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Introduction

For hundreds of years, mankind has attempted to fight cancer by directly destroying

tumor cells utilizing various cytotoxic substances. However, such strategies have generally

failed to produce lasting success, especially when it comes to metastatic tumors. More

specific approaches, such as targeted therapies and immunotherapy, hold more promise (1–

4). Here we will discuss another approach to cancer therapy - targeting the production of

factors released by tumor cells. Although it may be impossible to directly kill all tumor cells

in an effective and durable manner while maintaining an acceptable safety profile, it is at

least might be possible to reduce the production of factors by tumor cells that cause

immunosuppression (5–8).

Nowadays, studies mainly are not focused on suppression of tumor-produced cytokines

and other factors, despite the notion that they play important role in cancer-induced

immune suppression (9–11). The continuous production of various cytokines may be not

less important for the spread of cancer than the proliferation of cancer cells. This cytokine

production generates a kind of immunosuppressive cocktail that causes local immune

unresponsiveness to cancer antigens and serves as a source of autocrine growth factors for

cancer cells (9, 12, 13).

For instance, conditioned media from human tumor-derived cells isolated from cancer

tissue of treatment-naive patients with melanoma or ovarian cancer prominently induced

dendritic cell dysfunction (11). Conditioned media from pancreatic cancer cells and

pancreatic stellate cells induced differentiation of myeloid-derived suppressor cells

(MDSCs) and suppression of lymphocytes (14). Conditioned media derived from lung

cancer cells induced pro-tumoral phenotypes in macrophages (15). Stimulation of B cells

with breast cancer cell-conditioned media caused the development of regulatory B cells

(Breg) contributing to tumor evasion from the immune response (16, 17).

Of note, each factor in the tumor microenvironment has a dual role. They can stimulate

anticancer immunity or act as tumor promoters and induce negative feedback in immune

regulation. This “dual role” is commonly described in scientific literature, in discussions of

cytokines such as the IL-1 family (18), IL-6 (19), TNF (20), IL-10 (21), and others. Many
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sources indicate that, in the tumor microenvironment, tumor-derived

factors mainly play a tumor-promoting role. Therefore, targeting

them may be an effective strategy in fighting cancer (9, 11, 22–25).

The paradox is that despite the role of immunity in defense

against cancer, immune cells are also required for carcinogenesis.

Specific tumor-immune interactions create the conditions necessary

for tumor promotion. And the immunoregulatory factors produced

by cancer cells play the role of mediators of this interaction (26,

27) (Figure 1).

This manuscript aims to focus mainly on the effects of factors

produced by cancer cells, considering them separately (as far as

possible) from the effects of the same factors but produced by other

cells. Not all of these factors are produced by all tumors, but tumors

always seem to produce at least some of them. Many tumor-

produced factors are cytokines, but not all of them - for example,

adenosine and kynurenines are not usually considered cytokines.

Some of these factors are not even substances in the usual sense

(e.g., reactive oxygen species (ROS) and reactive nitrogen species

(RNS), so factors may be a better term.

In the following sections, we will examine the role of a number

of factors produced by tumor cells in immunosuppression. In the

conclusion we will discuss strategies of targeting the

immunoregulatory factors emphasizing the importance of limiting

their production by cancer cells.
Tumor-produced factors and their
role in cancer

Tumor-produced factors can be classified into various

categories, including cytokines, chemokines, growth factors, and

small molecule mediators. We will focus on several prominent

examples from these groups.
Cytokines

IL-6

IL-6 in one of the key cytokines produced by normal cells during

inflammation; besides, IL-6 is one of the most important cytokines in

the tumor microenvironment - its protumor and anti-tumor effects are

well known and extensively described in the literature (19, 24, 45). IL-6

is also produced by various cancer cell lines - human ovarian

carcinoma cells (46), esophageal squamous cell carcinoma, cervical

adenocarcinoma (6), and many others - at significantly lower levels

than during acute inflammation, but in a constant manner.

