, resulting in 1,171 features. Spearman’s

rank correlation coefficient was then applied to identify robustly

repeatable features, retaining one feature from pairs with a

correlation coefficient > 0.75. A recursive elimination strategy

further refined the features to a subset of 102. The dataset’s

signature was constructed using the least absolute shrinkage and

selection operator (LASSO) regression model. The optimal l value

was determined via tenfold cross-validation. Features with non-zero

coefficients formed the Radiomics Signature, combining linearly to

compute the radiomics score for each patient. Scikit-learn in Python

was employed for LASSO regression, and logistic regression was

used for model formulation after 10-fold cross-validation to verify

model adequacy.
2.6 Construction of the clinical model

The clinical factor model incorporated variables that were

significantly different (p < 0.05) as determined by univariate

logistic regression analysis. These variables included clinical data
Frontiers in Immunology 04
and laboratory examinations from the training cohort. Odds ratios

(ORs) with 95% confidence intervals (CIs) were calculated for the

significantly correlated variables. To mitigate the risk of data

leakage within the models, gender, age, and PFT parameters

were excluded.
2.7 The building of the clinical-
radiomics nomogram

A multivariate logistic regression analysis, combining both the

clinical signature and radiomics signature, was employed in a

backward step-down selection procedure to develop the final

integrated radiomics-clinical prediction model.
2.8 Statistical analysis

Statistical analyses were performed using SPSS (version 26.0;

IBM Corp.). Statistical significance was defined as a two- sided p-

value ≤ 0.05. Normally distributed data were analyzed using

independent T-tests, and non-normally distributed data were

presented as medians (interquartile range) using Mann-Whitney

U tests. Categorical variables were analyzed using chi-square tests.
FIGURE 2

Overview workflow of radiomics analysis. Semi-automatic segmentation of the whole lung was performed on CT images, followed by manual
adjustment of the confirmed dissection range, with the region of interest delineated in blue. Imaging-derived histologic features, including shape
and texture characteristics, were extracted from CT images of both lungs. Feature selection was conducted using inter- and intra-observer reliability
assessment as well as the LASSO method. The performance and clinical utility of predictive model were evaluated using ROC, DCA, and nomogram
analysis. MSE Mean standard error, ROC Receiver operating characteristic, DCA Decision curve analysis.
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The predictive performance of the three models was evaluated using

receiver operating characteristic (ROC) curves, with the area under

the ROC curve (AUC) calculated. Model performance was tested in

both the training and test cohorts. The Delong test was applied to

compare AUCs among the three models. Calibration efficiency of

the nomogram was assessed through calibration curves, and the

Hosmer–Lemeshow analytical fit was used to evaluate calibration

ability. Decision curve analysis (DCA) was employed to evaluate the

clinical utility of the radiomics-clinical model.
3 Results

3.1 Patient characteristics

A total of 177 patients with RA-ILD were enrolled in this study.

Among these patients, 107, 63, and 7 were allocated to ILD-GAP

stage I, II, and III, respectively. To prevent excessive data bias, the

patients in ILD-GAP stage II and III were combined into a single

group. Table 1 listed the baseline patient characteristics in group I

and group II. Age, gender, FVC, FEV1, TLC, DLCO, and serum

Krebs von den Lungen-6 (KL-6) level showed significant differences

(p < 0.05) between the two groups, while the differences in smoking

history, ACPA, RF-IgM, RF-IgA, and RF-IgG were not significant

(p > 0.05). In addition, there was no significant statistical difference

between the two groups in terms of ESR, CRP, TNFa, IFNg, IFNa,
as well as disease activity score (p > 0.05).
3.2 Development of the clinical model

Univariate logistic regression was performed to analyze the

clinical data and laboratory examinations (Table 2). To ensure the

reliability of the model construction, factors such as gender, age,

and PFT parameters were excluded. Then, KL-6 (ORs = 1.007; 95%

CI, 1.004-1.010; p < 0.001) was selected as independent clinical

risk factors.
3.3 Development of the radiomics model

A total of 1,834 radiomics features were extracted from the CT

images, with 1,171 exhibiting promising interobserver and

intraobserver agreement (intraclass correlation coefficient > 0.75).

