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Evaluating the predictive
value of angiogenesis-related
genes for prognosis and
immunotherapy response in
prostate adenocarcinoma
using machine learning and
experimental approaches
YaXuan Wang †, JiaXing He †, QingYun Zhao †, Ji Bo, Yu Zhou,
HaoDong Sun, BeiChen Ding* and MingHua Ren*

Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
Background: Angiogenesis, the process of forming new blood vessels from pre-

existing ones, plays a crucial role in the development and advancement of

cancer. Although blocking angiogenesis has shown success in treating different

types of solid tumors, its relevance in prostate adenocarcinoma (PRAD) has not

been thoroughly investigated.

Method: This study utilized the WGCNAmethod to identify angiogenesis-related

genes and assessed their diagnostic and prognostic value in patients with PRAD

through cluster analysis. A diagnostic model was constructed using multiple

machine learning techniques, while a prognostic model was developed

employing the LASSO algorithm, underscoring the relevance of angiogenesis-

related genes in PRAD. Further analysis identified MAP7D3 as the most significant

prognostic gene among angiogenesis-related genes using multivariate Cox

regression analysis and various machine learning algorithms. The study also

investigated the correlation between MAP7D3 and immune infiltration as well as

drug sensitivity in PRAD. Molecular docking analysis was conducted to assess the

binding affinity of MAP7D3 to angiogenic drugs. Immunohistochemistry analysis

of 60 PRAD tissue samples confirmed the expression and prognostic value

of MAP7D3.

Result: Overall, the study identified 10 key angiogenesis-related genes through

WGCNA and demonstrated their potential prognostic and immune-related

implications in PRAD patients. MAP7D3 is found to be closely associated with

the prognosis of PRAD and its response to immunotherapy. Through molecular

docking studies, it was revealed that MAP7D3 exhibits a high binding affinity to

angiogenic drugs. Furthermore, experimental data confirmed the upregulation of

MAP7D3 in PRAD, correlating with a poorer prognosis.
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Conclusion: Our study confirmed the important role of angiogenesis-related

genes in PRAD and identified a new angiogenesis-related target MAP7D3.
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1 Introduction

Prostate adenocarcinoma (PRAD) is the most common solid

tumor and the fifth leading cause of cancer death in men, and is now

considered a global public health problem (1). Various genetic and

environmental factors, including advanced age and family history of

PRAD, have been identified as risk factors (2). The majority of

patients present with nonspecific symptoms such as decreased

urinary flow, urgency, increased nocturia, and incomplete bladder

emptying, leading to late-stage diagnosis and high mortality rates

(3). While advancements in radiotherapy, targeted therapy, and

immunotherapy have improved patient outcomes, the challenge of

achieving a complete cure for PRAD patients remains significant.

Understanding the etiology and pathogenesis of PRAD and

developing new treatment strategies are crucial in addressing this

pressing issue.

Angiogenesis is the process of developing new vascular

structures from existing capillaries or post-capillary venules. This

involves the degradation of the vascular basement membrane,

stimulation, proliferation, and migration of vascular endothelial

cells, and remodeling to form new blood vessels and networks (4).

Hypoxia, particularly within the hypoxic regions of solid tumors, is

a key factor influencing tumor cell response by impeding the

infiltration of immune cells and reducing their anti-tumor activity

(5). The response of tumor endothelial cells to hypoxic signals acts

as a switch for angiogenesis (6). Disruption of angiogenesis through

anti-angiogenic therapies can result in significant hypoxia and

promote resistance to tumor drugs (7). Tumors require new

blood vessels to support their growth by supplying oxygen and

nutrients and eliminating metabolic waste. Angiogenesis is typically

initiated once a tumor reaches a certain size, typically around 1–2

mm in diameter (8). Solid malignant tumors, such as PRAD, rely on

a sufficient blood supply to support their growth, development, and

spread (9). Recent studies have confirmed the role of exosomal

PGAM1 in promoting PRAD angiogenesis, suggesting its potential

as a diagnostic marker for PRAD metastasis (10). Interleukin-30

disrupts prostate cancer cross-talk with endothelial cells by

enhancing angiogenesis (11). The expression of FOXA1 in

prostate cancer is positively associated with cancer vessel

lymphatic invasion and metastasis, likely due to its regulation of

angiogenesis (12). Additionally, Ephrin-A2 has been found to

promote prostate cancer metastasis by stimulating angiogenesis
02
(13). Therapy targeting angiogenesis not only inhibits the growth

of tumor blood vessels but also restores their abnormal structure

within tumors. This normalization of the vasculature shifts

suppressive immune conditions to an immune-stimulated state.

