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Human T-Lymphotropic Virus type-1 (HTLV-1) is a unique retrovirus associated

with both leukemogenesis and a specific neuroinflammatory condition known as

HTLV-1-Associated Myelopathy (HAM). Currently, most proposed HAM

biomarkers require invasive CSF sampling, which is not suitable for large

cohorts or repeated prospective screening. To identify non-invasive

biomarkers for incident HAM in a large Brazilian cohort of PLwHTLV-1 (n=615

with 6,673 person-years of clinical follow-up), we selected all plasma samples

available at the time of entry in the cohort (between 1997–2019), in which up to

43 cytokines/chemokines and immune mediators were measured. Thus, we

selected 110 People Living with HTLV-1 (PLwHTLV-1), of which 68 were

neurologically asymptomatic (AS) at baseline and 42 HAM patients. Nine

incident HAM cases were identified among 68 AS during follow-up. Using

multivariate logistic regression, we found that lower IL-10, IL-4 and female sex

were independent predictors of clinical progression to definite HAM (AUROC

0.91), and outperformed previously suggested biomarkers age, sex and proviral

load (AUROC 0.77). Moreover, baseline IL-10 significantly predicted proviral load

dynamics at follow-up in all PLwHTLV-1. In an exploratory analysis, we identified

additional plasma biomarkers which were able to discriminate iHAM from either

AS (IL6Ra, IL-27) or HAM (IL-29/IFN-l1, Osteopontin, and TNFR2). In conclusion,
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female sex and low anti-inflammatory IL-10 and IL-4 are independent risk

factors for incident HAM in PLwHTLV-1,while proviral load is not, in agreement

with IL-10 being upstream of proviral load dynamics. Additional candidate

biomarkers IL-29/IL-6R/TNFR2 represent plausible therapeutic targets for

future clinical trials in HAM patients.
KEYWORDS
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Introduction

Human T-lymphotropic virus type-1 (HTLV-1) has been

associated with both leukemogenesis and multiple inflammatory

diseases (1). It is estimated that worldwide around 10 million people

are living with HTLV-1 (further referred to as PLwHTLV-1), of

which 1–5% will develop a specific neuroinflammatory condition

called HTLV-1-Associated Myelopathy (HAM) (2). HAM is a

debilitating and progressive disease that can severely impact a

person’s quality of life (3). Because only a small fraction of those

infected with HTLV-1 develop HAM, it is important to identify

sensitive biomarkers that can be used to monitor PLwHTLV-1 (4,

5). Despite a partial overlap in proviral load (PVL) between

asymptomatic PLwHTLV-1 and HAM patients, those with higher

proviral loads are more likely to develop neurological symptoms

and possible, probable or definite HAM as defined by the Castro-

Costa criteria (6–8).

In addition to PVL, the expression and production of cytokines

have been observed in patients with HAM in both peripheral blood

and the central nervous system (CNS). A plethora of inflammatory

cytokines (5) have been quantified in both cerebro spinal fluid

(CSF), plasma/serum and cell culture supernatants of PLwHTLV-1

and HAM patients. Strikingly, almost all inflammatory cytokines

are highly increased, even in asymptomatic PLwHTLV-1, due to

virus-triggered polyclonal T-cell activation and proliferation.

Although no single cytokine has been put forward as a definitive

biomarker able to discriminate asymptomatic (ASY) from HAM, a

major role for IFN-g has been suggested (9). Downstream of IFN-g,
the chemokine CXCL10 has shown promise as a predictive

biomarker for HAM clinical progression, but only when

measured in CSF (10). On the other hand, anti-inflammatory

cytokines IL-4, IL-10 and TGF-b have been detected in HAM. Of

note, in vitro responsiveness to IL-10 and TGF-beta was decreased

in HAM patients (10), while in vitro IL-10 production and

downstream STAT3 signaling was found responsible for increased

proliferation in HAM patient-derived T-cell clones (11).

