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acid dynamics, and the
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Xuzhi Zheng1, Wei Cen1, Lechi Ye1* and Qiongying Zhang3*

1Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical
University, Wenzhou, China, 2Department of Gastroenterology, The First Affiliated Hospital of
Wenzhou Medical University, Wenzhou, China, 3Department of Pathology, The First Affiliated Hospital
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Instruction: Colorectal cancer (CRC) poses a challenge to public health and is

characterized by a high incidence rate. This study explored the relationship

between ferroptosis and fatty acid metabolism in the tumor microenvironment

(TME) of patients with CRC to identify how these interactions impact the

prognosis and effectiveness of immunotherapy, focusing on patient outcomes

and the potential for predicting treatment response.

Methods: Using datasets from multiple cohorts, including The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO), we conducted an in-depth

multi-omics study to uncover the relationship between ferroptosis regulators

and fatty acid metabolism in CRC. Through unsupervised clustering, we

discovered unique patterns that link ferroptosis and fatty acid metabolism, and

further investigated them in the context of immune cell infiltration and pathway

analysis. We developed the FeFAMscore, a prognostic model created using a

combination of machine learning algorithms, and assessed its predictive power

for patient outcomes and responsiveness to treatment. The FeFAMscore

signature expression level was confirmed using RT-PCR, and ACAA2

progression in cancer was further verified.

Results: This study revealed significant correlations between ferroptosis

regulators and fatty acid metabolism-related genes with respect to tumor

progression. Three distinct patient clusters with varied prognoses and immune

cell infiltration were identified. The FeFAMscore demonstrated superior

prognostic accuracy over existing models, with a C-index of 0.689 in the

training cohort and values ranging from 0.648 to 0.720 in four independent

validation cohorts. It also responses to immunotherapy and chemotherapy,

indicating a sensitive response of special therapies (e.g., anti-PD-1, anti-CTLA4,

osimertinib) in high FeFAMscore patients.
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Conclusion: Ferroptosis regulators and fatty acid metabolism-related genes not

only enhance immune activation, but also contribute to immune escape. Thus,

the FeFAMscore, a novel prognostic tool, is promising for predicting both the

prognosis and efficacy of immunotherapeutic strategies in patients with CRC.
KEYWORDS

ferroptosis, fatty acid metabolism, TME, colorectal cancer, immunotherapy,
machine learning
1 Introduction
Colorectal cancer (CRC) is one of the most prevalent malignant

tumors of the digestive system. According to the American Cancer

Society, approximately 81,860 patients with CRC were diagnosed

and 28,470 deaths occurred in the United States of America in 2023,

causing serious problems for patients and public health (1).

Although endoscopic screening has reduced the mortality and

morbidity rates of CRC in recent years, and recurrence and

metastasis remain major challenges (2). Currently, primary

treatments for CRC include surgery, chemotherapy, and

radiotherapy. Nevertheless, advances in immunotherapies,

including anti-PD-1, anti-PD-L1, and anti-CTLA4 treatments,

have presented a new and promising therapeutic paradigm for

CRC with significant potential efficacy (3). For instance, the

successful anti-PD-1 application in patients with CRC and

mismatch repair deficiency (dMMR) or high microsatellite

instability (MSI-H) significantly causes progression-free survival

in CRC (4, 5). A new combination of radiotherapy and

immunotherapy promotes robust antitumor immune priming (6,

7). However, these methodologies face constraints arising from

spatiotemporal heterogeneity, moderate precision, or limited

representation of population subsets (8–10). Consequently, in the

context of personalized treatment paradigms, the identification of

robust biomarkers is essential for optimizing prognosis and

enhancing the efficacy of drug therapies for CRC.

Ferroptosis, driven by biochemical and genetic components, is a

programmed cell death pathway reliant on iron and activated by lipid

peroxide buildup on cellular membranes. Its involvement extends to

tumor advancement and therapeutic responses across various

malignancies and is often intertwined with reactive oxygen species

(ROS) that participate in cancer-related pathways (10). Fatty acid

metabolism is a crucial cellular process that transforms nutrients into

metabolic intermediates used for membrane synthesis, energy

reservation, and signaling molecule production. This process has

garnered significant attention as a potential target for cancer therapy,

particularly because it is associated with regulatory and CD8+ T cells

(11–13). Glutathione peroxidase 4 (GPx4) and prolyl hydroxylase-3

(PHD3) represent significant regulators of ferroptosis and fatty acid

metabolism, respectively, emphasizing the potential role of both in
02
immunotherapy (14, 15). Recent studies indicated a significant

association between fatty acid metabolism and ferroptosis.