The activation of the immune system due to therapy also aids in

improving the structure of blood vessels, creating a beneficial cycle

of mutual enhancement (14). Therefore, a thorough investigation

into the role of angiogenesis in PRAD not only aids in early

detection but also holds significant value for immunotherapy

in PRAD.

The purpose of this study was to explore the importance of

angiogenic genes in the diagnosis, prognosis, and treatment outcome

of PRAD. Initially, the ssGSEA algorithm was utilized to assess

angiogenesis scores in 498 samples from the TCGA-PRAD dataset

(15, 16). Subsequently, 10 prognostic differential genes related to

angiogenesis in PRAD were identified using the weighted gene co-

expression network analysis (WGCNA) method. Cluster analysis

was then conducted based on the expression of these 10 genes to

evaluate their correlation with patient prognosis, response to

immunotherapy and chemotherapy. An angiogenesis-related

diagnostic model was developed using 60 algorithms on the

TCGA-PRAD dataset and validated with the GSE62872 dataset.

Additionally, a prognostic model focusing on angiogenesis was

constructed using the least absolute shrinkage and selection

operator (LASSO) algorithm, demonstrating high predictive

accuracy for PRAD patient outcomes. Furthermore, the most

significant angiogenesis-related prognostic gene, MAP7D3, was

identified in PRAD using three machine learning methods. The

study has established a close relationship between MAP7D3 and

immunotherapy and chemotherapy in patients with PRAD.

Additionally, the high correlation between MAP7D3 and

angiogenesis-targeting drugs was confirmed using molecular

docking methods, suggesting a potential role for MAP7D3 in

angiogenesis-targeting therapy.
2 Materials and methods

2.1 Data acquisition

There are 498 PRAD samples and 52 corresponding normal

samples from the TCGA database included in the study.
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Additionally, our study also includes 264 PRAD samples and 160

normal prostate samples from the GSE62872 dataset .

Immunoinfiltration analysis of MAP7D3 in PRAD was conducted

using the GSE143791 dataset from the TISCH website.

Additionally, 60 cases of PRAD tissue and paired para-cancerous

tissue were procured from Shanghai Outdo Biotech Company. The

patients included in the tissue chip study underwent surgery

between January 2011 and December 2014, with a follow-up

period extending from November 2021, spanning 6 to 10 years.
2.2 Consistency cluster analysis

To analyze consistency, we utilized the ConsensusClusterPlus R

package (v1.54.0) (17). A total of 100 samples, each comprising

80%, were drawn repeatedly, resulting in the generation of up to 6

clusters. The hierarchical clustering approach involved setting

clusterAlg=“hc” and innerLinkage=‘ward.D2’.
2.3 Constructing diagnostic and
prognostic models

We utilized multiple machine learning algorithms and

developed 108 combinations of different algorithms to build

PRAD diagnostic models. The training set consisted of the

TCGA-PRAD dataset, while GSE62872 served as the verification

set. For each algorithm combination, we computed the AUC value,

and the combination with the highest average AUC was deemed the

most optimal (18). The prognostic model was characterized by

LASSO regression algorithm and 10-fold cross-validation was used

for this analysis (19, 20). The R software glmnet package was used

for this analysis.
2.4 Immune infiltration and
chemotherapeutic drug sensitivity analysis

In order to assess the immune scores of genes related to

angiogenesis in PRAD, we utilized the immunedeconv tool (21).

For our study, we specifically employed the xCell algorithm due to

its ability to evaluate a wide range of immune cell types, making it

well-suited for our investigation. Furthermore, we utilized the

Genomics Database for Cancer Drug Sensitivity (GDSC) to

predict the response to chemotherapy for each sample. This

prediction process was conducted using the pRRophetic R

package. The tumor immunophenotyping (TIP) method

complements the existing ssGSEA and CIBERSORT methods and

can systematically track and analyze the proportion of tumor-

infiltrating immune cells in the tumor immune cycle (22). Our

study utilized the TIP method to investigate the relationship

between angiogenesis-related genes and immune cell infiltration

in PRAD. Furthermore, we employed the TISCH2 database to

assess the correlation between MAP7D3 and immune cell

infiltration in PRAD (23).
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2.5 Gene Set Enrichment Analysis