Through LASSO logistic regression analysis, 102 significantly

different (p < 0.05) radiomics features were selected to identify

optimally related features. Ultimately, 19 features were included in

the construction of the radiomics model. Figures 3A,B show the

coefficients and mean standard error (MSE) for the 10-fold

validation, while Figure 3C presents the coefficient values for the

final selection of non-zero features Rad score is shown as follows:

Rad-score= 0.4227 + 0.0088 × exponential_firstorder_Range

+0.0296 × exponential_glrlm_ShortRunLowGrayLevelEmphasis

-0.0157 × exponential_glszm_GrayLevelNonUniformity

Normalized +0.0516 × gradient_glcm_Correlation +0.0743 ×

lbp_3D_m1_glszm_ZoneEntropy +0.0146 × lbp_3D_m2_glszm_
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TABLE 1 Patient characteristics.

Variables Group I (n=107) Group II (n=70)
p

value

Female (%) 91(85.05%) 40(57.14%) <0.001

Age, years 58.8 ± 8.9 71.5 ± 5.5 <0.001

RA duration, years 10.00 [4.00-9.25] 11.00 [4.00-20.00] 0.084

Smoking (%) 7(6.54%) 5(7.14%) 0.876

Lung function

FVC% 86.5 ± 18.1 66.3 ± 17.4 <0.001

FEV1% 86.2 ± 18.0 67.2 ± 17.0 <0.001

TLC% 83.6 ± 15.7 56.8 ± 14.6 <0.001

DLCO% 61.5 ± 17.7 32.2 ± 13.4 <0.001

Laboratory Examinations

ACPA, RU/ml
653.90

[240.30-1249.50]
582.10

[138.75-1364.88]
0.782

RF-IgA, U/ml
32.77 [8.22-300.00]

28.18
[6.43-146.40]

0.496

RF-IgG, U/ml
30.01 [6.11-96.76]

40.50
[4.23-136.63]

0.957

RF-IgM, U/ml
127.00

[33.90-369.00]
135.00

[40.25-574.00]
0.590

TNFa, pg/ml 2.56 [1.68-2.67] 2.00 [1.36-2.56] 0.075

IFNg, pg/ml 2.46 [2.27-5.65] 2.46 [1.82-5.05] 0.745

IFNa, pg/ml 1.36 [0.95-2.09] 1.50 [0.96-1.88] 0.830

ESR, mm/h 37.50 [23.75-65.25]
40.00

[18.00-69.00]
0.682

CRP, mg/l 12.35 [2.06-32.95] 7.14 [0.80-22.98] 0.197

KL-6, U/ml
216.58

[137.09-297.30]
376.84

[261.07-539.88]
<0.001

Disease activity

DAS-28-ESR 3.51 ± 1.56 3.33 ± 1.37 0.489

DAS-28-CRP 4.25 ± 1.54 4.12 ± 1.46 0.611

CT images

ILD pattern (UIP/
non-UIP)

50 (46.7%) 64.3(64.3%) 0.022

Goh score, % 12 [8-15] 19 [13-27] <0.001

Treatment for RA

Methotrexate 75 (72.8%) 45 (66.2%) 0.353

Methylprednisolone 47 (46.5%) 37 (57.8%) 0.158

Hydroxychloroquine 18 (18.2%) 11 (16.4%) 0.769

Leflunomide 20 (19.8%) 18 (26.9%) 0.284

Biological agent 69 (67.0%) 30 (44.8%) 0.004
frontie
Categorical variables are presented as n (%). Continuous variables are listed as median (inter-
quartile range, IQR) or as mean ± standard deviation. n, number of patients; FVC, Forced vital
capacity; FEV1, Forced expiratory volume in 1 s; TLC, Total lung capacity; DLCO, Diffusion
capacity for carbon monoxide; ESR, erythrocyte sedimentation rate; RF, rheumatoid factor;
CRP, C-reactive protein; APLA, anti-phospholipid antibodies; KL-6, Krebs von den Lungen-6;
TNFa, tumor necrosis factor alpha; IFNg, interferon gamma; IFNa, interferon alpha; DAS,
disease activity score; UIP, usual interstitial pneumonia.
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SizeZoneNonUniformity +0.0477 × log_sigma_3_0_mm_3D_

