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Depression, projected to be the predominant contributor to the global disease

burden, is a complex condition with diverse symptoms includingmood disturbances

and cognitive impairments. Traditional treatments such as medication and

psychotherapy often fall short, prompting the pursuit of alternative interventions.

Recent research has highlighted the significant role of gut microbiota in mental

health, influencing emotional and neural regulation. Fecal microbiota transplantation

(FMT), the infusion of fecal matter from a healthy donor into the gut of a patient,

emerges as a promising strategy to ameliorate depressive symptoms by restoring gut

microbial balance. The microbial-gut-brain (MGB) axis represents a critical pathway

through which to potentially rectify dysbiosis and modulate neuropsychiatric

outcomes. Preclinical studies reveal that FMT can enhance neurochemicals and

reduce inflammatory markers, thereby alleviating depressive behaviors. Moreover,

FMT has shownpromise in clinical settings, improving gastrointestinal symptoms and

overall quality of life in patients with depression. The review highlights the role of the

gut-brain axis in depression and the need for further research to validate the long-

term safety and efficacy of FMT, identify specific therapeutic microbial strains, and

develop targeted microbial modulation strategies. Advancing our understanding of

FMT could revolutionize depression treatment, shifting the paradigm toward

microbiome-targeting therapies.
KEYWORDS

depression, gut microbiota, fecal microbiota transplantation, gut-brain axis, gut

dysbiosis, immune regulation
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1 Introduction

Depression poses a significant public health challenge

worldwide, not only due to its impact on individuals but also as a

primary catalyst for suicide (1, 2). The World Health Organization

forecasts that by 2030, depression is expected to become the leading

contributor to the global disease burden (3). Depression, once

merely categorized as an emotional disturbance, is now

acknowledged as a complex disorder characterized by a spectrum

of emotional, physical, and cognitive symptoms (4, 5). Depression

can lead to cognitive impairment, reflecting a significant impact on

mental processing and functioning (6, 7). Manifestations of

depression include insomnia or hypersomnia, persistent fatigue,

loss of appetite, and mood fluctuations, with severe cases posing a

potential threat to life (8).

Contemporary studies have elucidated that the gut microbiota,

an intricate ecosystem consisting of bacteria, viruses, archaea, and

fungi, is integral to the sustenance of human health (9). The gut

microbiota influences individual emotional equilibrium by

regulating neural circuits and modulating the release of

neurotransmitters within the central nervous system, thus

providing novel insights into the biological foundations of mood

disorders. Fecal microbiota transplantation (FMT), a technique for

reconstituting the gut microbiota, has demonstrated promising

therapeutic potential for ameliorating depression in preclinical

studies (10). This procedure involves the transfer of fecal matter

from a healthy donor into the gastrointestinal tract of a patient,

aiming to restore a balanced microbial ecosystem. For example, Cai

et al. found that rats subjected to chronic unpredictable mild stress

(CUMS) and treated with FMT showed elevated hippocampal levels

of neurochemicals like 5-HT, gamma-aminobutyric acid (GABA),

and brain-derived neurotrophic factor (BDNF), coupled with

reduced inflammatory markers, leading to an alleviation of

depressive symptoms (11). Similarly, Hu et al. observed that rats

with depressive-like behaviors experienced significant improvement

after receiving gut microbiota from healthy donors, highlighting

FMT capacity to influence mood regulation (12).

This review concentrates on contemporary studies examining

the influence of gut microbiota on depression and delves into the

potential and underlying mechanisms of FMT as a novel

therapeutic strategy for mitigating depressive symptoms. These

insights not only emphasize the biological foundations of

depression but also reveal the pivotal importance of the gut

microbiome in mental health remodeling and therapy.
2 Overview of the connection
between gut microbiota
and depression

2.1 Gut microbiota microenvironment

The gastrointestinal tract is commonly referred to as the second

brain due to its critical roles in digestion, immune response, and

endocrine regulation (13, 14). Within the gut of a healthy adult
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resides a vast and diverse array of microorganisms, including

bacteria, archaea, micro-eukaryotes, fungi, and viruses, collectively

forming the gut microbiota (15). The composition of the gut

microbiota exhibits life-stage-specific dynamics, with fluctuations

during childhood, a period of relative stability during adulthood,

and subsequent shifts associated with aging (16). Despite its

susceptibility to genetic and environmental factors, including diet,

stress, and antibiotics (ABX) exposure, the gut microbiota remains

adaptable, performing essential metabolic and biochemical

functions vital for host homeostasis (17).

The gut microenvironment primarily fosters the proliferation of

bacterial phyla, such as Firmicutes, Bacteroidetes, Actinobacteria,

Fusobacteria, Proteobacteria, Verrucomicrobia, and Cyanobacteria

(18). Gut dysbiosis, characterized by disturbances in the microbiota

composition and quantity, has been linked to a host of disorders,

including gastrointestinal motility issues, malabsorption, and

mental health conditions (19, 20). This dysbiosis is implicated in

the pathophysiology of depression. Comparative analyses reveal

that while Firmicutes and Bacteroidetes dominate the fecal

microbiota of healthy individuals, depressed individuals exhibit

significant alterations, including decreased Lachnospiraceae and

Ruminococcaceae , a long with reduced populat ions of

Fecalibacterium and Ruminococcus , and lower levels of

Lactobacillus and Bifidobacterium (21).
2.2 Evidence of gut microbiota in
inducing depression

Transferring the fecal microbiota from patients with major

depressive disorder (MDD) into rodents has been shown to induce

depression-like behaviors, suggesting the influence of gut microbiota

on emotional states (22). Notably, there are marked differences

between the microbiota of FMT-MDD and FMT-Healthy groups

(23). These findings suggest that microbial dysbiosis may not only be

associated with but could potentially precede and contribute to the

onset of depression. The complex and dynamic nature of the gut

microbiota has significant implications for mental health, particularly

depression (24). The interplay between microbiota composition and

host factors underscores the need for a deeper understanding of gut-

brain axis mechanisms (Figure 1).