In contrast to acute stimulation, prolonged stimulation by IL-6

and other cytokines activates a suppressive phenotype of myeloid

cell lineages - MDSCs (47). In addition, IL-6 and IL-8 produced by

tumor cells have been shown to play immunosuppressive roles by

impairing the activity and function of natural killer cells (NK cells)

(48). IL-6 exerts various other pro-cancer effects, being involved in

angiogenesis (46) and acting as a growth factor for various types of

cancer cells, including prostate cancer cells, breast cancer cells,

esophageal adenocarcinoma cells, and others (49–51). Blocking the
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receptors for IL-6 results in anti-proliferative effects on cancer cells.

For example, tocilizumab (an IL-6R-targeting antibody) decreased

the proliferation of non-small cell lung cancer cell lines with an

inhibition rate comparable to that of the typical anticancer drugs

methotrexate and 5-fluorouracil (52). In another study, tocilizumab

treatment decreased proliferation and invasion of osteosarcoma cell

lines (143B, HOS, and Saos-2). In contrast, treatment with

recombinant human IL-6 increased the proliferation of 143B and

HOS cells (53).

IL-6 activates STAT3 which is a downstream transcription

factor for IL-6, playing a major role in the process of MDSCs

accumulation and acquisition of their immunosuppressive

phenotype (48, 54). Moreover, it has been shown that IL-6 can

induce arginase-1 expression in alternatively activated macrophages

in STAT3 dependent manner, which can suppress CD4+ T cell

proliferation (54).
TNF

TNF (tumor necrosis factor) is expressed by a variety of cells,

including tumor cells (55). For example, H. pylori-secreted TNF-

inducing protein (Tipa) plays a role in increasing TNF levels in

preneoplastic lesions detected in H. pylori-positive gastric

lesions (56).

Low, sustained TNF production can induce an immunosuppressive

phenotype through several mechanisms. Cancer cells can produce CCL2

and other chemokines in response to TNF stimulation, which enhances

their metastatic potential (57) and recruit leukocytes with pro-metastatic

effects to the tumor microenvironment (58).

TNF exerts its biological activity through several signaling

pathways, including NF-kB and c-Jun N-terminal kinase (JNK).

NF-kB mainly serves as an anti-apoptotic signal and JNK mediates

the pro-apoptotic effect of TNF on cancer cells (57, 59). TNF has

been shown to upregulate TAZ, a transcriptional co-activator that

promotes self-renewal of breast cancer stem-like cells through the

non-canonical NF-kB pathway (60). One such mechanism is the

generation of ROS and RNS, which can induce DNA damage.
IL-33

IL-33, an alarmin cytokine of the IL-1 family (61), is produced by

various cells, including cancer cells (62, 63). It is crucial for the

tumorigenic capacity of tumor-initiating cells (TICs), also known as

cancer stem cells, which drive cancer progression and resistant to

treatment (64, 65).

IL-33 attracts tumor-associated macrophages (TAMs) which

express the IL-33 receptor ST2 and the high-affinity IgE receptor in

close proximity to TICs (within a 50-mcm radius). TAMs create a high

level of immunosuppressive TGF-b in the surrounding

microenvironment. For instance, in squamous cell carcinoma model,

IL-33 was found to be the most significantly upregulated cytokine in

TGF-b-responsive TICs (65). IL-33 expression correlates with

increased immunosuppressive macrophages, monocytes, and

microglia in human glioma specimens and mouse models (66).
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IL-33–ST2–NF-kB pathway stimulates paracrine TGF-b
signaling to TICs, leading to further upregulation of IL-33 (65).

Therefore, IL-33 production by cancer cells creates a positive

feedback loop, increasing the number of immune cells with

suppressive phenotypes and promoting drug-resistant cancer

stem cells.
Chemokines

MCP-1/CCL2

Monocyte chemoattractant protein-1 (MCP-1/CCL2) was isolated

in 1989 and found to be structurally identical to tumor cell-derived

chemotactic factor (TDCF), responsible for tumor-associated

macrophage (TAM) infiltration (67, 68). Many human cancer cells

produce MCP-1, and it is found in cancer tissues such as glioma,

meningioma, ovarian, lung, and breast cancers (67). MCP-1 levels are

relatively low in many non-cancerous tissues with some exceptions,

such as immune-privileged sites (67, 69). However, unstimulated

stromal cells acquire the ability to produce MCP-1 under the

influence of other tumor-produced factors (67).