In Gene Set Enrichment Analysis (GSEA), we utilized version 3.0

of the GSEA software (24). In the content section of cluster analysis,

we grouped the data by cluster 1 and cluster 2. For enrichment

analysis on MAP7D3, we utilized the median expression of MAP7D3

as the threshold. Samples with expression levels higher than the

median were categorized as the high-expression group, while samples

with expression levels lower than the median were categorized as the

low-expression group. Then gene sets corresponding to relevant

signaling pathways are extracted from the molecular feature

database, and the signaling pathways and molecular mechanisms

related to gene expression are analyzed (25). The genome sizes were

constrained between 5 and 5000, with one thousand resamplings

conducted. A statistically significant P value below 0.05 was

considered for result interpretation.
2.6 Correlation analysis of MAP7D3 with
angiogenesis-targeting drugs

To assess the binding affinity of the key gene MAP7D3 with

angiogenic drugs, we employed a molecular docking approach for

analysis. The CB-Dock2 website (26) was utilized as a valuable tool in

our study, utilizing Vina score to assess the binding affinity of genes and

drugs. AVina score below 5.0 kcal/mol is commonly considered indicative

of a more robust binding interaction between the gene and drug.
2.7 Immunohistochemical staining analysis
of MAP7D3 expression in PRAD tissues

The PRAD tissue chip underwent a series of preparation steps

including heating in an oven at 85°C for 15 minutes, soaking in

xylene for 20 minutes, immersion in various concentrations of

ethanol, citric acid treatment with antigen retrieval in a pressure

cooker, and subsequent rinsing with PBS and hydrogen peroxide

solution. The chip was then incubated with MAP7D3 antibody (bs-

18668R) overnight at 4°C, followed by rinsing, incubation with

secondary antibodies, DAB reagent treatment for color

development, and staining with hematoxylin. Immunostaining

intensity was scored from 0 to 3 based on reaction strength, and

a scale from 1 to 4 was used to assess the proportion of positive

staining. The final expression score was calculated by multiplying

the intensity and scale scores, with scores ranging from 0 to 5

indicating low expression and scores from 6 to 12 indicating

high expression.
2.8 Statistical analysis

All the analysis methods and R package were implemented by R

version 4.0.3. The statistical difference of two groups was compared

through the Wilcox test. A statistically significant difference is

indicated by p < 0.05.
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3 Results

3.1 Identification of angiogenesis-related
genes in PRAD
Within the TCGA-PRAD dataset, 498 samples were analyzed to

compute the angiogenesis score for each using the ssGSEA

approach. Subsequently, the samples were segregated into two

categories depending on the median angiogenesis score. In the

analysis conducted, the parameter power for the weight of the

adjacency matrix was set to 8 to guarantee a scale-free distribution

of the network. WGCNA, a computational method utilized for

deriving module information from extensive expression data,
Frontiers in Immunology 04
characterizes a module as a cluster of genes exhibiting

comparable expression profiles (Figure 1A). Pearson correlation

analysis was then performed to assess the correlation between

module characteristic genes and traits (Figures 1B, C). Notably,

the black module exhibited the highest correlation (correlation

coefficient of 0.5) with angiogenesis (Figure 1D). Differential

analysis of the TCGA-PRAD data set between cancer and normal

tissues identified 3125 differential genes (Figure 1E). P < 0.05 and

Log2 (Fold Change) >1.3 or Log2 (Fold Change) < -1.3 were defined

as thresholds for differential expression screening. Subsequently,

prognostic gene analysis in the TCGA-PRAD data set revealed 331

prognostic genes. By overlaying these sets using a Venn diagram, we

identified 10 prognostic-related angiogenesis differential

genes (Figure 1F).
B C

D E F

A

FIGURE 1

WGCNA algorithm screens angiogenesis-related genes. (A) WGCNA Network Construction Parameters. (B) The upper part of the figure shows the
gene clustering tree constructed on the weighted correlation coefficients, and the lower part of the figure is divided into the distribution of genes in
each module. (C) Heatmap of trait module associations. (D) Scatterplot of Angiogenesis and Module Gene Association. (E) TCGA-PRAD dataset
variance analysis volcano plot. (F) Venn diagrams to map angiogenic prognostic differential genes.
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3.2 Consensus clustering analysis of
angiogenesis regulatory factors

The optimal cluster stability for k = 2 was determined by

assessing the similarity in expression levels of angiogenic

regulatory factors and fuzzy clustering measures (k = 2 to 6). A

total of 499 PRAD patients were then classified into two clusters:

cluster 1 (n = 245) and cluster 2 (n = 253), based on their expression

levels of angiogenic regulatory factors (Figures 2A, B). In addition,

according to the average consistency evaluation within the
Frontiers in Immunology 05
clustering group, here, the number of clusters with the highest

average consistency within the group is also K=2 (Figure 2C).