2.2.1 Gut microbiota in inducing depression via
block coprophagy

Coprophagy, the ingestion of feces from the same or different

species, allows rodents to preserve essential gut microbiota diversity

and function through this scavenging behavior (25, 26). Sha et al.

discovered that blocking coprophagy in healthy mice led to

increased levels of depression and pro-inflammatory cytokines

(27). Furthermore, when the fecal microbiota of mice with CUMS

mice and lipopolysaccharide (LPS) mice were transplanted into

healthy recipient mice, the coprophagy-blocked group exhibited

more severe depressive symptoms and higher levels of pro-

inflammatory cytokines, in the serum, prefrontal cortex (PFC),

and hippocampus, compared with the coprophagy-unblocked

group. Thus, autophagy inhibition appeared to amplify
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inflammatory responses and precipitate depressive behaviors in

both normal mice and those receiving FMT from disease

model donors.

2.2.2 Gut microbiota from patients with
rheumatoid arthritis in inducing depression

Rheumatoid arthritis (RA) and depression are prevalent diseases

that harm patient quality of life and impose a significant economic

burden on society (28, 29). Depression is a frequent comorbidity in

patients with RA, which not only reduces treatment effectiveness but

also increases the risk of disability and death (30). Moreover, there

appears to be a bidirectional link between depression and RA (31). Pu

et al. examined the impact of FMT fromRA patients on depression-like

behaviors using the mouse model of collagen-induced arthritis (32).

Before FMT, mice underwent ABX treatment to deplete their

endogenous gut microbiota. FMT from patients with RA into the

ABX-treated mice resulted in depression-like behavior, changed gut

microbiota composition, elevated levels of IL-6 and TNF-a, and
downregulated levels of synaptic proteins in the PFC. In addition,

significant correlations were observed between the relative abundance

of microbiota and plasma cytokines, expression of synaptic proteins in

the PFC, or depression-like behavior. In the RA FMT group, the ratio
Frontiers in Immunology 03
of Peyer’s patches and splenic CD4+ T cells to Th1/Th2 increased,

while the ratio of Treg cells decreased. These findings suggest that FMT

from RA patients induced depressive-like behaviors in ABX-treated

mice through T cell differentiation, providing evidence for the

involvement of the gut-microbiome-brain axis in depression.

2.2.3 Stimuli in inducing depression via shaping
gut microbiota

The emergence of depressive symptoms is often a multifactorial

process where various elements such as chronic alcohol misuse, the

negative side effects of certain medications, and the habitual abuse

of substances can play a significant role (33, 2). These factors,

individually or in combination, can lead to alterations in an

individual’s emotional and psychological equilibrium, thereby

potentially triggering the onset or intensifying the severity of

depressive symptoms (34). Prolonged exposure to these

conditions can disrupt the neurochemical balance within the

brain, affecting mood-regulating neurotransmitters and leading to

sustained mood disturbances (35). The complex interplay between

pharmacological stimuli, psychological stressors, neurobiological

alterations, and systemic changes highlights the intricate nature of

depression, in which drugs such as alcohol, 5-Fluorouracil (5-FU),
FIGURE 1

The complex network of interactions between the hypothalamic-pituitary-adrenal (HPA) axis, the immune system, and microbiota-mediated
signaling mechanisms in depression. In depression, dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis leads to abnormal cortisol levels,
while an overactive immune system causes elevated inflammatory markers. The gut microbiota influences brain function and mood regulation both
directly and indirectly through the gut-brain axis and metabolic byproducts like short-chain fatty acids. Activation of the HPA axis can trigger
immune responses and inflammation, creating a vicious cycle where inflammation further affects the HPA axis. Changes in the gut microbiota can
also impact emotion and behavior by affecting the functionality of these systems, playing a critical role in the development of depression. In
summary, these systems interact with each other, forming a complex pathophysiological network in depression. 5-Hydroxytryptamine, 5-HT; 5-
Hydroxytryptamine receptors, 5-HTRs; Adrenocorticotropic hormone, ACTH; Arginine vasopressin, AVP; Corticotropin-releasing factor, CRF;
Gamma-aminobutyric acid, GABA; Gamma-aminobutyric acid receptors, GABAs; Glutamine, Gln; Glutamate, Glu; Hypothalamic-pituitary-adrenal,
HPA; Metabotropic glutamate receptors, mGluRs; Sodium-coupled neutral amino acid transporters, SNATs.
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and methamphetamine (METH) have been identified to be tightly

associated with depression.

Alcohol, commonly known as ethanol, is recognized as one of

the most frequently abused substances globally (36). Recent studies

indicate a positive correlation between the amount of alcohol

consumption and the likelihood of developing depression (37)

(38). The recognized significance of the gut microbiome has

spurred research into its role in mediating neurotoxic effects

associated with ethanol exposure. There was a marked distinction

in the gut microbiota composition between alcoholics and healthy

individuals, characterized by a significant increase in the abundance

of E. faecalis in alcoholics (39). Zhao et al. transplanted fecal

microflora from alcoholic patients into mice with gut microflora

severely suppressed by ABX, demonstrating that recipients

decreased BDNF, alpha 1 subunit of a1GABAAR in mPFC, and

decreased mGluR1, PKC ϵ in NAc (40). Therefore, FMT from

alcoholic patients could reduce the level of mGluR1/PKC ϵ, and
induce anxiety and depressive behavior in mice. On the contrary,

the FMT from mice to chronic ethanol exposure (CEE) in healthy

recipient mice led to the emergence of depressive behavioral

characteristics, neuroinflammatory responses, and activation of

the NLRP3 inflammasome (41). Furthermore, the hippocampal

downregulation of NLRP3 expression exhibited a mitigating effect

on the depression-like behavioral manifestations and neuronal

damage induced by CEE. Consequently, FMT produced positive

treatment of CEE-induced hippocampal NLRP3-mediated

neuroinflammation and depressive-like behaviors.