glcm_Idn -0.0107 × original_glszm_LargeAreaHighGray

LevelEmphasis -0.0561 × original_glszm_SmallAreaHigh

GrayLevelEmphasis +0.0590 × original_glszm_SmallAreaLowGray

LevelEmphasis +0.0049 × original_ngtdm_Busyness -0.0623 ×

or ig ina l_shape_F la tnes s +0 .0020 × or ig ina l_ shape_

Maximum2DDiameterSl ice +0.0349 × original_shape_

MinorAxisLength -0.0730 × original_shape_Sphericity -0.0597 ×

squareroot_firstorder_Skewness -0.0879 × wavelet_HHL_

glcm_Idmn +0.0285 × wavelet_LHL_ngtdm_Busyness +0.0026 ×

wavelet_LLH_firstorder_Skewness.
3.4 Comparison of clinical, radiomics, and
nomogram models

As shown in Figure 4, for the AUC, the clinical features [0.736,

95%CI = 0.642–0.830) and the radiomics features (0.939, 95%CI =

0.892–0.985) were perfectly fitted for the training cohort. In the

testing cohort, the clinical characteristics (0.752, 95%CI = 0.610–

0.894) and the radiomics signature remained well-fitted (0.901, 95%

CI = 0.820–0.982). As shown in Figure 5, The nomogram using the
Frontiers in Immunology 06
LR algorithm, combining clinical features and radiomics features,

showed the best performance in the training (0.948, 95%CI = 0.910–

0.987) and testing cohort (0.923, 95%CI = 0.853–0.993),

respectively. The detailed diagnostic efficiency capability for each

model is presented in Supplementary Table S1.

To compare the clinical signature, radiomics signature, and

nomogram, the Delong test was utilized (Supplementary Table 2).

In the testing cohort, the results indicated that the AUC comparison

between the nomogram and the clinical signature achieved 0.021,

suggesting that the nomogram outperformed the clinical model in

discriminating the GAP staging of RA-ILD. The AUC comparison

between the nomogram and radiomics signature was 0.219,

indicating that both models performed well in differentiating the

GAP staging of RA-ILD.
3.5 Comparison of visual assessment,
radiomics, and nomogram models

In the testing cohort, the Goh score achieved an AUC of 0.820

(95%CI=0.700-0.941; Supplementary Figure 1). Comparatively,

both the radiomics model (0.901, 95% CI: 0.820-0.982) and the

combined radiomics-KL-6 nomogrammodel (0.923, 95% CI: 0.853-

0.993) showed superior AUC values relative to the Goh score.
3.6 Calibration curve and DCA of
the models

The calibration curves for the training and testing cohorts were

shown in Figure 6. The p-values from the Hosmer-Lemeshow test

for clinical features, radiologic features, and nomograms were 0.557,

0.171, 0.305, and 0.193, 0.072, 0.160 in the training and test cohorts,

respectively. These p-values suggest a perfect agreement for each

model (Supplementary Table 3).

As shown in Figure 7, the DCA for clinical features,

radiographic features, and nomograms, covering predictive

probabilities from 0.12 to 0.41, 0.02 to 0.91, and 0.1 to 0.78. The

nomogram achieves the largest net benefit compared to other

models when the threshold probability ranges from 0.23 to 0.58.
4 Discussion

In our study, the radiomics model based on chest CT has great

performance to distinguish different ILD-GAP stage patients with

an AUC of 0.901 in validation cohort. The nomogram model,

combining the radiomics model and serum KL-6, further enhanced

the prediction efficiency of GAP staging with an AUC of 0.948 and

0.923 in the training and validation cohort, respectively.

Among the serological markers, anti-citrullinated protein antibodies

(ACPA) have been implicated in the extra-articular manifestations of

RA, including ILD (27–29). Correia et al. reported a correlation between

ACPA titers and the risk of developing ILD (30). On the contrary, many

studies have shown no association between ACPA and ILD, as well as

related RF factors. Similarly, our study revealed no significant differences
TABLE 2 Independent risk factors in training cohort.