Microsomal triglyceride transfer protein (MTTP)expression

increases in the body during fatty acid metabolism, which inhibits

ferroptosis and decreases the density of chemotherapy (16). Similar

results were observed for phospholipids containing a single

polyunsaturated fatty acyl tail (PL-PUFA1s), which are also

strongly correlated with ferroptosis (17). Additionally, cytochrome

P450 1B1 (CYP1B1) and cyclin-dependent kinase 1 (CDK1) degrade

acyl-CoA synthetase long-chain family member 4 (ACSL4), who

plays an essential role in fatty acid metabolism and inhibits

ferroptosis, thereby inducing resistance to anti-PD-1 and

oxaliplatin, respectively (18, 19). Thus, the fatty acid metabolism-

related genes appear to regulate ferroptosis and function as

intermediates. The relationship between ferroptosis regulators and

fatty acid metabolism-related genes, which may significantly

influence prognosis and drug resistance in colorectal cancer, has

been less explored. The tumor microenvironment (TME), which

consists of tumor cells, stromal cells, and immune cells, plays an

irreplaceable role in the metastasis and tumor progression and also

affects the efficacy of immune checkpoint blockade (ICB) treatment

(20, 21). Considering the special relationship between ferroptosis and

fatty acid metabolism regulators, a unique TME may induce novel

metabolic pathways in CRC. Thus, the interactions between

ferroptosis and fatty acid metabolism regulatory molecules should

be explored in multicenter cohorts from a multi-omics perspective,

including the TME, immunotherapy, and epigenetic mutations.

In this study, we conducted a thorough pan-cancer multi-omics

analysis to examine the molecular correlations between ferroptosis

and fatty acid metabolism regulators in 33 cancer types. By

performing unsupervised clustering, we identified three distinct

clusters related to ferroptosis and fatty acid metabolism based on

the TME, gene expression, and biological functions. Utilizing a

robust combination of 117 machine-learning algorithms, we

developed the FeFAMscore, which demonstrated superior

predictive performance in both the training cohort and four

independent external validation cohorts. It also effectively exhibits

potential in forecasting immunotherapy and chemotherapy drug

sensitivity in CRC patients. Overall, the FeFAMscore is promising

for the advancement of novel treatment strategies, fostering a

nuanced and personalized approach to medicine.
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2 Methods

2.1 Data acquisition and pre-processing

The workflow is illustrated in Supplementary Figure S1. The

Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/

geo/) and The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/databases were used to obtain the CRC

RNA expression profiles, in addition to the associated

comprehensive clinical annotations, including TCGA-COAD,

TCGA-READ, GSE17536, GSE17537, GSE29621, GSE38832, and

GSE39582. The Meta-cohort and Train cohorts (TCGA-COAD,

TCGA-READ, and GSE39582) were established and the batch

effects were estimated using the “sva” package in R software.

Additionally, three immunotherapy cohorts with different

immunotherapy efficacies downloaded from the TIGER website

(http://tiger.canceromics.org/), including IMVigor210 (anti-PD-

L1), Braun (anti-PD-1), and PRJNA23709 (anti-PD-1 + anati-

CTLA4) were investigated. The microarray data from the GEO

were normalized and corrected background by the “impute” R

package. The ferroptosis regulators and fatty acid metabolism-

related genes investigated in this study were extracted from

FerrDb (22) and MSigDB (https://www.gsea-msigdb.org/gsea/

msigdb/) (Supplementary Table S1). Finally, 1448 patients with

survival information were acquired from the database. The data of

Copy Number Variation (CNV) is extracted from TCGA database

in 33 cancers and analyzed by the “matfool” packages.
2.2 Unsupervised clustering of ferroptosis
regulators and fatty acid metabolism-
related genes

The tumor-related FeFAM genes were obtained from TCGA

database using “limma” and “survival” packages in the R software.

Univariate Cox analysis was used to filter the 50 prognosis genes in

the training cohort based on p<0.05. Next, the training cohort was

subjected to unsupervised clustering to identify distinct patterns.

The potential groupings were delineated using K-means clustering

analysis with varying cluster numbers (k = 2–9) (23). We then

performed the “Nuclst” package to verify the most appropriate

clusters with 28 criteria and repeated 1000 times on resample rate of

0.8 to validate the classification stability. Principal component

analysis (PCA) was subsequently employed to validate the

clustering results using the expression profiles of these genes. This

analysis confirmed the co-expression patterns of ferroptosis

regulators and fatty acid metabolism-associated genes.
2.3 Cell infiltration estimation

We evaluated the immune cell microenvironment using the

CIBERSORT algorithm, EPIC algorithm, MCPCOUNTER

algorithm, TIMER algorithm, quantiseq algorithm, and XCELL

algorithm of the “IBOR” and “GSVA” R package. Single-sample
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gene set enrichment analysis (ssGSEA) algorithm was used to verify

the results. Additionally, the TIDE algorithm (http://

tide.dfci.harvard.edu/) was used to evaluate the tumor immune

dysfunction and exclusion (TIDE) score, CAF, dysfunction and

exclusion of immune cells, PD-L1, and cytotoxic T cells (CTL)

score. A high TIDE score may reflect poor ICI efficacy.
2.4 Pathway enrichment analysis