5-FU is a fluorinated pyrimidine analog that acts as an

antimetabolite by replacing the hydrogen atom at the C-5

position of uracil with fluorine (42). This substitution facilitates

the incorporation of 5-FU instead of thymine into DNA, resulting

in aberrant adenine-uracil/5-FU base pairing (43). Clinically, 5-FU

has been extensively utilized in the treatment of several

gastrointestinal cancers, such as colorectal cancer, which is one of

the most common malignancies worldwide (44, 45). Despite its

broad therapeutic applications and being considered relatively safe

within the spectrum of chemotherapeutic drugs, 5-FU carries a risk

of specific side effects and toxicity (46, 47). The imbalance of the

intestinal microbiota was commonly acknowledged to be linked

with gastrointestinal lesions induced by 5-FU (48). Zhang et al.

established a rat model to evaluate depression-like behaviors in 5-

Fu-treated rats (48). The results demonstrated that 5-FU-induced

depression-like behavior reduced the diversity of bacterial

communities, altered the composition of bacterial communities,

and caused changes in PFC metabolism. Furthermore, FMT from

healthy donors into 5-Fu-treated rats reversed the 5-Fu-induced

depression-like behaviors, restored PFC metabolism to normal

levels, and alleviated amino acid imbalances in both the

peripheral and central nervous systems. Therefore, 5-Fu caused

depression-like behaviors through dysregulation of the

microbiome-gut-brain axis, which FMT methods could reverse.

METH, commonly referred to as crystal meth, is a synthetic

stimulant drug that belongs to the amphetamine class of

compounds that have an exciting effect on the central nervous

system, resulting in increased heart rate, increased blood pressure,

increased alertness and energy, and appetite suppression (49, 50).
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The prolonged use of METH and its sudden withdrawal lead to

substance withdrawal syndrome, encompassing symptoms such as

anxiety, depression, and other manifestations. Concurrently,

METH-dependent individuals experience substantial alterations in

the composition of their gut microbiota, characterized by

heightened alpha diversity and the relative abundance of distinct

microorganisms (51). Notably, the relative abundance of

Rikenellaceae could serve as a potential diagnostic biomarker to

diagnose METH withdrawal syndrome. FMT was performed on

recipient mice using fecal samples fromMETH addicts and METH-

treated mice resulting in the induction of anxiety and depression-

like behaviors in recipient mice, which could be reversed by

metformin, through the regulation of microbiota-derived

metabolites such as creatinine.

2.2.4 Antibiotic-induced depression via shaping
gut microbiota

Administering ABX markedly diminishes the fecal bacterial

population and exerts a depressive impact on the microbiota

composition (52). Li et al. demonstrated that after depleting the

gut microbiota of mice using an ABX cocktail, FMT from CUMS-

exposed mice induced anxiety-like and depressive behaviors in

recipient mice, associated with changes in their gut microbiota,

notably decreased lactobacillus and increased Akkermansia (53).

Further research transplanted feces from chronic social defeat stress

mice and control mice into ABX-treated recipient mice and

discovered that the anhedonia-like phenotype observed in ABX-

treated mice after FMT might be associated with two specific

microorganisms, Lactobacillus intestinalis and Lactobacillus

reuteri (54). And, subdiaphragmatic vagotomy significantly

reversed these behavioral and biochemical abnormalities,

revealing the role of the gut-brain-microbiome axis in the

pathogenesis of depression via the subdiaphragmatic vagus nerve.

The specific ABX regimen precipitates depressive behaviors by

altering the gut microbiota. Moreover, ABX-induced depressed

mice exhibited notable differences in the abundance of gut

microbiota, neurobiological factors, and functional gene

abundance (55). ABX mixtures caused depression-like behavior in

mice. FMT from antibiotic-induced depressed mice to normal mice

resulted in the development of depression-like behavior, along with

significantly reduced levels of norepinephrine, 5-HT, and BDNF in

the hippocampus and PFC tissues (55). Those with ABX-induced

depressive behavior exhibited reduced gut microbial diversity,

activated taurine pathway, and increased abundance of functional

gene lipA. Remarkably, ABX-induced depletion of donor

microbiota has significant implications for the development of

behavioral, biochemical, and other depressive phenotypes induced

by FMT in recipient mice.
3 FMT in alleviating depression via
microbial-gut-brain axis

The bidirectional communication between the brain and gut

microbiota is achieved through multiple pathways, including the

vagus nerve, neuroendocrine system, neuroimmune system, and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1416961
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1416961
autonomic nervous system (56, 57). The microbiota and their

metabolites play a crucial role in gut-brain signaling, forming the

conceptual framework of the microbial-gut-brain (MGB) axis (58). The

MGB axis is considered to be associated with the onset and progression

of various neuropsychiatric disorders, including depression, anxiety,

and autism spectrum disorders (59). The MGB axis includes neural

signal networks, immune signal networks, and chemical signal

networks (60, 61). First, through the regulation of intestinal

peristalsis by the autonomic nervous system, the brain’s exogenous

parasympathetic and sympathetic nerves influence the activity of the

internal intestinal neuron network, thereby regulating intestinal

peristalsis and the rate of content transport (62). Secondly, the

central efferent nerve of the brain, directly or through the enteric

nervous system, is in contact with the intestinal secretory cells,

regulating the secretory substances of the luminal cells, directly

acting on the microbiome, and regulating microbial host signaling.