Variables
Odds ratio
(95% CI)

p value

Age 1.27(1.17-1.38) <0.001

Gender 0.30(0.13-0.69) 0.005

RA duration 1.03(1.00-1.07) 0.068

FVC% 0.91(0.88-0.94) <0.001

FEV1% 0.94(0.92-0.97) <0.001

TLC% 0.89(0.85-0.92) <0.001

DLCO% 0.88(0.84-0.92) <0.001

ACPA 1.000(0.996-1.004) 0.936

RFIgM 1.000(0.998-1.001) 0.678

RFIgG 1.000(0.996-1.004) 0.936

RFIgA 0.998(0.995-1.002) 0.347

KL-6 1.007(1.004-1.010) <0.001

TNFa 1.02(0.97-1.07) 0.457

IFNa 1.04(0.94-1.15) 0.419

IFNg 0.99(0.91-1.07) 0.771

CRP 0.99(0.97-1.00) 0.183

ESR 0.99(0.97-1.00) 0.168

DAS-28-CRP 0.84(0.64-1.11) 0.219

DAS-28-ESR 0.85(0.65-1.11) 0.227
CI, confidence-interval; ORs, Odds ratio; FVC, Forced vital capacity; FEV1, Forced expiratory
volume in 1 s; TLC, Total lung capacity; DLCO, Diffusion capacity for carbon monoxide; ESR,
erythrocyte sedimentation rate; RF, rheumatoid factor; CRP, C-reactive protein; APLA, anti-
phospholipid antibodies; KL-6, Krebs von den Lungen-6, TNFa, tumor necrosis factor alpha;
IFNg, interferon gamma; IFNa, interferon alpha; DAS, disease activity score.
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A B

FIGURE 4

Comparison of receiver operating characteristic (ROC) curves for the clinical, radiomics, and nomogram models in the training (A) and testing (B)
cohorts. The combined nomogram performed optimally in both the training and testing cohorts.
A B

C

FIGURE 3

Radiomics feature selection based on LASSO algorithm and Rad score establishment. (A) LASSO coefficient profile plot with different log (l)was
shown. (B) Ten-fold cross-validated coefficients and 10-fold cross-validated MSE. (C) The histogram of the Rad score based on the
selected features.
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FIGURE 5

A constructed nomogram for predicting the GAP staging of RA-ILD.
FIGURE 7

Decision curve analysis (DCA) of the clinical, radiomics, and nomogram models in the testing cohort.
A B

FIGURE 6

Calibration curves in the training and testing cohorts showing that the nomogram fits perfectly well in both the training (A) and testing cohorts (B).
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between ACPA and RF factors in different stages of RA-ILD. However,

these different results may be attributed to the heterogeneity of ACPA

specificity and search methods (5, 31). It is worth noting that treatment

strategies may play a crucial role in the development and progression of

RA-ILD. A higher proportion of biological agent use was revealed in the

low-risk group by our analysis. This suggests that patients using

biological agents may represent a cohort receiving early and aggressive

treatment. The use of biological agents may interrupt the inflammatory

cascade leading to ILD, thereby reducing the risk of developing severe

ILD in later stages (32, 33).

In addition, older age and male sex have been strongly

associated with RA-ILD (34). We excluded gender, age, and PFTs

parameters from the clinical model to prevent data leakage, despite

their status as independent risk factors. Eventually, univariate

logistic regression analysis revealed that KL-6 was an independent

predictor in our present study. KL-6 is a mucin-like glycoprotein

which stimulates fibrosis and inhibits apoptosis of pulmonary

fibroblasts (35, 36). Elevated serum KL-6 levels have been

observed in RA patients with lung involvement, suggesting its

potential utility in early detection of ILD. In a cohort of 50 RA

patients, KL-6 levels positively correlated with the high-resolution

computed tomography fibrosis score, indicating that high KL-6

levels are a significant biomarker for ILD and may serve as a

predictor for ILD severity in RA patients (37). Moreover, a study

suggests that high KL-6 levels might be an independent risk factor

and useful for the prognosis in patients with RA-ILD (38). So far,

the utility of serum KL-6 has been evaluated in several forms of ILD

and its sensitivity and specificity for RA-ILD ranged from 67%-85%

and 60%-90%, respectively, depending on the cutoff value (36, 37,

39). In our study, a clinical factor model to classify RA-ILD stages

was developed based on KL-6, and then achieved an AUC of 0.752

in the testing cohorts.