In general, the level of MCP-1 is significantly associated with

the accumulation of TAMs, which are known for their protumor

effects (67). MCP-1 is crucial for establishing pre-metastatic niches

and aiding cancer cell dissemination, with macrophages often

involved in this process (70).
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MCP-1 produced by cancer cells can attract macrophages and

induce Wnt-1 upregulation, downregulating E-cadherin junctions

in breast cancer cells and stimulating tumor cell dissemination (70).

Additionally, MCP-1 binding to CCR2 on vascular endothelial cells

directly stimulates angiogenesis (71).
IP-10

Interferon gamma-induced protein 10 (IP-10), also known as CXC

motif chemokine 10 (CXCL10), is a small cytokine-like protein

produced by a wide variety of cell types. In healthy individuals, the

expression of IP-10 is minimal, but it increases during the immune

response due to stimulation by cytokine upregulation, especially by

IFN-g (72). The cells of several types of cancer (breast cancer, colon
cancer, basal cell carcinoma, lung adenocarcinoma, etc.) are capable of

producing IP-10, which can stimulate their growth, progression and

metastasis in an autocrine manner (73).

IP-10 binds to the CXC chemokine receptor-3 (CXCR3) which

is mainly expressed by T cells, NK cells, dendritic cells,

macrophages, as well as some epithelial and cancer cells (73).
Growth factors

Cancer cells are capable of producing various growth factors

such as VEGF, TGF-b, PDGF, etc. As a result of the dysregulated
FIGURE 1

The production of various soluble factors that induce immunosuppression is a characteristic feature of tumor cells. Cancer cells can serve as an
example of the diseased tissue. Such tissues are characterized by the production of proinflammatory cytokines and chemokines (28). Normally, such
production of immune-regulatory factors is dependent on the microenvironment. However, in cancer cells, cytokine production is unconditional
and context-independent, as cells of different cancer types are capable of spontaneous cytokine production (29–31). A pattern can be identified in
which these factors cause the recruitment of various myeloid cells into the tumor tissue, which acquire an immunosuppressive phenotype in the
tumor microenvironment, triggering a chain of further suppression of immune functions. In particular, under their influence, the expansion of T- and
B-regulatory cells occurs and the expression of various immune checkpoints increases (17, 32–35). Reducing the production of these factors by
tumor cells may therefore be a promising strategy for cancer therapy. It is extremely important to note that tumors do not produce a single factor,
but rather a whole set of factors of different types (different depending on the type of tumor). This plethora of factors produced by tumors
contributes to their perception as a network structure, in which it is difficult to single out one major factor (6, 36). Therefore, for therapeutic
purposes, it seems that the totality of these factors (or at least some of them) should be targeted at once. The influence on angiogenesis is an
example of the perception of tumor-produced factors as components of a network structure, where there are many mutual influences (37). In
particular, not only VEGF affects angiogenesis, but also many of the other factors are capable of angiogenesis upregulation [for instance, IL-6 (38),
TNF (39), IL-33 (40), MCP-1/CCL2 (41), IL-8/CXCL10 (42), kynurenine (43), adenosine (44)].
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autocrine and paracrine signaling networks in cancer, their role is

mainly pro-tumor, stimulating epithelial-mesenchymal transition,

angiogenesis, and immune suppression (74, 75).
VEGF

Cancer cells are capable of producing VEGF to improve their

own blood supply. According to the studies that evaluated the ability

of tumor cells to produce various cytokines, VEGF is one of the most

intensively produced cytokines by various tumor cells (76–78).

VEGF is a known factor that promotes cancer growth and

metastasis by stimulating angiogenesis. In addition to stimulating

angiogenesis, VEGF suppresses tumor immunity by inducing

immunosuppressive cells such as tumor-associated macrophages,

regulatory T cells (Treg), and MDSCs, and by inhibiting the

maturation of dendritic cells (78).