Subsequently, we assessed the expression variances of

angiogenesis-related prognostic differential genes including

MAP7D3, FAM107A, GLIS1, GPR161, QSOX1, TMEM100,

C7orf31, ZNF536, KNDC1, and CACNA1H in the two clusters.

Our analysis revealed significant differences in all of the mentioned

genes (Figure 2D). Patients in cluster 1 exhibited a worse prognosis

in terms of both overall survival and disease-specific survival among

PRAD patients (Figures 2E, F). Given this conclusion, we are
B

C

D

E F

G H

A

I J
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FIGURE 2

Cluster analysis of PRAD patients based on angiogenesis genes. (A) Cumulative distribution curve. (B) Clustering heatmap. (C) Evaluation of average
consistency within clustered groups. (D) Differential expression of angiogenesis-related genes in clusters. (E, F) Differences in overall and disease-
specific survival between clusters. (G, H) Analysis of different levels of immune cell infiltration between clusters. (I) Analysis of expression levels of
different immunoinhibitors among clusters. (J) Analysis of differences in IC50 scores of different chemotherapeutic agents between clusters. (K, L)
Analysis of gene enrichment between clusters. *p < 0.05, **p < 0.01 and ***p < 0.001.
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interested in understanding the regulatory mechanism. The

immune microenvironment plays a crucial role in tumor

progression, with angiogenesis closely linked to immune

mechanisms in tumors. Therefore, we hypothesize that the

difference in prognosis between the two patient clusters may be

related to immune mechanisms. This study delved deeper into the

relationship between two distinct clusters and immune cell

infiltration in patients with prostate adenocarcinoma (PRAD). By

utilizing the xCell algorithm, we assessed levels of immune cell

infiltration in 38 cells and identified significant differences in 23

cells between the two clusters (Figures 2G, H). This suggests that the

varying patient prognoses in these clusters may be associated with

differences in immune cell infiltration. As a novel form of tumor

immunotherapy drug, immune checkpoint inhibitors are crucial in

the field of tumor immunotherapy (27). Our study focused on

analyzing the variations in the expression of immunosuppressants

across different clusters. Out of the 23 immunoinhibitors studied,

18 displayed significant differences between the clusters (Figure 2I).

Furthermore, we analyzed the IC50 scores of commonly used

clinical chemotherapy drugs in the two clusters, uncovering

significant differences in the IC50 scores of 8 chemotherapy drugs

(Figure 2J). In order to deeply analyze the underlying mechanisms

of the above results, we also performed gene enrichment analysis on

the 2 clusters, and we found that cluster 2 was significantly

associated with PI3K/AKT, PDGF, VEGF, and RAS signaling

pathways, whereas cluster 1 was associated with factors such as

DNA methylation (Figures 2K, L).
3.3 Construction of diagnostic models

Machine learning methods offer a convenient approach for

identifying characteristic genes. In our study, we utilized multiple

machine learning algorithms to create a diagnostic model related to

angiogenesis. By analyzing the TCGA-PRAD and GSE3325

datasets, we used the expressions of FAM107A, C7orf31,

TMEM100, GLIS1, QSOX1, KNDC1, MAP7D3, and ZNF536 in

the TCGA-PRAD dataset as training data. Our findings revealed

that both combinations of machine learning algorithms exhibited

strong predictive capabilities for diagnosing PRAD patients in the

training set. Subsequently, we validated the expressions of these

genes in the GSE3325 dataset to confirm the effectiveness of our

diagnostic model. In the verification set of GSE3325, only a few

machine learning algorithm combinations showed poor results,

while the majority achieved better predictions. Among these

combinations, the LASSO+GBM algorithm combination stood

out as the best diagnostic model, as it had the highest average

AUC value (Figure 3A). Additionally, we presented the number of

genes included in each algorithm combination for further

clarity (Figure 3B).
3.4 Constructing prognostic models

We examined 10 angiogenesis genes related to PRAD

prognosis, including MAP7D3, FAMI07A, GLIS1, GPRI61,
Frontiers in Immunology 06
QSOX1, TMEM100, C7orf31, ZNF536, KNDC1, and CACNAIH,

using the LASSO algorithm to develop a prognostic model.