Radiomics is an objective technique offering a reliable and

comprehensive quantitative assessment of images, unaffected by

inter-reader variability (40). Feature extraction involves

mathematical operations on digital images to generate numerical

descriptors of texture, shape, and other distinct characteristics.

These descriptors can be computationally analyzed to explore

potential associations with clinical parameters (41). Particularly

useful for diseases challenging to describe through simple visual

features, high-dimensional abstract features extracted from wavelet-

transformed images can provide diverse perspectives in capturing

hidden information not easily observed visually. Radiomics features

have indeed proven their potential for severity estimation in

Systemic sclerosis-ILD and guiding treatment decisions (42). At

present, the literature on the application of radiomics is limited.

Venerito et al. (23) retrieved the HRCTs of 30 RA-ILD patients and

suggested that radiomics analysis could predict patient mortality.

This finding suggests that HRCT could serve as a digital biomarker

for RA-ILD, offering prognostic value that is independent of the

clinical characteristics of the disease. Recently, some scholars have

developed radiomics models based on CT images to differentiate

GAP staging in CTD patients. Qin et al. (21) manually segmented

the right lung of CTD-ILD patients and constructed a radiomics
Frontiers in Immunology 09
model from the 9 extracted texture features. The AUC of their

radiomics models in the validation cohort was 0.787 and 0.718 in

the internal and external test cohort, respectively. A similar study

utilized a semi-automatic segmentation method to segment bilateral

lungs, obtaining a total of 4 features (22). Their developed radiomics

model demonstrated an AUC of 0.801 in the test cohort. Instead of

focusing on all types of CTDs, we concentrated on patients with RA.

In our work, totally1,834 radiomics features obtained from the CT

images, 19 higher-order texture features extracted from wavelet

transformed images were acquired as remarkable elements to build

the radiomics model, resulting in an AUC of 0.939, and 0.901 in the

training and testing cohorts, respectively. It is speculated that by

targeted with ILD specifically caused by RA, to some extent

excluded the imbalance of training data arising from the

heterogeneous imaging characteristics of various CTD-ILD

subtypes (43), which eventually screened out more features. In

the current study, we constructed a nomogram model that

integrates the radscore with serum KL-6 levels to further enhance

the accuracy of predicting low-risk RA-ILD. In contrast to the GAP

index, the nomogram model can predict GAP staging in patients

with RA-ILD even when precise lung function parameters are

challenging to obtain. This radiomics-based approach may serve

as a supportive tool for assessing the severity of RA-ILD. Moreover,

the proposed model can be readily implemented in clinical practice,

as it leverages routinely acquired chest CT imaging and serum

biomarker data to automate the computational process, thereby

minimizing the operational burden on clinicians.

There are certain limitations in our study. Firstly, the single-

center design with a relatively small overall sample size, especially

the limited representation of more severe ILD-GAP stage III

patients, may restrict the model ability. Future studies based on

larger datasets from other centers are needed to evaluate model

generalizability. Secondly, the exact mortality of the retrospective

study verified by the GAP index system may less precise than actual

mortality of patient. Nevertheless, as an available method to predict

mortality, the GAP index system has been validated in RA-ILD. The

precise assessment of mortality risk will be conducted in our further

research. In addition, our study serves as a foundational

exploration, offering valuable insights for selecting valuable

imaging biomarkers in RA-ILD.

In conclusion, a novel nomogram model combining CT-based

radiomics and serum KL-6 was developed in our study. It shows

good prediction accuracy in predicting low-risk RA-ILD patients,

which implies that this noninvasive and quantitative method may

impact the clinical decision-making process, offering a more precise

management strategy for patients with RA-ILD.
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