Defining a set of biomarkers associated with incident HAM

cases (iHAM) might help understand its neuroinflammatory

pathogenesis but, more importantly, will help identify PLwHTLV-

1 with the greatest disease risk for close monitoring and early
02
therapeutic intervention. The objective of this study was to identify

plasma inflammatory and pro-inflammatory cytokines as non-

invasive and easy-to-use biomarkers able to predict iHAM in a

large cohort, aiming towards affordable and robust large-scale

testing to prevent pathogenesis in the millions of PLwHTLV-1 at

risk of developing this untreatable neuroinflammatory disease.
Methods

Cohort characteristics, patient recruitment,
sampling strategy and clinical evaluation

We have previously studied HTLV-1 natural history in a large

Brazilian cohort of PLwHTLV-1 (12, 13). Within this existing

cohort, we performed a nested case-control study for incident

HAM/TSP (cases), compared against matched controls who

remained neurologically asymptomatic (AS) during the study

period (August 1997 to December 2019). All First available

plasma samples from PLwHTLV-1 were included, selecting those

closest to the entry in the cohort Recruitment and sampling strategy

are shown in Figure 1A and detailed in the Results section. All

demographic, viral and immunological data for all PLwHTLV-1

included in this study are summarized in Supplementary Table S1.

For HAM patients, plasma samples were obtained before

standardized treatment (pulse therapy with methylprednisolone).

Clinical evaluation and a standardized screening neurological

examination were performed by a board-certified neurologist,

with definite HAM defined by the criteria of Castro-Costa et al

(7). Serological screening for HTLV-1 was performed at the “Emilio

Ribas” Institute of Infectious Diseases, utilizing GOLD ELISA

HTLV-1/2 (Diasorin, UK), followed by confirmation with

Western Blot (MP Diagnostics, HTLV Blot 2.4®) and in-house

nested PCR (13). Blood samples were collected in K3-EDTA (0.054

ml/tube), plasma was separated by centrifugation (15 min, 2500

rpm) and PBMC were purified by Ficoll density gradient

centrifugation (GE Healthcare Life, USA). Cells were washed with

saline solution, the cell number was adjusted to 106 cells, followed

by storage (as “dry pellet”) at -80°C. DNA was extracted utilizing a

commercial kit (Illustra Tissue and Cells Genomic Prep Mini Spin
frontiersin.org
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kit, Fairfield, CA), according to the manufacturer’s instructions, and

stored at -80°C. Data entry into the electronic database RedCap®

was carried out by two administrative assistants and verified by the

first and last author for quality control.
Quantification of HTLV-1 proviral load

The amount of HTLV-1 provirus in samples was measured

using real-time PCR, which specifically examined the virus’s pol

gene using primers and probes, normalized against the human

albumin reference gene. Samples were tested in duplicate to ensure

precision, and results were reported as HTLV-1 DNA copies per 106

PBMCs, and the minimum limit of detection was 10 copies per 106

cells, with a theoretical maximum of 106 per 106 cells (100% infected

cells) (14).
Lymphoproliferation assay

Spontaneous T-cell proliferation assay was performed as

described in detail elsewhere (15). Briefly, 10 mL of peripheral

heparinized blood was collected from every patient and control, and

PBMCs were isolated using Ficoll-Hypaque (Pharmacia, New

Jersey, USA) gradient, washed two times in sterile saline and

resuspended in RPMI 1640 (Difco, NY, USA). PBMCs from

PLwHTLV-1 and controls (2 × 106 cells/mL in RPMI with 10%

fetal calf serum) were incubated at 37°C and 5% CO2 for three days

for spontaneous proliferation (Costar, Cambridge, MA). Cells were

pulsed with tritiated thymidine (0.5 mCi/mL, Amersham Int.,

England) 18 h before harvesting in a semi-automatic cell

harvester (Flow Laboratories, United Kingdom), counted in a b-
counter (Beckman, USA) and reported as mean counts per minute

(CPM) of triplicate samples.
Plasma cytokine levels

Plasma cytokines were measured using the CBA® (Cytometric

Bead Array, BD Biosciences) Human Th1/Th2/Th17 Cytokine Kit,

including Interleukin-2 (IL-2), Interleukin-4 (IL-4), Interleukin-6

(IL-6), Interleukin-10 (IL-10), Tumor Necrosis Factor (TNF),

Interferon-g (IFN-g), and Interleukin-17A (IL-17A) in all samples

(n=110). For samples with sufficient volume, Luminex assays

(CXCL10 and Bio-Plex Pro Human Inflammation Panel 1, 37-

Plex, including APRIL/TNFSF13, BAFF/TNFSF13B, sCD30/

TNFRSF8, sCD163, Chitinase-3-like 1/YKL-40, gp130/sIL-6Rb,
IFN-a2, IFN-b, IFN-g, IL-2, sIL-6Ra, IL-8, IL-10, IL-11, IL-12
(p40), IL-12 (p70), IL-19, IL-20, IL-22, IL-26, IL-27 (p28), IL-28A/