Subsequently, 9 genes, MAP7D3, FAMI07A, GLIS1, GPRI61,

QSOX1, TMEM100, C7orf31, ZNF536, and KNDC1, were

incorporated into the model (Figures 4A, B). Risk score=

(-0.2524) *FAM107A+(1.237) *GLIS1+(-3.0503) *ZNF536

+(-0.8946) *C7orf31+(-0.0732) *TMEM100+(2.6368) *MAP7D3

+(-0.6038) *GPR161+(-0.2713) *KNDC1+(-0.7063) *QSOX1. The

expression heatmap of these genes in PRAD samples was presented

(Figure 4C). Using the gene expression data, the LASSO algorithm

categorizes samples into high-risk and low-risk groups. Patients

classified as high-risk typically experience a significantly poorer

prognosis compared to those in the low-risk category (Figure 4D).

Additionally, we evaluated the model’s predictive performance for

1-year, 3-year, and 5-year PRAD prognosis (Figures 4E–G). The

ROC curve demonstrated strong predictive capability of the

constructed prognostic model, with AUC values of 1, 0.848, and

0.854 for 1 year, 3 years, and 5 years, respectively.
3.5 Correlation analysis of prognostic
models with PRAD immune infiltration and
chemotherapeutic drug sensitivity

The study compared IC50 scores of various chemotherapy

drugs in samples from high-risk and low-risk groups, revealing

significant differences in 5 drugs between the groups (Figure 5A).

Furthermore, the correlation between the constructed prognostic

model and PRAD immune infiltration was examined, showing

significant differences in the infiltration levels of 11 immune cells

between high and low-risk groups (Figures 5B, C). Additionally,

expression differences of immunosuppressants between the groups

were analyzed, with 8immunoinhibitor-related genes showing

significant differences (Figure 5D). Finally, the relationship

between the prognostic model risk score and PRAD immune

infiltration was explored using xCell and TIP methods, resulting

in a correlation network diagram (Figure 5E).
3.6 MAP7D3 as the best prognostic gene
among angiogenesis genes

To delve deeper into identifying prognostic genes associated

with angiogenesis, univariate and multivariate COX regression

analyses were carried out on these genes along with clinically

pertinent pathological factors (T stage, M stage). The findings

from the multivariate COX regression analysis revealed that

QSOX1, MAP7D3, and M stage could potentially function as

prognostic indicators for patients with PRAD (Figures 6A, B).

Subsequently, to identify the optimal prognostic biomarkers

among these angiogenesis-related genes, we employed three

machine learning methods: RF, XGBoost, and GBM. Combining

the outcomes of multivariate COX regression analysis, we

determined that MAP7D3 emerged as the most promising

angiogenesis-related prognostic marker in PRAD (Figures 6C–E).

Furthermore, gene enrichment analysis based on the high and low
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expression groups of MAP7D3 validated its association with PRAD

angiogenesis. Interestingly, our findings also linked MAP7D3 to the

stemness pathway (Figure 6F). The highly vascularized tumor

microenvironment provides a conducive setting for the growth of

these stem cells, perpetuating a detrimental cycle that contributes to

tumor recurrence, metastasis, and drug resistance. Hence, we

hypothesize that MAP7D3 may impact the prognosis of PRAD

patients by modulating PRAD cell stemness and angiogenesis.
Frontiers in Immunology 07
3.7 Analysis of MAP7D3 correlation with
PRAD immunotherapy and chemotherapy

The XCELL algorithm was utilized to assess immune cell

infiltration levels, unveiling notable variances in the infiltration of

19 immune cell types in PRAD samples categorized by high and low

MAP7D3 expression (Figure 7A). Single-cell analysis aids in

exploring gene expression patterns within individual cells and
BA

FIGURE 3

Construction of diagnostic models based on integrated machine learning models. (A) Predictive effectiveness of different algorithm combinations for
PRAD diagnosis. (B) Number of genes incorporated by different combinations of algorithms.
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understanding intercellular signaling networks. Integrating clinical

pathology data with scRNA-seq information from tumor samples has

the potential to unveil novel diagnostic and prognostic biomarkers

(28). Consequently, we investigated the immune infiltration of

MAP7D3 through the TISCH2 database, and the findings indicated

a significant association with B cells and progenitor cells (Figures 7B,

C), aligning with the XCELL algorithm analysis results. Further

examination of immunosuppressant-related gene expression in
Frontiers in Immunology 08
PRAD samples based on MAP7D3 expression levels revealed