To investigated the biological difference between three patterns and

cancer-related pathways, we downloaded “h.all.v7.5.1.symbols.gmt”

and “c2.cp.kegg.v7.4.symbols” from the MsigDB database

(c2.cp.kegg.symbols), and analyzed using the GSVA program. We

further explored the differences in cancer-, immune-, and metabolism-

related patterns as reported previously (24–27). The pathways with the

highest expression among the three patterns with p<0.05 were

considered activated.
2.5 FeFAMscore prognostic
model construction

To further explore the biofunction and prognostic value of

FeFAM genes, we first randomly combined 10 machine learning

algorithms, including random survival forest (RSF), elastic network

(Enet), Ridge, Stepwise Cox, Lasso, CoxBoost, partial least squares

regression for Cox (plsRcox), generalized boosted regression

modelling (GBM), supervised principal components (SuperPC),

and survival support vector machine (survival-SVM), as reported

previously (28). Then, the training cohorts were input as the

training group to the combined 117 algorithms, and each model

was detected in four independent datasets (GSE17536, GSE17537,

GSE29621, and GSE38832). Next, Harrell’s concordance index (C-

index) was calculated for each model across all validation cohorts

using the FeFAMscore derived from the training cohorts. Based on

the average C-index in all validation cohorts, we selected the

optimal model and compared the FeFAMscore with those of 69

published models in the past decade, which proved its reliable and

robust predictive power.
2.6 Cell culture

Normal colon mucosal epithelial cells (NCM460) and HCT116,

DLD-1, and CACO2 cell lines were obtained from the Chinese

Academy of Sciences (Shanghai, China), cultured in DMEM

supplemented with 10% fetal bovine serum (both from Thermo

Fisher Scientific, Waltham, MA, USA), and maintained under

standard cell culture conditions (37°C, 5% CO2) in a cell incubator.
2.7 RNA extraction and RT-qPCR

Cellular and tissue RNA was extracted using TRIzol reagent

(R411-01, Vazyme, Nanjing, China), followed by reverse
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transcription using HiScript III RT SuperMix (R323, Vazyme).

Quantitative PCR analysis was performed using the Universal

SYBR Green Fast qPCR Mix (ABclonal, Hong Kong, China,

RK21203). The data were analyzed using the 2(−DDCt) method,

with GADPH serving as the internal control. The primer sequences

are provided in Supplementary Table S1.
2.8 siRNA transfection

siRNA-ACAA2-1 or siRNA-ACAA2 (GenePharma, Shanghai,

China) was used to silence the ACAA2 gene. The siRNA sequences

were as follows: si-ACAA2-1 (sense: 5′-UGCUGAGACAGU

GAUUGUATT-3′; antisense: 5′-UACAAUCACUGUCUCUCATT-
3′), and si-ACAA2-2 (sense: 5′-GGGCACTGAAGAAAGCAGGA-3′;
antisense: 5′-CGTGAACCAGGTGTGCAGTA-3′). Transfection was

performed using Lipofectamine 3000 (Thermo Fisher Scientific)

following the manufacturer’s instructions.
2.9 Cell viability assay

CRC cell viability was evaluated using the Cell Counting Kit 8

(CCK-8, Dojindo, Japan). Briefly, 3000–5000 cells were seeded per

well in 96-well plates. Subsequently, 100 mL medium containing 10

mL CCK-8 solution was added to each well and incubated at 37°C

for 3 h. The absorbance at 450 nm was measured.
2.10 Transwell assay

HCT116 and CACO2 cell lines transfected with siRNAs

targeting ACAA2 (si-ACAA2-1 and si-ACAA2-2) or non-

targeting control siRNA (si-NC) were harvested, washed twice

with PBS, and resuspended in DMEM. The suspended cells were

then placed in the upper chamber of 24-well chambers equipped

with 8 mm pore inserts.
2.11 Colony formation assay

To evaluate colony formation in the monolayer culture, 1000

cells were seeded in 6-well plates. Following two weeks of culture,

the colonies were fixed and stained with 4% paraformaldehyde and

0.1% crystal violet for 30 min at room temperature.
2.12 Western blot

Protein concentration was determined using the BCA Protein

Assay Kit (Thermo Fisher Scientific, USA). Samples containing 30

mg of protein were separated on a 12% SDS-PAGE gel and

transferred onto a PVDF membrane. The membrane was blocked

with 5% BSA for 2 hours and then incubated overnight at 4°C with

the primary antibody. Afterward, the membranes were incubated

for 1 hour with the secondary antibody and washed three times with
Frontiers in Immunology 04
TBST buffer. Antibody signals were detected using the ECL system

(Bio-Rad, California, USA).
2.13 Immunotherapeutic
response prediction

We predicted the immunotherapy response of the FeFAMscore

by analyzing the expression of tumor mutational burden (TMB),

TIDE score, and differences in pathway enrichment. Based on these

results, we calculated the FeFAMscore of patients in the training

cohort to explore the function of the FeFAMscore in

immunotherapy. Subsequently, we used Subclass Mapping

(Submap) to determine the relationship between high or low

FeFAMscore groups and anti-PD-1 and anti-CTLA4 antibodies.