In addition, the brain also affects the microbiome by regulating host

immunity, maintaining the balance of the immune defense system on

the surface of the intestinal mucosa, and thus affecting the composition

of the microbiome. In summary, the brain-gut-microbiome axis plays

an important role in regulating mood, peristalsis, and immune

response, providing important insights into understanding and

treating related depressive symptoms.

FMT represents an innovative therapeutic modality centered on

the extraction, purification, and isolation of beneficial microbial

consortia from the feces of healthy donors, followed by their

transplantation into the gastrointestinal tract of recipients (63).

This intervention is designed to reconstruct the gut microbiota

ecosystem, thereby offering a potential treatment modality for a

variety of diseases. As a microbial modulation technique, FMT has

demonstrated efficacy in restoring gut microbiota after the failure of

ABX therapy, effectively treating recurrent Clostridium difficile

infection, and preventing its relapse (64).

The gut microbiota serves as a critical mediator of bidirectional

gut-brain communication, potentially influencingmood regulation and

cognitive behavior (65). Dysbiosis of the gut microbiota has been

closely linked to the pathogenesis and progression of depression,

positioning it as a novel target for therapeutic intervention (66).

FMT can reverse or restore ecological imbalances by improving gut-

brain axis function, potentially serving as an efficacious approach to

alleviating symptoms of depression (67). Research indicates that FMT

may exert positive effects on the central nervous system by modulating

gut microbiota composition and activating beneficial signaling

pathways within the gut-brain axis (68). Moreover, the potential of

FMT to modulate immune responses, reduce inflammation levels, and

enhance gut barrier function, offers a new perspective in the treatment

of depression (69). The synergistic action of these mechanisms may

help alleviate neuroinflammation and depressive symptoms associated

with gut microbiota dysbiosis.

The vagus nerve is the primary neural conduit between the

brain and the gastrointestinal tract, playing a crucial role in

modulating gut activity and conveying visceral sensory signals to

the brain. The vagus nerve also transmits signals from the brain,

influencing gastrointestinal motility and secretion. To investigate

the impact of the MGB axis on resilience, Wang et al. transplanted
Frontiers in Immunology 05
feces from chronic social defeat stress-susceptible mice into ABX-

treated Ephx2 Knockout (KO) mice, triggering depressive-like

behaviors (70). Faecalibaculum rodentium (F. rodentium) was

significantly implicated in this effect. Concomitantly, there were

increased IL-6 levels and diminished synaptic protein expression in

the PFC. However, subdiaphragmatic vagotomy mitigated these

behavioral anomalies. Thus, F. rodentium conversion of resilient

Ephx2 KO mice to a depressive phenotype implicates the MGB axis

modulation. The importance of regulating the subdiaphragmatic

vagus nerve system has been demonstrated for facilitating

communication between the gastrointestinal microbiota and the

brain. Pu et al. investigated that Chrna7 KO mice fecal microbiota

induced depression-like phenotypes in ABX-treated mice,

characterized by systemic inflammation and downregulation of

PFC synaptic proteins (71). Subphrenic vagotomy performed on

mice after FMT significantly prevented the development of the

depressive-like phenotype. FMT from Chrna7 KO mice induced

depression in ABX mice by modulating the subphrenic vagus nerve,

underscoring the potential involvement of the brain-gut

microbiome axis in depression development via the vagus nerve.

Future research endeavors are pivotal in exploring the long-term

therapeutic efficacy, safety, and stability of the microbial community

post-transplantation in patients with depression. Furthermore, the

precise identification of specific microbial strains with therapeutic

potential for depression, along with the development of more

targeted microbial modulation strategies, will advance the application

of FMT in the realm of mental health (Figure 2).
4 Preclinical evidence of FMT in
treating depression

4.1 Key targets associated with FMT in
treating depression

4.1.1 Sigma-1
Sigma receptors are classified into two subtypes, including

Sigma-1 and Sigma-2 (72). The Sigma-1 receptor (Sig-1R), a 28

kD molecular chaperone protein, is pivotal in regulating various

cellular processes including intracellular calcium homeostasis,

apoptosis, and cell membrane permeability (73). Its role in

influencing neuronal survival and function has attracted

considerable attention as a potential therapeutic target for central

nervous system diseases (74). Li et al. discovered that Sig-1R KO

mice exhibited depression-like behavior and gut microbiota

disorder, while the depressive behavior was improved after the

removal of gut microbiota through ABX treatment (75). After FMT

of the Sig-1R KO group into recipient mice, the mice exhibited

depression-like behavior, along with a significant decrease in the

diversity and abundance of the gut microbiota, specifically Alistipes,

Alloprevotella, and Lleibacterium. In addition, the cAMP/CREB/

BDNF signaling pathway was inhibited, while the expression of

CTNF, TGF-a and NGF was decreased. The results revealed that

the gut microbiota from Sig-1R KO mice induced depression-like

behavior by modulating the cAMP/CREB/BDNF signaling
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1416961
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1416961
pathway, and furnished supportive evidence for subsequent

investigations into the brain-gut axis.

4.1.2 NLRP3
The inflammasome regulates immune and inflammatory

responses in the gut axis of the brain, influencing the synthesis

and release of neurotransmitters, which in turn affects neural

activity and emotional states in the brain (76–78). The NLRP3

inflammasome is a complex comprising Nucleotide-binding and

oligomerization domain, Leucine-rich repeat, and Pyrin, and is

involved in multiple diseases (79–81). NLRP3 could be located

intracellularly in neurons, astrocytes, and microglia (82). Upon

activation, it initiates an intracellular signaling cascade aimed at

reinstating homeostasis (83). Given the critical role of NLRP3 in

gut-immune-brain communication, deciphering the role and

dysfunction of NLRP3 is crucial for depression (83). Zhang et al.

transplanted the fecal microbiota of NLRP3 KO mice into chronic

unpredictable stress (CUS) mice (84). Depression-like behaviors of

the mice were significantly improved after FMT, accompanied by

alleviated astrocyte dysfunction. In addition, FMT suppressed the

elevation of circHIPK2 levels in CUS mice. The gut microbiota of

NLRP3 KO mice regulated astrocyte dysfunction via circHIPK2,
Frontiers in Immunology 06
attenuating depressive-like behaviors and providing a novel strategy

for the treatment of depression.