marked differences in the expression of 22 immunosuppressant-

related genes (Figure 7D). Moreover, significant correlations were

observed between MAP7D3 and the IC50 scores of 10 commonly

used chemotherapy drugs (Figure 7E). Lastly, a correlation network

graph depicting the relationship between MAP7D3 and immune cell

infiltration levels was constructed using XCELL and TIP

algorithms (Figure 7F).
B

C D

E

F G

A

FIGURE 4

Constructing prognostic models based on angiogenesis genes. (A, B) 9 angiogenesis-related prognostic genes were included in the prognostic
model. (C) The top represents the scatter plot of the Riskscore from low to high, the middle represents the scatter plot distribution of survival time
and survival status corresponding to the Riskscore of different samples; the bottom represents the expression heat map of the genes included in the
model. (D) Prognostic differences between high and low risk groups. (E–G) Prognostic modeling for predictive analysis of 1,3,5-year prognosis in
patients with PRAD.
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3.8 Analysis of MAP7D3 correlation with
angiogenesis-targeting drugs

In order to further investigate the potential of MAP7D3 as an

angiogenesis-targeting drug, a correlation analysis was conducted at

the molecular structure level comparing it with established

angiogenesis-targeting drugs such as sunitinib, Vandetanib,

Thalidomide, Lenalidomide, and Cabozantinib. The molecular

structure of MAP7D3 was sourced from the AlphaFold website,

while the 3D structures of the angiogenesis-targeting drugs were

obtained from the PubChem website. The Vina score was utilized to

assess the correlation between MAP7D3 and the other drugs, with a

score of less than -5 generally indicating a strong binding activity.

The findings revealed that MAP7D3 exhibited good binding activity

with the selected angiogenesis-targeting drugs (Figures 8A–E).
3.9 Validation of MAP7D3 expression and
prognostic value in PRAD

To ascertain the differential expression and prognostic

significance of MAP7D3 in prostate adenocarcinoma (PRAD), we

conducted immunohistochemistry experiments on 60 PRAD

samples and their corresponding normal prostate tissue samples.

Our analysis revealed that MAP7D3 was predominantly expressed

in the cytoplasm of PRAD samples (Figures 9A–D). Comparing 60

cases of cancer with 60 adjacent cancer cases, we observed

significantly higher MAP7D3 expression in the cancer samples

(Figure 9E). Further categorizing the samples based on high and

low MAP7D3 expression levels, we discovered a significant

correlation between MAP7D3 expression, tumor invasion, and
Frontiers in Immunology 09
patient survival status (Figure 9F). Detailed examination of tumor

invasion and patient survival status in the high and low MAP7D3

expression groups revealed distinct patterns (Figures 9G, H).

Kaplan-Meier survival analysis demonstrated a notably worse

prognosis for patients with high MAP7D3 expression compared

to those with low expression. Additionally, receiver operating

characteristic (ROC) curve analysis indicated that MAP7D3 could

effectively predict 7-year, 8-year, and 9-year survival rates in PRAD

patients (Figures 9I, J). Lastly, ROC curve analysis for the diagnostic

potential of MAP7D3 in PRAD patients showed promising results,

highlighting its utility in PRAD diagnosis (Figure 9K).
4 Discussion

Immune cells play a crucial role in tumor survival, as cancer cell

metabolites and secretions from specific cells in the tumor

microenvironment can impact immune cell activation,

proliferation, differentiation, and overall function (29–31). The

induction of immunosuppression and the ability to evade anti-

tumor immune responses have been recognized as significant

features in the progression of cancer, particularly through

mechanisms such as tumor angiogenesis (32). With strong

experimental evidence supporting tumor-dependent angiogenesis,

researchers are increasingly focused on developing anti-angiogenic

therapies (33). The approval of bevacizumab in 2004, the first FDA-

approved anti-angiogenic drug, significantly improved progression-

free survival in RCC patients undergoing combination

chemotherapy (34). Subsequent studies have furthered anti-

angiogenic strategies by proposing the normalization of tumor

blood vessels to enhance drug and oxygen delivery. The use of
B
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FIGURE 5