In addition, we utilized immunotherapy cohorts with clinical

response information to validate the immunotherapy response.

The IMVigor210CoreBiologies R package was used to obtain

transcriptome, survival, and immunotherapy efficacy data for the

IMVigor210 cohort (29). The anti-PD-1 and anti-CTLA4 cohorts

were validated using Braun and PRJNA23709.
2.14 Chemotherapeutic
sensitivity prediction

The correlation with FeFAMscore and drug sensitivity was

predicted by the GDSC and CTRP datasets with “oncoPredict”

packages. The relation with gene expression and drug sensitivity

was measured by the “Hmsic” package in R software.
2.15 Statistical analysis

Data processing and visualization were performed using R

software (version 4.3.2) and GraphPad Prism 8.0, respectively.

Group comparisons were performed using the Wilcoxon test for

pairwise comparisons, while ANOVA and Kruskal–Wallis tests

were used to assess variable distributions among multiple groups,

considering normality assumptions. Categorical variables were

analyzed using the chi-square and Fisher’s exact tests.

Correlations were determined using the Spearman and Pearson

techniques. Survival disparities were evaluated using the Kaplan–

Meier method and log-rank test. Statistical significance was set at

p<0.05, and all p-values were two-tailed.
3 Result

3.1 Identification of novel correlations
between ferroptosis and fatty acid
metabolism regulators

To explore the relationship between cell death and metabolism,

we investigated the crosstalk between ferroptosis-associated

regulators and fatty acid metabolism-regulating genes. The 486
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ferroptosis-associated genes derived from the FerrDb included

markers, suppressors, and drivers (Supplementary Table S1).

Meanwhile, 272 FAM genes were retained from the MSigDB

database. Genome-wide omics data for 33 cancer types were

retrieved from the TCGA database for analysis. The frequency of

mutations in these genes was significantly correlated between

ferroptosis and fatty acid metabolism in the tumors (Figure 1A).

PCA was performed to measure the levels of ferroptosis-associated

and FAM genes in the 33 cancer types database, then the

Spearman’s analysis further demonstrated a significant correlation

between them (Supplementary Figure S1A). Interestingly, the

COREAD database, with the largest number of patients,

exhibiting a prominent association between them (R = -0.93)

(Figures 1B, C). Consequently, to further explore the colorectal

cancer, the top 10 mutations in ferroptosis-associated regulators

and fatty acid genes were identified in 480 (95.98%) of 497 patients

with COREAD. The highest mutation frequencies were detected in

TP53 (67%), KRAS (44%), and PIK3CA (26%) (Supplementary

Figure S2B). The exploration of copy number variation (CNV)

alteration frequency showed a high incidence of CNV gains in the

TCGA cohort, demonstrating the potential for therapy in CRC

(Supplementary Figure S2C). The locations of FeFAM genes with

CNVs on the chromosomes are marked in the Circle Map

(Supplementary Figure S2C). Additionally, co-mutations were

common among these genes (Supplementary Figures S2E, F).

Based on the analysis of results, we compared the CRC and

normal samples from COREAD databases in TCGA, which finally

identified 159 ferroptosis-associated and fatty acid metabolism-

related genes according to logFC>1 and FDR <0.05 (Figure 1D).

To counterbalance the implications between TCGA and GEO

database, we enrolled COREAD database and GSE39582 and

adopted the “sva” package to remove batch effects and extract

relevant genes as the training cohort. A total of 50 genes were

subsequently screened using univariate Cox regression analysis (P

<0.05) of the FeFAM genes in the combined database

(Supplementary Figure S2G). The KEGG analysis, depicted using

a barplot, revealed enrichment of these genes in pathways such as

“PPAR signaling pathway”, “fatty acid degradation”, “fatty acid

metabolism”, “propanoate metabolism”, “tyrosine metabolism”,

and “p53 signaling pathway”. Furthermore, GO analysis of

molecular functions (MF), biological processes (BP), and cellular

components (CC) highlighted their relevance in fatty acid

metabolism, response to oxygen levels, and cancer pathways.

(Figure 1E). Network analysis offered a holistic view of the

prognostic implications and molecular interactions within the

FeFAM framework (Figure 1F). Considering the discernible

differences in the transcriptional profiles and the unique interplay

between these molecules, dysregulation within the FeFAM network

significantly contributes to CRC initiation and progression.
3.2 Discovery of novel FeFAM patterns
through unsupervised clustering analysis

To elucidate the potential FeFAM phenotypes in CRC, we

utilized K-means-based unsupervised clustering in the training
Frontiers in Immunology 05
cohort. The R package “ConsensusClusterPlus” was used to

initially categorize the patients with CRC into k (k=2–9) FeFAM

clusters (Figure 1G; Supplementary Figures S3A-K). The

cumulative distribution function (CDF) curves, derived from the

consensus score matrix and PAC statistics, elucidated the optimal

number of clusters (k=3) across the entire training patient cohort.