VEGF suppresses immune responses by binding to its receptors

(VEGFR1 and VEGFR2) on immune cells, activating the PI3K/Akt

and MAPK pathways and contributing to CD8+ T cell exhaustion

via expression of negative immune checkpoints, such as PD-1,

CTLA-4, TIM-3 and others (79).
Immune checkpoints

Tumor cells produce a multitude of ligands for immune

checkpoints, which are presumed to play a pivotal role in the

suppression of effector functions of the immune system. In addition

to PD-L1/2, these ligands include galectin-3, galectin-9, and others (80).
PD-L1

Due to advances in tumor immunotherapy, PD-L1 production

is perhaps the first thing that comes to mind when we talk about

immunosuppressive factors produced by tumors. Various types of

immune cells are also capable of producing PD-L1, which is part of

the autoregulation of the immune response, particularly during

inflammation (81).

One of the major roles of PD-L1 produced by cancer cells is in

many ways similar to the role of other tumor-derived factors - the

orchestration of myeloid cells (M2 macrophages and others)

that contribute to tumor infiltration, metastasis, and immune

evasion (82). According to the recent study (22), tumor-derived

PD-L1 does not directly protect tumor cells from cytotoxic

T lymphocytes (CTL) cytotoxicity. Instead, tumor-derived PD-L1

promotes metastasis independent of primary tumor growth by

suppressing inflammatory and CTL-driven responses within

immunosuppressive niche, which are created through PD-L1

engagement with PD-1 on myeloid cells (22).

The molecular mechanism of this action of tumor-derived PD-

L1 involves suppression of the intrinsic IFN-I-STAT1-CXCL9

pathway in myeloid cells through activation of the PD-1 protein-

tyrosine phosphatase SHP-2 axis. This suppression, in turn,

decreases CTL tumor infiltration in tumor metastases (22).
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Small molecule mediators

Adenosine

Not all tumor-derived factors are cytokines. In particular,

adenosine is a metabolic factor that is found in significant amounts

in the typically hypoxic tumor microenvironment. Adenosine plays

an important role in a variety of immunosuppressive and

immunomodulatory mechanisms, culminating in the suppression

of antitumor CD8+ T cell activity (83–86). Activation of adenosine

receptors promotes the switch of macrophages to the anti-

inflammatory M2 phenotype (87). In addition, adenosine

attenuates the cytotoxic effect of NK-cells (mainly through A2

adenosine receptor signaling), leading to tumor immune escape in

various tumors (84).
Kynurenine

Kynurenine is the product of the degradation of tryptophan

by indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-

dioxygenase (TDO). It has been demonstrated that metabolites of

the kynurenine pathway can modify the behavior of immune cells,

leading to a more tolerogenic phenotype (88). Kynurenine has been

demonstrated to promote the expression of the protective TGF-b,
the differentiation of Treg cells, and the induction of IDO1

expression in dendritic cells (DCs) (89–91). Kynurenine functions

as an activating ligand for the aryl hydrocarbon receptor (AhR), a

ligand-operated transcription factor. As an example, kynurenine

induces an inflammatory positive autocrine feedback loop via the

IDO1-AhR-IL-6-STAT3 signaling pathway, thereby enhancing

tumor growth (88).
Focus on the suppression of factors
produced by cancer cells in the
development of cancer treatment

In this article, we have examined only some of the factors

secreted by tumor cells and capable of immunosuppression.

However, there are many more such factors and their production

can be considered as a phenomenon of chronic inflammation at the

level of tumor cells. Apparently, there are no exclusively pro-tumor

cytokines and other immunoregulatory factors (IRFs), but it can be

assumed that their production by tumor cells is always unfavorable

and is a potential target for antitumor therapy. The main essence of

the proposed focus on targeting IRFs is to suppress their production

by cancer cells.

The clinical application of targeting the IRFs produced by

tumors involves several strategies: 1. direct neutralization of IRFs

with specific antibodies; 2. IRFs receptor blockade; 3. inhibition of

increased IRFs production by cancer cells. Many clinical trials are

performed using the first two strategies. The use of these strategies

usually leads to serious side effects due to systemic effects, as the

action of all IRFs of a specific type is blocked, not just those
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produced by the tumor. For instance, immunotherapy with

immune checkpoint inhibitors (anti-PD1, anti-PD-L1, etc.) which

have radically changed the outcome of some cancers, cause strong

autoimmune side effects that limit their use (45). In addition, there

is a big variability in patient responses, and in most cases, patients

do not respond to immune checkpoint immunotherapy (92).