In ABX-treated rats that received FMT of CUMS, Huang et al.

discovered that inflammasomes and inflammatory cytokines IL-1b
and IL-18 were increased, and tight junction proteins Occludin and

ZO-1 were decreased (85). Furthermore, in recipient rats, the relative

abundance of actinobacteria, proteobacteria, patescibacteria,

Lactobacillaceae, and erysipelotrichichaceae was highly upregulated

while that of lachnospiraceae was significantly downregulated. The

microbiota composition was partially overlapped with that of donor

rats. Collectively, modulating the gut microbiota composition

mitigated inflammation and depressive symptoms by reshaping the

microbiota and inhibiting NLRP3 inflammasome activation.
4.2 FMT in alleviating depression via
beneficial herbs

At present, many Chinese herbs play an important role in

alleviating depressive symptoms, and their active ingredients can

affect neurotransmitter levels, regulate the neuroendocrine system,

and improve psychological states (86). Notable herbs like plant
A

B

FIGURE 2

FMT procedure and its roles in combating depression. (A) FMT is an innovative treatment that encompasses the acquisition, processing, and
administration of fecal material from healthy donors to patients with depression. (B) By altering neurotransmitters, gut microbiota and metabolites,
and gut inflammation, FMT rebalances gut biota enhances microbe-gut-brain axis communication, restores neurotransmitter homeostasis, and
reduces neuroinflammation. FMT modulation of the immune system, particularly through the alteration of IL-6 levels, is crucial to alleviating
depressive symptoms. FMT can influence the central nervous system by altering gut microbiota composition and activating beneficial signaling
pathways, including those mediated by the vagus nerve, which is a major neural link between the gut and the brain. Fecal microbiota transplantation,
FMT; Gastrointestinal, GI; Glutathione, GSH; Oxidized glutathione, GSSG; Hydrogen peroxide, H2O2; Interleukin 6, IL-6; Interleukin 6 receptor, IL-
6R; Janus kinase, JAK; Lipopolysaccharide, LPS; Mitogen-activated protein kinase, MAPK; Nicotinamide adenine dinucleotide phosphate hydrogen,
NADPH; Oxygen, O2; Quinolinic acid,QUIN; Stress-activated protein kinase, SAPK; Short-chain fatty acids, SCFAs; Signal transducer and activator of
transcription, STAT.
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polysaccharides, Xiao-Chai-Hu-Tang, fermented red ginseng, and

Zhi Zi Chi decoction have been recognized for their antidepressant

pharmacological effects.

4.2.1 Plant polysaccharide
Plant polysaccharide (OP) is a kind of OP extracted from plants,

especially from Chinese herbs. Common plant OP includes ginkgo

biloba OP, okra OP, yellow extract OP, ginseng OP, bupleurum OP,

and so on (87). The OP has various biological functions, such as

improving immune function, anti-oxidation, anti-virus, and

regulating intestinal microecology (88). In recent years, studies

have shown that OP from different sources plays an important

role in the regulation of gut microbiota, which can significantly

affect the occurrence of depression-like behaviors by regulating gut

microbiota and related pathways.

Treatment with Ginkgo biloba leaves (GPS) was shown to reverse

the reduction in serotonin-positive and dopamine-positive cell

density induced by unpredictable chronic mild stress mice, thereby

improving depressive-like behavior (89). The antidepressant effects of

GPS OP were likely mediated through its regulation of gut microbiota

imbalances associated with depression and an increase in lactic acid

bacteria abundance, particularly Lactobacillus reuteri. The isolated

OP from okra (Abelmoschus esculentus (L) Moench) possesses the

capability to hinder the activation of the inflammatory response in

the colon, serum, hippocampus, and BV2 cells (90). Additionally, OP

could regulate dysbiosis in gut microbiota, alterations in short-chain

fatty acids, down-regulation of the TLR4/NF-kB pathway, and

enhancement of MAPK signaling. Transplantation of OP-

modulated microbiota into CUMS receptor mice alleviated

depression and anxiety, reduced elevated cytokine levels (TNF-a,
IL-1b, IL-6, etc.), and restored histopathological damage in the colon.

OP exhibited antidepressant effects through its anti-inflammatory

properties and modulation of the gut microbiota. The underlying

mechanism of OP for antidepressant-like effects was closely

associated with bidirectional communication within the

microbiota-gut-brain axis through the regulation of inflammatory

responses. Additionally, novel agar-oligosaccharides (NAOs)

treatment significantly improved depressive symptoms in chronic

restraint stress (CRS) mice, decreasing IL-18 levels in serum,

increasing 5-HT levels in serum and brain, and elevating BDNF

levels (91). Thus, NAOs exerted an antidepressant effect by raising

levels of serotonin and BDNF in the brains of mice and by

reorganizing the gut microbiota. FMT from polysaccharide peptide

(PSP)-treated mice to CUMS subjects ameliorated depressive

behaviors via hypothalamic-pituitary-adrenal (HPA) axis

modulation (92). Post-FMT, increased 5-HT, norepinephrine, ZO-

1, and occludin, and decreased hippocampal pro-inflammatory

cytokines, corticosterone, LPS, and interferon-g were observed. In

summary, PSP administration exerted antidepressant effects through

the MGB axis by modulating PI3K/AKT/TLR4/NF-kB and ERK/

CREB/BDNF pathways.