These clusters, denoted A, B, and C, exhibited discernible

segregation patterns (Figure 1H). Nbclust testing, which included

28 criteria, yielded the same results (Supplementary Figure S3L).

The PCA demonstrated a clear distinction between the three

clusters (Figure 1I). The Kaplan–Meier curve showed that cluster

C had better survival prognosis than clusters A and B (p<0.001)

(Figure 1J). The expression of FeFAM genes also indicated the

ability to differentiate between the three subtypes (Figure 1K).
3.3 TME characterization in different
FeFAM patterns

The ssGSEAmethod, which simulates the entire tumor immune

process, was first used to calculate tumor immune cell infiltration in

the training cohorts to investigate the differences in the TME

(Figure 2A). Next, six different algorithms, such as CIBERSORT,

EPIC, MCPCOUNTER, TIMER, QuantiSeq, and XCELL, obtained

the same results, verifying the crucial effects of FeFAM genes in the

immune system (Supplementary Figure S4A). Meanwhile,

according to the Spearman’s correlation analysis, almost all

FeFAM genes were significantly implicated in the immune

microenvironment composition (Figure 2B). Ferroptosis-

associated regulators, including ENPP2, CAV1, FABP4, PDK4,

ADIPOQ, NOX4, COKN2A, CDO1, WWTR1, DDR2, CPEB1,

and TIMP1, are preferentially associated with the most

immunosuppressive cells, whereas FAM genes correlated with

immune microenvironment activation. Furthermore, Spearman’s

analysis demonstrated significant co-expression of the Fe and FAM

genes (Supplementary Figure S4B). Compared to FeFAM clusters B

and C, FeFAM cluster A had a significantly worse prognosis.

Analysis of gene signatures revealed an increased presence of

immune cel l s exhibi t ing notable immunosuppressive

functionality, macrophages, regulatory T cells (Tregs), and type 2

T helper cells, including within FeFAMA cluster A across all

cohorts. Remarkably, CD4+ T cells, CD8+ T cells, neutrophils,

dendritic cells, and natural killer (NK) cells were abundant in the

FeFAM cluster A across nearly all the algorithms, suggesting that

the immune cells within FeFAM cluster A may concurrently govern

immune evasion and anti-tumor activities. Despite having similar

prognoses, FeFAM clusters B and C exhibited contrasting levels of

immune infiltration, implying that they may have different

immunotherapeutic potentials. The XCELL and ESTIMATE

algorithms also demonstrated high immune, stroma, and

microenvironment scores in FeFAM clusters A and C

(Supplementary Figure S4C). Consequently, FeFAM clusters A, B,

and C were considered immune-excluded, immune-desert, and

immune-activated clusters, respectively. To ensure stability of the

results, the TIDE algorithm, which is commonly adopted to

measure immune escape levels and ICD treatment efficacy, was
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FIGURE 1

Landscape of genetic and relation of FeFAM regulators and discovery of novel FeFAM patterns. (A) Mutation frequency of FeFAM regulators in
33 types cancers in TCGA. (B) PCA of FeFAM regulators in the CRC. (C) Scatter plot showed the spearmen correlation of FeFAM regulators.
(D) Volcano plot showed the differential FeFAM regulators in CRC. (E) KEGG and GO analyze of 50 OS-related FeFAM regulators. (F) Network
showed the interactions among FeFAM regulators in CRC. (G) A The consensus score matrix of all samples when k = 3. (H) The CDF curves of
consensus matrix for each k (indicated by colors). (I) Principal component (PC) analysis revealed remarkable difference between three FeFAM
patterns from train cohort (n = 1029). (J) Kaplan-Meier curves of survival for three FeFAM patterns based on CRC patients from train cohort.
(K) This boxplot demonstrates the expression variations in the FeFAM-related genes among three FeFAM patterns. The top portion
represented Fisher’s precise test. The lower portion indicated the Wilcoxon rank-sum test. ***p < 0.001. FeFAM, ferroptosis and fatty acid
metabolism regulators.
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used. We discovered that FeFAM cluster A showed the highest