IFN-l2, IL-29/IFN-l1, IL-32, IL-34, IL-35, LIGHT/TNFSF14,

MMP-1, MMP-2, MMP-3, Osteocalcin, Osteopontin, Pentraxin-3,

sTNF-R1, sTNF-R2, TSLP, and TWEAK/TNFSF12) were

performed (n=64, of which 37 AS, 6 iHAM and 21 HAM). Both

immunoassays were performed in accordance with the respective

manufacturers’ instructions.
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Ethical issues

The Ethical Board of “Instituto de Infectologia Emilio Ribas”, Sao

Paulo-Brazil, approved the protocol (Number 07688818.2.1001.0061).

Signed informed consent was obtained from all participants prior to

study inclusion.
Statistical analysis

We employed frequentist univariate and multivariate statistical

analysis, including logistic regression, Mann-Whitney test,

Spearman correlation, using XLStat, GraphPad Prism version 9,

as well as machine learning algorithms from Weka (version 3.8.4).
Results

Low anti-inflammatory cytokines IL-4 and
IL-10 and female sex predict incident
neuroinflammatory disease in PLwHTLV-1

As shown in Figure 1A, the entire cohort consists of 794

PLwHTLV-1, of which 179 were diagnosed with definite HAM, and

615 were neurologically asymptomatic (AS) at entry in the cohort.

During 6673 person-years of clinical follow-up (median 11 years, range

2–21), eleven incident cases of clinically definite HAM (iHAM) were

observed among 615 AS (1.79%, 164.8/100,000 person-years)

(Figure 1A). The vast majority of incident cases (9 out of 11, 81.8%)

were women, consistent with a higher risk of clinical progression in

female PLwHTLV-11. For nine out of eleven incident cases (all

women), a pre-diagnostic plasma sample was obtained, and

compared to all available samples of PLwHTLV-1 who remained

neurologically asymptomatic (AS) during follow-up (n=59). Lower

systemic IL-10 and IL-4 levels (Mann-Whitney, respectively p=0.013

and p=0.08, Figure 1B) at entry in the cohort were observed in iHAM,

as compared to AS. This was confirmed by univariate and multivariate

logistic regression (Table 1), demonstrating that IL-10 [OR 0.93 (0.88–

0.97)], IL-4 [OR 0.93 (0.89–0.99)], and sex [OR 0.031 (0.001–0.868)],

were independent predictors of incident HAM, together resulting in

excellent discriminatory power. However, age or proviral load were not

significant predictors of incident HAM in either univariate or

multivariate analysis (Figure 1C, Table 1). Thus, the inclusion of

plasma cytokines improved iHAM classification (as evident from the

ROC curve ROC AUC 0.91, p<0.0001, Figure 1D), as compared to

previously identified risk factors age, sex and proviral load (ROC AUC

0.78, Figure 1D).
Plasma IL-10 predicts proviral load
dynamics on follow-up across
clinical groups

Due to the unexpected lack of predictive power of PVL in

iHAM in either univariate or multivariate analysis, we further
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1416476
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Assone et al. 10.3389/fimmu.2024.1416476
investigated the possible temporal associations between plasma IL-

10 and proviral load, both at sampling and during follow-up.

Figure 2A shows the highly variable proviral load dynamics from

baseline (entry in the cohort) to the first follow-up sample in all

clinical groups (AS, iHAM and HAM). Due to this high variability,

no significant decrease or increase in PVL was observed in any

subgroup. Similar to our previous findings in AS and HAM (13),

plasma IL-10 obtained before clinical progression did not correlate

to PVL at baseline (Figure 2B, Spearman’s R=-0.11, p=0.23, n=92)

across the cohort, and neither in iHAM, nor in joint analysis of AS

+iHAM or iHAM+HAM. However, plasma IL-10 was significantly

and negatively correlated to PVL at follow-up (Figure 2C, Spearman

R=-0.31, p=0.0044, n=81), i.e. lower IL-10 predicts a subsequent rise

in PVL across all clinical groups. This phenomenon was even more

pronounced in AS+iHAM (R=-0.43, p=0.003, n=46) but completely

absent in HAM (R=0.011, p=0.95, n=36), despite a similar sample

size. No firm conclusions can be drawn on IL-10/PVL dynamics in

iHAM, due to the recent diagnosis and short follow-up (n=9 at

sampling, n=6 at follow-up), although the effect size is similar to the

entire cohort (R=-0.30, p=0.68). Thus, IL-10 reaches a nadir in

iHAM but increases in HAM patients, possibly provoking a rise in

PVL. Since increased PVL upon follow-up is strongly associated

with baseline PVL, we corrected for this possible bias by

calculating the change in log PVL (Delta PVL). Again, we found

that plasma IL-10 was also able to significantly predict Delta PVL

(Figure 2D, R=-0.31, p=0.023, n=54).
Frontiers in Immunology 04
IL-10 can act as a switch for lymphoproliferation in HTLV-1-