4.2.2 Xiao-Chai-Hu-Tang (XCHT)
XCHT, as an effective treatment for depression, is composed of

seven herbal extracts bupleurum, Spinelli, Scutellaria, jujube,
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ginseng, ginger, and licorice (93). Early investigations suggest that

XCHT exhibits potential antidepressant properties by modulating

immune responses, inhibiting angiogenesis, and inducing apoptosis

in tumor cells (94). To examine the impact of XCHT on tumors

associated with depression, Shao et al. implemented a xenograft

colorectal cancer mouse model exposed to CRS (95).

Transplantations of XCHT-regulated microbiota into CRS-

associated xenografted mice showed that XCHT treatment

regulated the gut microbiota, inhibited activation of the TLR4/

MyD88/NF-kB signaling pathway, and regulated inflammatory

cytokine levels, resulting in significant anti-tumor effects in vivo.

Moreover, XCHT partially ameliorated disruptions in the gut

microbiota and depressive symptoms in cancer patients

by reducing the abundance of bacteria in the families

Parabacteroides, Blautia, and Ruminococcaceae bacterium. As a

result, XCHT exerted antitumor activity by inhibiting the TLR4/

MyD88/NF-kB signaling pathway through the regulation of the gut

microbiota. Gut microbiota might be potentially a novel target

for XCHT in the treatment of comorbid depression in

anticancer therapies.

4.2.3 Fermented red ginseng
Fermented red ginseng (fRG) undergoes processing that alters

its chemical composition, potentially augmenting the concentration

of active compounds and yielding novel bioactive metabolites (96)

(97). In contrast to conventional red ginseng (RG), fRG exhibits

enhanced pharmacological properties, offering promising prospects

for augmenting immune function, enhancing energy levels,

ameliorating cognitive function, and fostering overall health and

well-being. FRG has been shown to mitigate hippocampal neuronal

damage in mice and modulate the function of the HPA axis, thereby

exerting an antidepressant effect. Shin et al. created mouse models

of anxiety/depression (AD) and colitis by subjecting them to

chronic immobilization stress or FMT from individuals with

ulcerative colitis and depression (98). Oral administration of fRG

or RG attenuated hippocampal and hypothalamic expression, and

serum corticosterone levels induced by unpredictable chronic mild

stress. Similarly, oral ingestion of fRG, RG, ginsenoside Rd, or

compound K mitigated stress-induced AD-like behaviors,

circulating IL-6 and corticosterone, colonic IL-6 and TNF-a
levels, and dysbiosis of the gut microbiota.

4.2.4 Zhi Zi Chi decoction (ZZCD)
Additionally, ZZCD, consisting of Gardenia jasminoides

J. Ellis and Glycine max (L.) Merr is also extensively utilized for

addressing anxiety and depression (99). Tian et al. used

corticosterone combined with chronic constraint stress to

establish the model of anxiety and depression, and transplanted

fecal intestinal flora of the ZZCD group into anxious and depressed

mice (100). ZZCD exerted an influence on and participated in the

neuroactive ligand/receptor interaction process, regulated the HPA

axis, influenced the secretion of prolactin and estrogen, interfered

with MAPK and TNF signaling pathways, and reduced

inflammation levels, thus contributing to inhibiting anxiety

and depression.
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5 Clinical evidence of FMT in
treating depression

5.1 FMT in improving depressive behavior
in patients with IBS

Patients with irritable bowel syndrome (IBS) increasingly exhibit

a wide range of neuropsychiatric symptoms, such as worsening

gastrointestinal physiology, including visceral hypersensitivity,

altered intestinal membrane permeability, and gastrointestinal

motor dysfunction (101). In a clinical trial, 18 IBS patients with

mild to modest anxiety and depression were recruited and then

divided into FMT treatment and control groups (102). FMT

effectively alleviated anxiety, depression, and IBS symptoms, with

significant improvements in the quality of life. Decreased levels of

isovaleric and valeric acids were observed in the FMT group, along

with a reduced abundance of specific bacteria. Key pathways affected

by FMT were identified, and Bifidobacterium and Escherichia were

highlighted as pivotal in IBS-D pathogenesis and recovery. This study

underscored the therapeutic potential of FMT for IBS patients with

anxiety and depression. Guo et al. conducted a randomized

controlled trial investigating FMT in IBS-D patients with diarrhea

and symptoms of anxiety and depression (103). Post-treatment, these

patients showed significant improvements in IBS symptoms, stool

consistency, and reductions in anxiety and depression scores. FMT

therapy enhanced gut microbiota diversity, particularly increasing

Bacteroidetes and Firmicutes abundance, and helped restore microbial

balance. This suggests FMT potential in treating IBS-D with co-

occurring psychological symptoms.
5.2 FMT in improving primary depression

FMT has emerged as a promising treatment in animal models,

prompting researchers to explore its potential application in

managing depression in human patients. Green et al. conducted a

randomized controlled trial in which eligible adult patients with

MDD were selected and treated with enema FMT and placebo

(104). The study revealed the absence of serious or severe adverse

events in either treatment group, along with no significant disparity

in mild to moderate adverse events between the experimental and

control cohorts. Moreover, the active FMT cohort exhibited notable

enhancements in mean gastrointestinal symptom scores, as assessed

by the Gastrointestinal Symptom Rating Scale, compared to the

placebo cohort. The active FMT group demonstrated superior

improvements in quality-of-life measures. These demonstrated

that enema-administered FMT was safe and acceptable as an

adjunctive treatment for adults with MDD, and improved

gastrointestinal symptoms and quality of life to some extent,

supporting the association of IBS with a high co-morbidity of MDD.
6 Discussion

FMT has emerged as a versatile intervention for a broad

spectrum of diseases (105). Beyond its effectiveness in
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gastrointestinal conditions such as chronic constipation, diarrhea,

IBS, inflammatory bowel disease, and other functional intestinal

disorders, FMT is increasingly recognized for its potential in

neuropsychiatric conditions, including autism spectrum disorder,

anxiety disorders, and Parkinson’s disease (106, 107). Significantly,

FMT exhibits particular potential as a therapeutic avenue for

depression. By influencing the gut-brain axis, which encompasses

neural, endocrine, and immune interactions, FMT can modulate

mood and behavior (68). This is achieved through the alteration of

the gut microbiota composition, evidencing distinct differences in

microbial profiles between healthy individuals and those suffering

from depression (Table 1).