CAF, IFN, TIDE, PD-L1 and exclusion among the three clusters,

consistent with the above analysis results and possibly attributed to

immune escape (Figures 2C–J). Interestingly, although FeFAM

cluster A had more MDSCs than FeFAM cluster C, their
Frontiers in Immunology 07
CTL.scores and dysfunction were similar, suggesting that

activated ferroptosis and fatty acid pathways may inhibit

intratumoral CD8+ T cell effector function and impair their anti-

tumor ability, which was similar to previously reported results (12,

30–32). Above all, ferroptosis regulators may cooperate with fatty
A

B

D

E F

G

I

H

J

K

C

FIGURE 2

Characterization of tumor microenvironment, signing and immune pathways in different FeFAM patterns. (A) Characteristics of immune infiltrating
cells in different FeFAMclusters. (B) Characteristics of immune infiltrating cells in different FeFAM regulators. (C-J) Box plots showed the significant
difference in CAF (C), IFNG (D), Dyfunction (E), Exclusion (F), TIDE (G), PD-L1 (H), MDSC (I), and CTL.score (J). (K) The cancer-related, immune-
related and metabolism-related pathways between the three FeFAM subtypes. * p < 0.05, ** p < 0.01, *** p < 0.001, ns, not significant. FeFAM,
ferroptosis and fatty acid metabolism regulators.
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acid metabolism-associated genes to contribute to a particular

immune microenvironment, thereby presenting potential targets

for immunotherapy.
3.4 Signaling and immune pathway
differences between the FeFAM patterns

Utilizing the “gsva” package, we executed GSVA-enrichment

experiments to investigate various cancer-related signaling

pathways across the three patterns within the Hallmarker and

KEGG pathways (Supplementary Figure S4D). The findings

indicate that FeFAM cluster A was significantly enriched in

immune- and tumor-related pathways, such as “apoptosis”,

“epithelial mesenchymal transition (EMT)”, “inflammatory

response”, and “VEGF signaling pathway”. The FeFAM clusters B

and C are two distinct groups with specific associations in terms of

their biological functions and metabolic pathways. FeFAM cluster

B, for instance, is substantially associated with “DNA repair and

replication”, “protein export”, and “spliceosome”, while FeFAM

cluster C is associated with the metabolic pathway “fatty acid

metabolism”, “linoleic acid metabolism”, “nicotinate and

nicotinamide metabolism” and “nitrogen metabolism” .

Consequently, we further investigated the carcinogen-signaling,

immune-related, and metabolic pathways to compare the

differences among the three patterns. Wnt, TGF, Notch, MAPK,

KRAS, TLR, TCR, RLR, NK cells, chemokine pathway, hypoxia, and

apoptosis were activated in cluster A. PPAR, PI3K, P53, xenobiotics,

ROS, HEME, fatty acids, and bile acids were activated in cluster C,

indicating that ferroptosis and fatty acid metabolism may be

upgraded to improve prognosis and prevent immune escape

(Figure 2K). These analyses provided additional evidence that

FeFAM molecules regulate the immune microenvironment and

facilitate immune evasion in patients with CRC through diverse

signaling pathways. This underscores the potential of FeFAM as a

promising target for immunotherapy.
3.5 Integrated construction and consistent
prognostic value of the FeFAMscore

Based on the varying expression levels of FeFAM genes among

the three patterns, we subjected the 50 FeFAM-related genes to our

machine learning-based integrative approach to construct an

FeFAM-related signature, termed the FeFAMscore. In the training

cohort, 117 algorithms generated from a random permutation of 10

machine-learning algorithms were employed to compute the C-

index using a 10-fold cross-validation framework. The model was

subsequently evaluated across four cohorts to gauge its predictive

efficacy and to determine its consistency across different datasets.

Following this evaluation, the model with the highest average C-

index among the validation cohorts was identified. Specifically, the

combination of CoxBoost and StepCox (backward and both)

yielded the highest average C-index of 0.689, establishing it as the

optimal model (Figure 3A; Supplementary Table S2). Fifteen genes
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were first screened using the CoxBoost model and then subjected to

backward Cox proportional hazards regression. A final set of 15

genes was identified, including KIF20A, ACSF2, NOX1, BID,

AADAT, ACAA2, FABP1, CA2, SLC22A5, PPP1R13L, AQP5,

HOTAIR, DDR2, TIMP1, and CD36 (Figure 3B). Subsequently,

the FeFAM score for each patient was determined by employing the

expression levels of 15 genes, which were weighted using the

regression coefficients obtained from a Cox model (Figure 3B).

Subsequently, all patients were dichotomized into high- and low-

FeFAMScore groups. These 15 genes significantly distinguished

high-risk individuals from low-risk individuals (Figures 3C–H).

Patients categorized into the high FeFAMscore group exhibited

significantly poorer overall survival (OS) compared to those in the

low FeFAMscore group, as determined by Kaplan–Meier survival

analysis in both the combined training (N=1029, P<0.001) and four

validation datasets: GSE17536 (N=177, P<0.001), GSE17537 (N=55,

P=0.003), GSE29621 (N=65, P=0.007), and GSE38832 (N=122,

P<0.001). A similar outcome was observed in the meta-cohort

(N=1448), thereby affirming the predictive accuracy and reliability

of the model. An alluvial diagram illustrates the correlation between

FeFAMcluster and FeFAMscore (Figure 3I).
3.6 Consistent prognostic value
of FeFAMscore