Prognostic models are strongly associated with PRAD chemotherapy and immunotherapy. (A) Analysis of the difference in IC50 scores of different
chemotherapeutic drugs between high and low risk groups. (B, C) Analysis of immune cell infiltration levels between different groups. (D) Expression
level analysis of different immunoinhibitors between high and low risk groups. (E) Network diagram of correlation between risk score and PRAD
immune infiltration. *p < 0.05, **p < 0.01 and ***p < 0.001.
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angiogenesis inhibitors in cancer treatment, targeting the formation

of new blood vessels in tumors, represents a promising approach for

a variety of solid tumors (35). Nevertheless, obstacles like tumor

regrowth, resistance to medication, absence of biomarkers, limited

duration of effectiveness, and possible negative reactions continue

to persist as a result of the intricate aspects of tumor vascularization

and insufficient investigation. Even though existing medications

that inhibit blood vessel formation may not be optimal

for managing PRAD, an enhanced comprehension of the
Frontiers in Immunology 10
mechanisms driving PRAD vascularization could pave the way

for the creation of superior tailored treatments for individuals

with PRAD.

WGCNA is a bioinformatics algorithm utilized for extracting

module information from high-throughput expression data, known

for its efficiency and accuracy in biological data mining (36). In our

study, we applied WGCNA to identify genes associated with

angiogenesis in PRAD. By integrating differential analysis

and prognostic assessment, we successfully pinpointed 10
B
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FIGURE 6

Multiple machine learning approaches to identify the best angiogenesis-related prognostic genes in PRAD. (A) Univariate COX regression analysis of
prognostic differences in relevant indicators. (B) Multivariate COX regression to analyze prognostic differences in relevant indicators. (C–E) RF,
XGBoost and GBM algorithms to screen prognostic genes. (F) Gene enrichment analysis based on MAP7D3 expression.
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angiogenesis-related genes with prognostic significance. Among

these 10 angiogenesis-related genes, studies have reported that

QSOX1, GLIS1 and FAM107A can be used as prognostic markers

for PRAD patients (37–39). In recent years, the concept of precision

medicine has emphasized subgroup typing of individual research

subjects. Through consensus clustering analysis based on the

expression of 10 angiogenesis-related genes, we divided the

TCGA-PRAD samples into 2 clusters. Our findings revealed

significant differences between these clusters, not only in

prognosis but also in sensitivity to immunotherapy and

chemotherapy drugs. To further analyze these differences, we

conducted gene enrichment analysis and discovered that samples

in cluster 2 were primarily associated with VEGF, PDGF, and PI3K/

Akt signaling pathways. VEGF-A is a crucial regulator of

angiogenesis, exerting a significant influence on tumor

proliferation, metastasis and drug resistance. The key signaling

pathway involved in both physiological and pathological

angiogenesis is VEGF-A/VEGFR-2, which promotes various

processes in endothelial cells and solid tumors. Platelet-derived

growth factor (PDGF) serves as a primary stimulant for

mesenchymal cell types like fibroblasts, smooth muscle cells, and

glial cells, contributing to cell growth, wound healing, angiogenesis,

and recruitment through paracrine or autocrine mechanisms.

PDGF-BB, a well-studied factor in the PDGF family, not only

enhances tissue fibrosis but also drives angiogenesis and drug

resistance during tumor progression and anti-VEGF therapy (40–

42). Additionally, the PI3K/Akt signaling pathway plays a

significant role in tumor angiogenesis (43). These findings

indirectly support the strong correlation between these 10 genes
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and angiogenesis. Machine learning is a prominent subject in

current research. We utilized various machine learning methods

to develop both a diagnostic and prognostic model for PRAD based

on the expression of angiogenesis-related genes. Our model results

consistently highlight the significant role of angiogenesis in the

diagnosis and prognosis of PRAD. We validated the diagnostic

model using GSE3325 and obtained satisfactory outcomes.

However, due to limited availability of PRAD datasets with

prognostic information, our prognostic model lacks validation.

This limitation stems from missing gene expression data in the

datasets used for model construction.

Multivariate COX regression analysis identified MAP7D3 and

QSOX1 as prognostic biomarkers for PRAD among the 10

angiogenesis-related genes. High expression of QSOX1 has been

linked to vascular invasion, neural invasion, prostate extension,

increased pT stage, and higher pathological tumor stage in prostate

cancer. These findings underscore the significant role of QSOX1 in

PRAD (37). Subsequently, RF, XGBoost, and GBM machine

learning methods were employed to identify the optimal

prognostic genes, ultimately confirming MAP7D3 as the top

prognostic gene associated with angiogenesis in PRAD. To

uncover novel angiogenesis-related prognostic genes, we focused

on MAP7D3 for further investigation. Single-cell RNA sequencing

is an advanced genomics technology that enables comprehensive

analysis of gene expression and genomic features at the single cell

level, thereby facilitating in-depth study of cellular properties (44).