The nervous system is involved in the occurrence, development,

and regulation of many diseases (108, 109, 61). The interaction

between the microbiome and the central nervous system occurs

primarily through the vagus nerve, with afferent fibers transmitting

information influenced by microbiome metabolites back to the

central nervous system (110). Such interaction is proposed to

induce alterations in both central and peripheral systems,

potentially alleviating depressive symptoms. Besides, individuals

suffering from depression exhibit alterations in both their microbial

composition and neurotransmitter levels, disrupting the

equilibrium of the gut microenvironment (111). This disruption

adversely affects the functionality of the intestinal epithelium,

resulting in the dysregulation of the intestinal barrier and the

onset of inflammatory responses. Consequently, the compromised

intestinal barrier facilitates the passage of intestinal metabolites,

microbial components, and even microbial populations,

exacerbating systemic inflammatory responses, including

imbalances in Th17/Treg cell populations, elevated levels of IL-6,

IL-1b, and TNF-a (112). FMT holds promise as a therapeutic

intervention by modulating the gut microbiota and stimulating the

synthesis of neurotransmitters or their precursors, such as

serotonin, dopamine, and GABA, thus potentially ameliorating

symptoms associated with depression. These attributes position

FMT favorably for both preclinical and clinical depression

treatment, offering enhanced adaptability over traditional

modalities, thereby significantly improving treatment safety and

efficacy (113). The potential for utilizing intestinal flora-based

therapies as a fundamental approach to depression treatment

holds promising prospects and is anticipated to emerge as a

routine and viable alternative. Nonetheless, the practical

implementation of FMT encounters numerous challenges due to

the influence of various confounding factors on the

treatment process.

Firstly, in the field of FMT for treating depression, some critical

points remain under-explored. The specific roles of microbial

metabolites in the gut-brain axis and their impact on brain

function and mood are not fully understood, indicating a need

for more targeted research into which metabolites are involved and

how they exert their effects (114). Additionally, the function of the

gut barrier in depression and how FMT might influence its

restoration and relationship with depressive symptoms require

further investigation. Moreover, the interplay between the host

genetic background and the microbiome, particularly how genetic

factors might affect the efficacy of FMT and its influence on specific
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microbial communities concerning depression, represents a

relatively new and promising research area that has yet to be fully

delved into.

Secondly, In the context of treating depression, although FMT is

an emerging therapeutic approach, with innovation and progress, is

currently challenged by the lack of standardized assessment

protocols (115). This lack has resulted in the number of bacterial

species detected in recipient fecal samples being drastically
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dependent on the depth of sequencing technology, highlighting

inconsistencies in research methodology and the need for further

analytical techniques (116). Although the majority of current

studies have focused on analyzing changes in fecal microbial

composition before and after FMT, there is a distinct lack of

research into the detailed description of pathogens and beneficial

bacteria associated with depression and the mechanisms by which

they interact. In addition, the safety and potential ethical issues of
TABLE 1 Evidence of FMT in treating depression and related disorders.

Feces
of Donors

Recipients Function and mechanism
Type
of Study

Ref.

Chronic social defeat
stress-susceptible mice

ABX-treated Ephx2 Knockout
(KO) mice

Triggered depressive-like behaviors by the microbial-gut-brain (MGB)
axis modulation

Experimental
study

(70)

Chrna7 KO mice Antibiotics (ABX)-treated mice Induced depression in ABX mice by modulating the subphrenic vagus nerve
Experimental
study

(71)

Sigma-1 receptor (Sig-
1R KO) mice

Recipient mice (wild-type mice)
Induced depression-like behavior by modulating the cAMP/CREB/BDNF
signaling pathway

Experimental
study

(75)

NLRP3 KO mice
Chronic unpredictable stress
(CUS) mice

Regulated astrocyte dysfunction via circHIPK2, attenuating depressive-
like behaviors

Experimental
study

(84)

Chronic unpredictable
mild stress
(CUMS) rats

ABX-treated rats
Mitigated inflammation and depressive symptoms by reshaping the microbiota
and inhibiting NLRP3 inflammasome activation

Experimental
study

(85)

Mice treated with
Ginkgo biloba leaves
polysaccharide (GPS)

Unpredictable chronic mild
stress mice

Regulated gut microbiota imbalances associated with depression and an increase
in lactic acid bacteria abundance

Experimental
study

(89)

Mice treated with the
polysaccharide isolated
from okra.