However, the third strategy looks promising, since it may allow

us to focus not on all factors of a certain type, but only on those

produced by tumor cells. Indeed, the factors listed are not

essentially tumor-specific but rather common factors released by

many cell types during inflammation. Nevertheless, there is a

theoretical possibility of interfering with the aforementioned IRFs

in a manner that minimizes adverse effects. This can be achieved by

focusing on the reduction of tumor cell IRFs production

capabilities. Among other things, cancer cells differ from normal

cells by overactivation of various signaling pathways. Blocking only

one pathway may result in adaptive activation of signaling through

other pathways, depending on individual patient characteristics.

There are many targets in these signaling pathways, and

simultaneous targeting of many of them is promising as it may

reduce the production of IRFs by cancer cells.

But what kind of drugs can suppress a wide array of hyperactivated

pathways in cancer cells to suppress the production of various IRFs?

One example of this approach is using of multi-target drugs like multi-

kinase inhibitors (93). By interacting with various intracellular

signaling pathways, agents like multi-kinase inhibitors can block the

production of IRFs by cancer cells. For instance, lenvatinib, a multi-

target tyrosine kinase inhibitor suppresses VEGF production by

hepatocellular carcinoma (HCC) cells (94, 95). Another multi-kinase

inhibitor, Tivozanib, mediates immune modulation and reversal of

tumor-induced immune suppression which correlates with survival of

patients with cancer (96).

Some substances that have demonstrated potent antitumor

effects in vivo have been observed to inhibit the production of

various cytokines by tumor cells (for example, the polyphenolic

metabolite of the intestinal microbiota urolithin A) (76, 97, 98).

However, clinical studies of some of these compounds in cancer

have yet to be conducted.

In the next section, we will briefly discuss the results of some

clinical trials of the above-mentioned strategies, targeting the IRFs.
Clinical limitations and challenges

Regarding the clinical applicability of targeting IRFs, there are

certain limitations and challenges, including variability in patient

responses and potential side effects. For instance, IL-6 signaling is

involved in immunotherapy resistance (45, 99). This has been taken

into account, and there are currently approximately 20 clinical trials

evaluating the combination of IL-6 family antibodies and immune

checkpoint inhibitors, showing variable patient responses (45). For

example, in patients with advanced pancreatic cancer

(NCT02767557), the addition of tocilizumab (an anti-IL-6R

antibody) to gemcitabine/nab-paclitaxel did not result in

improved overall survival rate at 6 and 24 months, although more

patients were alive at 18 months in the gemcitabine/nab-paclitaxel/
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leukemia patients (NCT04547062) tocilizumab in combination

with standard induction chemotherapy was considered to be safe

and effective (1-year overall survival (OS) was estimated at 43%

(21–88%) (101). Generally, the primary adverse effects of anti-IL-6/

IL-6R antibodies are associated with bacterial infections (45).

A number of clinical studies have analyzed the therapeutic value

of TNF-TNFR antagonists in cancer treatment. Some phase I and II

trials showed disease stabilization in various malignancies, and the

phase Ib trial (NCT03293784) combining TNF inhibitor

certolizumab with anti-PD-1/anti-CTLA-4 in melanoma patients

demonstrated safety and high response rates (58, 102). The recent

trial of TNF-a inhibitor certolizumab plus chemotherapy in stage

IV lung adenocarcinomas is notable for targeting cancer-induced

inflammation involving tumor-produced IRFs. It aimed to disrupt

the paracrine inflammatory loop, where chemotherapy-induced

cytotoxic stress leads to TNF-a secretion by endothelial cells,

promoting cancer-cell production of CXCL1/2 and recruitment of

MDSCs. The median response duration was 9.0 months (range 5.9

to 42.6 months). This study shows strong pharmacodynamic

inhibition of cytokines in the paracrine inflammatory loop (103).