Therefore, we not only used the XCELL algorithm, but also

analyzed the correlation between MAP7D3 and immune cell

infiltration in PRAD from the perspective of single cell analysis
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FIGURE 7

MAP7D3 was significantly associated with PRAD immunotherapy and chemotherapy. (A) Analysis of MAP7D3 correlation with PRAD immune cell
infiltration based on XCELL algorithm. (B, C) Analysis of MAP7D3 correlation with PRAD immune cell infiltration based on single-cell dataset. (D)
Analysis of MAP7D3 correlation with immunoinhibitor-related genes. (E) Analysis of the difference in IC50 scores of different chemotherapeutic
drugs between high MAP7D3 expression and low MAP7D3 expression groups. (F) Network diagram of correlation between MAP7D3 expression and
PRAD immune infiltration. *p < 0.05, **p < 0.01 and ***p < 0.001.
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through the TISCH2 database. Analytical results demonstrated a

close correlation between MAP7D3 expression and B cell and

progenitor cell infiltration levels in PRAD samples. Furthermore,

differences in IC50 scores of immunosuppressant-related genes and

common chemotherapy drugs were observed between MAP7D3

high and low expression groups, suggesting a crucial role of

MAP7D3 in PRAD immunotherapy and chemotherapy. Gene

enrichment analysis indicated that MAP7D3 is not only linked to

angiogenesis but also to stem cell pathways. Stem cells are precursor

cells that have the ability to self-renew and differentiate into

functionally mature, specialized cells in various human tissues
Frontiers in Immunology 12
Stem cells are precursor cells that have the ability to self-renew

and differentiate into functionally mature special cells in various

tissues of the human body (45). Importantly, evidence suggests that

the interplay between tumor angiogenesis and cancer stem cells

promotes tumor growth. Cancer stem cells can contribute

to angiogenesis by releasing pro-angiogenic factors and

differentiating into vascular endothelial cells, while tumor

vasculature supports cancer stem cells (46, 47). This reciprocal

interaction between tumor angiogenesis and stemness fuels tumor

progression and metastasis. Therefore, the findings suggest that

MAP7D3 may drive PRAD progression by regulating both
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FIGURE 8

MAP7D3 is associated with angiogenesis drugs. (A–E) Molecular docking of MAP7D3 with the angiogenesis-targeting drugs sunitinib, Vandetanib,
Thalidomide, Lenalidomide, and Cabozantinib.
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angiogenesis and stem cells. Sunitinib, vandetanib, thalidomide,

lenalidomide, and cabozantinib are currently utilized as

angiogenesis-related targeted drugs in clinical settings. To

investigate the potential of MAP7D3 as a target for angiogenic

drug development, we conducted an analysis of its binding activity

with these drugs using molecular docking. Our findings are

promising, indicating that MAP7D3 exhibits strong binding

activity with the aforementioned drugs, suggesting its potential as
Frontiers in Immunology 13
an angiogenesis drug target. Our study provides valuable insights

into the significant role of angiogenesis in PRAD, drawing from

various perspectives. However, it is important to note that the

majority of our analyses were conducted using the TCGA-PRAD

dataset. To strengthen the robustness of our findings, it is

imperative to incorporate a larger sample size and diverse

validation sets. Furthermore, conducting additional experiments

to validate our conclusions is equally essential.
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FIGURE 9

MAP7D3 is highly expressed in PRAD and may serve as a prognostic marker. (A–E) MAP7D3 expression in PRAD and corresponding normal tissues.
(F–H) Correlation between MAP7D3 expression and different pathologic parameters in PRAD patients. (I) MAP7D3 expression and prognostic KM
curves in PRAD patients. (J) Predictive ability of MAP7D3 expression for prognosis in PRAD patients. (K) Predictive ability of MAP7D3 expression for
the diagnosis of PRAD patients. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1416914
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1416914
5 Conclusion

Our study employed a range of machine learning techniques to

pinpoint 10 crucial angiogenesis-related genes in prostate cancer.

Our findings validate the role of these genes in influencing PRAD

immunotherapy, chemotherapy, and patient outcomes. Notably,

both machine learning analysis and experimental validation

underscore the significant prognostic impact of MAP7D3.

Moreover, our research advocates for the potential of MAP7D3 as

a promising target for the development of angiogenic drugs.
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