CUMS receptor mice
Exhibited antidepressant effects through its anti-inflammatory properties and
modulation of the gut microbiota

Experimental
study

(90)

Mice treated with
Neoagaro-
oligosaccharides
(NAOs)

Chronic restraint stress
(CRS) mice

Reversed the CRS-induced mouse model of depression through modulation of gut
microbiota and SCFAs, as well as regulation of 5-HT and BDNF levels

Experimental
study

(91)

Mice treated with
Polysaccharide
peptide (PSP)

CUMS mice
Exerted antidepressant effects through the MGB axis by modulating PI3K/AKT/
TLR4/NF-kB and ERK/CREB/BDNF pathways

Experimental
study

(92)

Mice treated with
Xiao-Chai-Hu-
Tang (XCHT)

CRS mice
Exerted antitumor activity by inhibiting the TLR4/MyD88/NF-kB signaling
pathway through the regulation of the gut microbiota

Experimental
study

(95)

Individuals with
ulcerative colitis
and depression

Mouse models of anxiety/
depression (AD) and colitis

Mitigated stress-induced AD-like behaviors, circulating IL-6 and corticosterone,
colonic IL-6 and TNF-a levels, and dysbiosis of the gut microbiota

Experimental
study

(98)

Mice treated with Zhi
Zi Chi
decoction (ZZCD)

Anxious and depressed mice
Regulated the HPA axis, influenced the secretion of prolactin and estrogen,
interfered with MAPK and TNF signaling pathways, and reduced inflammation
levels, thus contributing to inhibiting anxiety and depression

Experimental
study

(100)

Healthy individuals
Irritable bowel syndrome (IBS)
patients with mild to modest
anxiety and depression

Alleviated anxiety, depression, and IBS symptoms, resulting in significant
improvements in the quality of life of the patients

Randomized
controlled
trial

(102)

Healthy individuals
IBS with diarrhea patients with
symptoms of anxiety
and depression

Enhanced gut microbiota diversity, helped restore microbial balance, and resulted
in improvements in IBS symptoms, stool consistency, as well as reductions in
anxiety and depression scores post-treatment

Randomized
controlled
trial

(103)

Healthy individuals
Adult patients with Major
Depressive Disorder (MDD)

Exhibited notable enhancements in mean gastrointestinal symptom scores and
demonstrated superior improvements in quality-of-life measures

Randomized
controlled
trial

(104)
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FMT technology cannot be ignored during the transition phase

from clinical trials to clinical applications (117). Safety assessment

needs to take into account genetic differences between donors and

recipients and potential biological risks associated with fecal

transplants, which requires an assessment of the patient’s dietary

habits, genetic characteristics, and the compatibility of the microbial

composition of the donor and the recipient (118). Refined

classification and metabolic analyses will provide better

information to support clinical decision-making. In addition, the

FMT procedure involves human samples and needs to follow

compliant medical extraction procedures involving informed

consent, privacy rights, and strict moral and medical ethical

standards (119–121). Therefore, technical deficiencies in the

application of FMT technology in the treatment of depression are

mainly due to the lack of a standardized assessment process,

insufficient in-depth understanding of the mechanisms of

pathogen-beneficial bacterial interactions, and the need for more

consideration of safety and ethical issues. These shortcomings

emphasize the importance of strengthening technical and

methodological research on the application of FMT in the

treatment of depression.

Finally, FMT represents a promising yet nascent intervention in

the treatment of depression, necessitating rigorous examination of

its long-term efficacy and safety due to the inherent complexity and

plasticity of the gut microbiome (122). The dearth of definitive

clinical trials reinforces a substantial gap in our understanding of

FMT capacity to ameliorate depressive symptoms indirectly by

modulating gut health, thereby highlighting the imperative for in-

depth mechanistic studies (123). Moreover, the prevailing reliance

on animal models in the extant literature, coupled with the

insufficient validation of clinical trial findings, accentuates the

critical need for bridging the translational divide between

preclinical insights and clinical application. Such an endeavor

warrants prospective investigations to elucidate the nuanced

interplay between dysbiosis and depression, aiming to refine our

comprehension of the microbial gut-brain axis and the operational

mechanism underpinning the therapeutic potential of FMT.

Addressing these lacunae will not only pave the way for the

establishment of robust clinical protocols but also facilitate the

integration of precision medicine approaches, ultimately enabling

the development of personalized microbiome-targeting

therapies (124).
7 Conclusion

FMT offers a cutting-edge approach to depression by

modulating the MGB axis, a critical determinant in mental

health. By rectifying gut microbiota microenvironment dysbiosis,

FMT reinstates a balanced microbial ecosystem, influencing

key targets such as the Sig-1R and NLRP3 inflammasome,

which are implicated in neuroinflammatory and neurochemical
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pathways associated with depressive disorders. Additionally,

FMT can harness the therapeutic properties of beneficial herbs,

further enhancing the antidepressant potential. Despite these

promising findings, the complexity of the gut microbiota

interaction with the brain and the identification of precise

microbial contributors to therapeutic outcomes necessitates

advanced research for clinical translation. Standardization of

FMT protocols and a deeper understanding of the underlying

mechanisms are essential to ensure safety and efficacy in the

clinical management of depression.
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5-FU 5-Fluorouracil

ABX Antibiotics

AD Anxiety/depression

BDNF Brain-derived neurotrophic factor

CEE Chronic ethanol exposure

CRS Chronic restraint stress

CUMS Chronic unpredictable mild stress

CUS Chronic unpredictable stress

F. rodentium Faecalibaculum rodentium

FMT Fecal microbiota transplantation

fRG Fermented red ginseng

GABA Gamma-aminobutyric acid

GPS Ginkgo biloba leaves

HPA Hypothalamic-pituitary-adrenal

IBS Irritable bowel syndrome

KO Knockout

LPS Lipopolysaccharide

MDD Major depressive disorder

METH Methamphetamine

MGB Microbial-gut-brain

NAOs Novel agar-oligosaccharides

OP Polysaccharide

PSP Polysaccharide peptide

PFC Prefrontal cortex

RG Red ginseng

RA Rheumatoid arthritis

Sig-1R Sigma-1 receptor

XCHT Xiao-Chai-Hu-Tang

ZZCD Zhi Zi Chi decoction
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