Receiver operating characteristic (ROC) curve analysis was

conducted to evaluate the discriminative ability of the

FeFAMscores. In the training cohort, the areas under the ROC

curve (AUC) for 1-, 3-, and 5-year survival were 0.701, 0.712, and

0.668, respectively. Furthermore, excellent results were also

indicated in the test cohorts, including 0.738, 0.718, and 0.64 in

GSE17536; 0.729, 0.684, and 0.687 in GSE17537; 0.769, 0.670, and

0.649 in GSE29621; and 0.799, 0.773, and 0.708 in GSE38832

(Figure 4A). The meta-cohort of these patients showed AUC

values of 0.687, 0.683, and 0.644, indicating that the FeFAMscore

model is predictive and reliable in multiple independent CRC

cohorts (Figure 4A).

The C-index [95% confidence interval] was 0.67 [0.652–0.688],

0.648 [0.617–0.679], 0.684 [0.639–0.807], 0.666 [0.614–0.790],

0.720 [0.649–0.804], 0.649 [0.646–0.711] in the four independent

validation cohorts and meta-cohorts, respectively (Figure 4B). To

predict patient prognosis, clinical characteristics including age, sex,

T stage, N stage, M stage, and stage are widely acknowledged.

Therefore, the C-index was applied to measure the predictive

accuracy between the FeFAMscore and clinical traits in the

training and four independent validation cohorts. The

FeFAMscore exhibited significantly higher predictive accuracy

than other clinical traits in the training, GSE17536, GSE17537,

and GSE38832 cohorts (Figures 4C–G). In contrast, the

performance of the FeFAMscore in GSE29621 cohort was similar

to that of the M stage and stages, which may have been due to the

small sample size and data bias. These results indicate that

FeFAMScore may be a prospective alternative biomarker for

predicting survival risk in clinical practice.
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FIGURE 3

Construction of a machine learning-based signature. (A) The top C-index of 50 machine learning methods in four validation cohorts. (B) The
heatmap demonstrates the relationships between the three FeFAM phenotypes, clinicopathologic characteristics, coef value and the expression
variations of the FeFAM-related genes in train cohort. (C–H) Kaplan-Meier curves of OS according to the FeFAMscore in Train cohorts (log-rank test:
p<0.001) (C). GSE17536 (Log-rank test: p<0.001) (D). GSE17537 (Log-rank test: p = 0.003) (E). GSE29621 (Log-rank test: p = 0.007) (F). GSE38832
(Log-rank test: p < 0.001) (G). Meta-cohort (Log-rank test: p < 0.001) (H). (I) Alluvial diagram showing the correlation of FeFAMclusters and
FeFAMscore. *** p < 0.001. FeFAM, ferroptosis and fatty acid metabolism regulators.
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FIGURE 4

Comparison between the FeFAMscore and the other 69 signatures in colorectal cancer. (A) Time-dependent ROC analysis for predicting OS at 1,3,
and 5 years in train cohort (n = 1029), GSE17536 (n = 177), GSE17537 (n = 55), GSE29621 (n = 65), and GSE38832 (n = 122). (B) C-index of
FeFAMscore across all datasets. (C-G) The performance of FeFAMscore was compared with other clinical variables in predicting prognosis. Train (C),
GSE17536 (D), GSE17537 (E), GSE29621 (F), and GSE38832 (G). (H-K) C-index of FeFAMscore and 69 published signatures in GSE17536 (H), GSE17537
(I), GSE29621 (J), and GSE38832 (K). *** p < 0.001. FeFAM, ferroptosis and fatty acid metabolism regulators.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2024.1416443
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1416443
3.7 Resilient predictive performance
of FeFAMscore

As the sequencing depth continually increases, CRC treatment

outcomes are well predicted. Machine learning-based prognostic

models for CRC have been increasingly developed in recent years.

To quantify the performance of the FeFAMscore, we systematically

retrieved mRNA signatures from CRC research over the past decade

and finally acquired 69 mRNA signatures. We compared the predictive

ability of the FeFAMscore using the C-index value in the four

independent validation cohorts. The FeFAMscore ranked first in the

GSE17536 and GSE29621 datasets, followed by GSE17537 and

GSE38832 (Figures 4D-G). However, some models exhibited

appreciable predictive performance for the GSE17537 and GSE38832

datasets and performed moderately in other cohorts, further proving

the uniqueness and reliability of our models. The Chen-FMmodel, for

instance, showed a better C-index than the FeFAMscore in GSE38832

and was poorly displayed in GSE17536, GSE17537, and GSE38832

with a C-index of less than 0.6. The above results demonstrated the

good predictive performance of the FeFAMscore (Figures 4H–K).
3.8 ACAA2 is associated with tumor
progression in CRC