infected T-cell clones derived from HAM patients (11). Thus, we

investigated the possible correlation of plasma IL-10 with

lymphoproliferation, as well as CD4 and CD8 levels in AS, iHAM

and HAM, which might underlie its predictive effect on PVL

dynamics. However, plasma IL-10 was not significantly correlated

to lymphoproliferation (measured as described in Methods), CD4

or CD8 levels (data not shown). Since CXCL10 has been proposed

as a candidate biomarker for clinical progression in HAM, we also

tested its possible predictive role in PVL dynamics. Plasma CXCL10

at baseline (simultaneous with IL-10) was not correlated to PVL but

positively correlated to PVL at follow-up (data not shown).

However, upon correcting for baseline PVL, either by linear

regression or by calculating Delta PVL, CXCL10 was no longer

able to predict PVL dynamics over time, in contrast to IL-10.
Additional plasma biomarkers for
incident HAM

Because of the striking findings of low IL-10 and IL-4 as

independent risk factors for iHAM, and the predictive power of

IL-10 for posterior PVL dynamics, we further explored the possible

upstream and downstream mechanisms by examining a large panel

of 37 pro-and anti-inflammatory cytokines, chemokines and

immune mediators. Of those 37, seven were previously suggested
B

C D

A

FIGURE 1

Low anti-inflammatory cytokines IL-4 and IL-10 predict incident disease (iHAM) in a large Brazilian cohort. (A) Flow diagram of the Sao Paulo cohort
of People living with HTLV-1 and strategy for plasma sample selection. (B) Plasma levels of IL-4 and IL-10 in neurologically asymptomatic (AS) during
follow-up and in individuals with a diagnosis of incident HAM (iHAM). (C) Proviral load levels in neurologically asymptomatic (AS) during follow-up
and in individuals with a diagnosis of incident HAM (iHAM). (D) ROC curves distinguishing AS and iHAM based on age, sex and proviral load (red,
AUC=0.78, p=0.010), or IL-4, IL-10 and sex (green, AUC=0.91, p<0.001).
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as candidate biomarkers and/or therapeutic targets (MMP-1/2/3,

TNFR1/2, IL-22, Osteopontin) (16–24) in HAM, while most of

them were not previously interrogated at the protein level in HAM

patients but have been demonstrated in other neuroinflammatory

or neurodegenerative disorders, such as CHI3L1 (also known as

YKL-40) in HIV-Associated Neurocognitive Decline (HAND) (25).

Since only 64 out of 110 plasma samples were available (of which 6/

9 iHAM) for these additional assays, we considered this an
Frontiers in Immunology 05
exploratory analysis because of the lower sample size. As shown

in Figure 3, pro-inflammatory IL-27 (Mann-Whitney p=0.030) and

soluble IL6 receptor alpha chain (sIL6Ra, Mann-Whitney p=0.031)

were significantly increased in iHAM patients as compared to AS,

further underlining that the IL-10 nadir in iHAM corresponds to an

increased inflammatory state. In addition, we found three

additional candidate biomarkers that discriminate between iHAM

and HAM patients (Figure 3): osteopontin (Mann-Whitney
B

C D

A

FIGURE 2

Plasma IL-10 predicts proviral load dynamics during follow-up of PLwHTLV-1. (A) Before-after plots of PVL at baseline (BL, entry in the cohort) and
at first follow-up (FU). (B) Spearman correlation between plasma IL-10 at baseline and PVL at baseline (B), PVL at follow-up (C), and Change in PVL
i.e. value follow-up minus baseline (D).
TABLE 1 Logistic regression analysis of iHAM risk factors.