A recent meta-analysis showed that VEGF/VEGFR inhibitors

combined with chemotherapy improved outcomes in platinum-

resistant ovarian cancer compared to monotherapy. This combination

therapy caused more side effects like hypertension, mucositis,

proteinuria, and diarrhea, than monotherapy, however, these side

effects were manageable and well-tolerated (104). Inhibiting VEGFR-

related pathways with kinase inhibitors might be more effective because

these inhibitors often target multiple cancer-promoting signaling

pathways simultaneously (105). Another meta-analysis compared the

efficacy and safety of two first-line therapies for unresectable

hepatocellular carcinoma: anti-PD-1/L1 antibody plus anti-VEGF

antibody, and anti-PD-1/L1 antibody plus VEGFR-targeted tyrosine

kinase inhibitor. The anti-PD-1/L1 and anti-VEGF combination

showed the longest overall survival (OS), while the anti-PD-1/L1 and

VEGFR-targeted tyrosine kinase inhibitor combination provided better

progression-free survival (PFS) but with lower safety (106).

As mentioned, adenosine, a tumor-produced IRF, is a

promising target with at least 54 active clinical trials (107). A

first-in-human study of adenosine 2A and 2B receptor

antagonists in advanced solid tumors (NCT04969315) recently

began, with no serious adverse events or dose-limiting toxicities

observed so far (108). The phase I clinical trial of ciforadenant, a

small-molecule adenosine 2A receptor antagonist, in patients with

renal cell cancer showed clinical responses both alone and in

combination with an anti-PD-L1 antibody, including in subjects

who had progressed on PD-1/PD-L1 inhibitors. The estimated OS

exceeded 90% at 25 months for the combination group

(ciforadenant plus the PD-L1 inhibitor atezolizumab).

Ciforadenant efficacy was associated with CD8+ T cell tumor

infiltration and diversification of TCR repertoire (109).

Despite the above-mentioned positive changes, their magnitude is

usually far from 100%. The reason for this may be that above-

mentioned therapies usually target only one factor, whereas many

factors are involved in tumorigenesis and cancer-related inflammation

(110). As an example, preclinical studies show that while potent anti-
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angiogenic agents can suppress tumor-induced neovascularization,

cancer cells often adapt by increasing invasiveness and metastasis

(105). The third strategy, which involves the inhibition of IRFs

production with multi-target drugs, appears to be promising. The

recent phase I study of tinengotinib, a multiple kinase inhibitor, as a

single agent in patients with advanced solid tumors showed that

tinengotinib was well tolerated and indicated potential clinical benefit

in FGFR inhibitor-refractory cholangiocarcinoma, HER2-negative

breast cancer (including triple-negative breast cancer), and

castration-resistant prostate cancer. A total of 13 patients (30.2%)

achieved partial response or stable disease (111). Another recent phase

I study of KC1036, a multiple kinase inhibitor, as a single agent in

heavily pre-treated patients with advanced solid tumors revealed a

manageable safety profile and preliminary antitumor activity. Among

36 patients who had at least one efficacy evaluation disease control rate

(DCR) was 80.6% (112). It is noteworthy that the two aforementioned

studies (111, 112) exhibited a shared adverse effect: hypertension. Phase

II trial of KC1036 showed its promising anti-tumor activity in patients

with previously treated advanced esophageal squamous cell carcinoma

(the DCR was 83.3%) (113).
Conclusion and prospects

Many of the clinical trials mentioned were conducted under

unfavorable conditions, with patients in advanced stages of disease

and having undergone multiple therapies that compromised their

immune system (58, 114, 115). Additionally, most trials focused on

suppressing a single IRF. Targeting multiple factors produced by

tumors, especially early in treatment, might be more effective. This

could be achieved with agents that modulate various intracellular

signaling pathways, such as multi-kinase inhibitors, which have a

relatively favorable safety profile and potential as disease-modifying

cancer therapies (116–118). It should be noted that the inhibition of

IRFs production is not the sole mechanism of action of such agents;

however, it may be of particular significance in the context of
Frontiers in Immunology 06
limiting cancer-induced immune suppression. A focus on the

capacity of multi-target drugs to suppress IRFs production may

assist in the identification of the most promising drugs for

clinical trials.
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