Parameter Univariate models Multivariable Model 1 Multivariable Model 2

Odds
ratio

95% CI p-val Odds
ratio

95% CI p-val Odds
ratio

95% CI p-val

Age 1.002 0.968–1.036 0.920 1.003 0.964–1.044 0.889

Sex (male) 0.028 0.001–0.554 0.019 0.036 0.002–0.741 0.031 0.031 0.001–0.868 0.041

DNA HTLV-1
Proviral Load

1.312 0.915–1.882 0.139 1.328 0.914–1.928 0.136

IL-2 0.969 0.925–1.015 0.182

IL-4 0.940 0.893–0.989 0.017 0.925 0.866–0.987 0.019

IL-6 0.999 0.996–1.002 0.420

IL-10 0.923 0.880–0.969 0.001 0.926 0.880–0.974 0.003

TNF 0.964 0.924–1.007 0.097

IFN-g 0.992 0.970–1.015 0.492

IL-17A 1.007 0.991–1.023 0.396
Significant results are in bold.
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p=0.022) and soluble TNF receptor 2 (sTNFR2, Mann-Whitney

p=0.049) are significantly lower in iHAM patients, while IL-29, also

known as IFN-l1, was significantly increased in iHAM, as

compared to HAM patients (Mann-Whitney p=0.019).

Reiterating its role as a central player in iHAM, IL-10 was

significantly correlated to Osteopontin (R=0.33, p=0.0075) and

sTNFR2 (R=0.32, p=0.010), but not to any other cytokines or

chemokines. In contrast, none of these additional candidate

biomarkers were correlated to PVL.
Frontiers in Immunology 06
Discussion

HAM is the most common disease associated with HTLV-1 in

Brazil, and bona fide biomarkers to predict PLwHTLV-1 at risk are

directly needed. Several groups have suggested PVL as the major

biomarker for clinical progression from AS to HAM, which has

been observed in several cross-sectional studies (6, 26), but

contradicted in a number of prospective cohort studies (12, 27),

which might suggest a temporal component in the predictive
B

C D

E F

A

FIGURE 3

Additional candidate plasma biomarkers for incident neuroinflammatory disease. For plasma samples with sufficient volume, Luminex assay (37-plex
and additional CXCL10) was performed (n=64, of which 37 AS, 6 iHAM and 21 HAM). (A) IL-27 (B) IL-6R-a (C) Osteopontin (D) sTNFR2 (E) IL-29/
IFNl1 (F) CXCL10. *p<0.05 Mann-Whitney test.
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capacity of PVL for incident HAM. This study’s result on systemic

IL-10 as a predictive biomarker of both iHAM and PVL

dynamics on clinical follow-up might reconcile these apparently

conflicting findings.

Our group and others have shown that several proinflammatory

cytokines and chemokines, such as IL-2, TNF, IFN-gamma,

CXCL10 and MIP-1beta are significantly increased in HAM

patients, as compared to AS, which has been extensively reviewed

in (5, 28). In this study, we found that lower levels of systemic IL-10

at the time of entry into the cohort were significantly predictive of

clinical progression to definite HAM compared to asymptomatic

carriers whose clinical evolution remained unchanged.

This suggests that IL-10 may have a protective role against

HAM development, which is in agreement with an increase in both

the IFN-g/IL-10 ratio and the frequency of persistent HTLV-1-

infected clones demonstrated by Espıńdola et al. (2015) in HAM

patients, as compared to AS (29). Furthermore, IL-10-mediated

signals, such as the activation of STAT3 and IRF4 pathways, have

been implicated in increased proliferation in HTLV-1-infected T-

cell clones derived from HAM patients. In an in vitro comparison of

Brazilian AS and HAM patients, the addition of IL-10 or TGF-b had
varying effects on IFN-g production. Additionally, individuals who
developed HAM showed a decrease in FOXP3 expression and

reduced IL-10 and TGF-b cytokine production, which are known

to suppress the immune response. Although IL-10 is generally

known for its anti-inflammatory properties, it may also have

proinflammatory functions, especially in the presence of type I

IFN. We previously demonstrated a weak correlation between age

and IL-10 levels, with the IL6/IL10 ratio significantly increased with

age. This ratio may be linked to a higher mortality rate in HTLV-1-

infected individuals (12).

Although our findings provide insight into the plausible role of

IL-10 in the pathogenesis of HTLV-1-triggered neuroinflammation,

IL-10 is currently not a potential therapeutic target, due to the

absence of human clinical trials. Future research should focus on

elucidating the underlying molecular and cellular mechanisms and

possibly explore targeted therapeutic interventions upstream or

downstream of IL-10 and/or IL-4. Following up on the initial

finding of low IL-10 and IL-4 as independent risk factors for

iHAM, we further explored a previously proposed biomarker

(CXCL10), as well as a large panel of 37 pro-and anti-

inflammatory cytokines, chemokines and immune mediators, of

which 30 had not been studied at the protein level before in

HAM patients.

Within this comprehensive panel, seven proteins had previously

emerged as potential candidate biomarkers or therapeutic targets

in the setting of HAM, including matrix metalloproteinases

(MMPs) MMP-1, MMP-2, and MMP-3, tumor necrosis factor

receptors (TNFRs) TNFR1 and TNFR2, interleukin-22 (IL-22),

and Osteopontin (16–24). Most of the other 30 candidate protein

biomarkers had been described in various other neuroinflammatory

or neurodegenerative afflictions, e.g. CHI3L1, also known as YKL-

40, in the context of HIV-Associated Neurocognitive Disorders

(HAND) (25). Although exploratory in nature, due to the inherent

limitations associated with a reduced sample size, our findings
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underscored the heightened inflammatory milieu characterizing

iHAM. Notably, pro-inflammatory interleukin-27 (IL-27) and

soluble interleukin-6 receptor alpha chain (sIL6Ra) were

significantly increased in iHAM patients relative to asymptomatic

carriers (AS). IL-27 was significantly correlated to the CD4/C8 ratio

(p=0.0099), but not to IL-10 levels, suggesting different cellular

pathways at play with each cytokine. Both IL-27 and sIL6RA were

not significantly correlated to sex, age or proviral load (data

not shown).

Furthermore, our exploration yielded three novel candidate

biomarkers for distinguishing iHAM from HAM patients:

Osteopontin, soluble TNF receptor 2 (sTNFR2) and IL-29, also

known as IFN-l1. Of interest, another member of the IFN-lambda

family, IFN l3, was proposed as a possible genetic biomarker for

HAM in both Brazilian and Spanish cohorts (30–33). Blocking TNF

signaling through its receptors TNFR1 and TNFR2 has been widely

targeted in clinical trials of autoimmune and inflammatory diseases,

such as rheumatoid arthritis, Crohn’s disease, ankylosing

spondylitis, psoriasis, and psoriatic arthritis. Thus, commonly

used TNF inhibitors such as Infliximab, Etanercept, Adalimumab,

Certolizumab pegol or Golimumab might be repurposed for the

treatment of iHAM and HAM patients, in agreement with our

previous findings of TNF as a negative predictor of corticosteroid

response in HAM patients (13).

Several strengths and limitations of the current study are

noteworthy. First, this prospective cohort study is, to our

knowledge, the largest (clinical follow-up of 615 AS) and longest

(total follow-up 6,673 person-years, ranging from 2–21 years) to

date to report on incident HAM and the identification of non-

invasive (plasma) biomarkers. Nevertheless, only 11 iHAM cases

were identified in this study, of which 9 had available plasma

samples, which should be considered a limitation of the study. An

inherent limitation due to the neglected situation of PLwHTLV-1 in

Brazil is the unknown time to onset of iHAM, since both the timing

of infection as well as the time of diagnosis of definite HAM are

expected to be delayed under the public health conditions during

the study period. Practically, time of entry in the cohort upon

HTLV-1 diagnosis is a poor proxy for time of infection, while the

diagnosis of definite HAM requires inclusion of CSF analysis

according to Castro-Costa criteria, causing a delay in iHAM

classification. Logistic and financial limitations also made that

frozen cells were not collected at entry into the cohort, which

precluded elucidation of the IL-4 and IL-10 producing immune cell

types. Likewise, no comparisons could be made to other proposed

HAM biomarkers, such as Hbz mRNA (34) or CD4/CD8 activation

markers (35) measured by flow cytometry. However, due to the

logistic advantages of plasma storage (-80 or -20°C) and cytokine

analysis, the candidate biomarkers proposed in this study are a

more feasible option for large prospective cohort analysis,

especially in resource-limited settings, as compared to storage of

frozen cells (requiring liquid nitrogen storage) and multiparameter

flow cytometry.

In summary, plasma anti-inflammatory cytokines IL-10 and IL-

4 are non-invasive independent predictors of incident HAM cases

in a large Brazilian cohort. While these major cytokines might not
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represent direct therapeutic targets, we also identified IL-29/IFN-ƛ1
and soluble receptors IL6R alpha (targeted by Tocilizumab) and

TNFR2 (targeted by several biologics), which have been safely and

effectively applied in several clinical trials of other inflammatory

diseases, representing untapped potential for future clinical trials

in HAM.
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