To further evaluate the expression and function of the

FeFAMscore, we first performed RT-qPCR in cell lines from

patients with CRC for the six genes. The other nine genes

involved in the FeFAM score have been demonstrated by other

researchers (33–41). Compared with those in normal human

colonic cells (NCM460 cells), the expression of ACAA2 was

significantly higher in HCT116 and CACO2 cells, while the

expression of ACSF2, DDR2 and SLC22A5 was significantly

increased in the CRC cells (Figures 5A, B). Among the expression

and correlation of the genes, ACAA2 was significantly

overexpressed in the tumor tissues and strong correlated with

ferroptosis regulators. We then used two small interfering RNAs

(siRNAs) to downregulate ACAA2 expression in HCT116 and

CACO2 CRC cell lines (Figure 5C). The western blot further

demonstrated the results (Figure 5D). Cell viability was reduced

by ACAA2 downregulation after 72 h (Figures 5E, F). In addition,

Cell colony formation experiments demonstrated a significant

reduction in colony numbers in HCT116 and CACO2 cell lines

following ACAA2 knockdown. (Figure 5G). Transwell assays also

confirmed that ACAA2 knockdown significantly reduced the

migratory ability of CRC cells (Figures 5H–J). Taken together,

these results indicate that ACAA2 not only induces CRC cell

proliferation, but also promotes CRC cell migration.
3.9 Mutation status in high and low
FeFAMscore groups

To explore the mechanisms underlying the FeFAMScore,

somatic mutations in the patients with CRC in the TCGA cohort
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were further analyzed. As expected, more mutations in top 15 genes

were observed in the high FeFAMscore group than that in the low

FeFAMscore group (Figures 6A, B). In addition, co-occurrence and

mutual exclusion were observed among these genes (Figures 6C, D).

The forest plot also revealed that the BRAF gene, which is generally

regarded as a potential prognostic risk factor, had more mutations

than the low one, which indicates poor prognostic survival and

worse ICI efficacy (Figure 6E). Moreover, the high FeFAMscore

groups exhibited a higher TMB than the low FeFAMscore groups

(Figure 6F). Poor prognosis was also demonstrated by high TMB

combined with a high FeFAMscore (Figure 6G).
3.10 Immune characteristics related
to FeFAMscore

We first adopted the ssGSEA algorithm to explore the correlation

between tumor-infiltrating immune cells and the FeFAMscore in the

training cohorts (Supplementary Figure S5A), which indicated that the

FeFAMscore had a positive relationship with the immune cells. These

findings suggest that the high FeFAMscore group, despite exhibiting a

worse prognosis, harbored a higher abundance of immunologically

activated cells than the low FeFAMscore group. Additionally, the high

FeFAMscore group demonstrated an increased presence of

immunosuppressive cells such as MDSCs, macrophages, mast cells,

and regulatory T cells (Supplementary Figure S5B). Therefore, ssGSEA

and six external algorithms, including CIBERSORT, EPIC,

MCPCOUNTER, TIMER, quantiseq, and XCELL were further used,

yielding similar results: the high FeFAMscore group had a high

ImmuneScore, StromaScore, and MicroenvironmentScore

(Supplementary Figure S5C). Next, we investigated the cancer-,

immune-, and metabolic-related pathways between the two groups,

which means that a high FeFAMscore prefers to be enriched in cancer-

related and immune-related pathways (Supplementary Figure S5D).

Interestingly, fatty acid metabolism was significantly activated in the

low FeFAMscore group, which may improve the prognosis. Based on

these findings, the high FeFAMscore groups probably had several

targets that may benefit from specifically targeted immunotherapy,

even though they had a worse prognosis.
3.11 FeFAMscore predicts CRC response
to immunotherapy

We first used TIDE and ESTIMATE algorithms to measure the

microenvironment in patients with low and high FeFAMscores

(Figures 7A–F; Supplementary Figure S5E). The results indicated

that the high FeFAMscore group was associated with high immune

infiltration but high TIDE, CTL.score, dysfunction, MSI, and PD-

L1, which means that although these individuals with poor survival

prognosis contain immunosuppressive cells, this is the main reason

for immune evasion and poor ICI efficacy in these individuals. This

suggests that the high FeFAMscore group with poor survival may be

a special target for activated immune cells, improving survival

prognosis. Hence, the submap algorithm was used to assess the

feasibility of the FeFAMscore in predicting immunotherapy
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efficacy. These findings affirmed that individuals in the high

FeFAMscore group may benefit from both anti-PD-1 and anti-

CTLA4 therapies (Figure 7G).

Based on the previous analysis, we determined the FeFAMscore in

the IMvigor210 cohorts (anti-PD-L1 therapy) (42), Braun cohorts (anti-
Frontiers in Immunology 12
PD-1 therapy) (43) and PRJNA23709 (anti-PD-1 therapy + anti-

CLTA4 therapy) (44). In the IMvigor210 dataset, patients with low

FeFAMscores exhibited better prognoses than those with high

FeFAMscores. Additionally, individuals with low FeFAMscores were

likely to respond favorably to anti-PD-L1 immunotherapy (Figures 7H,
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FIGURE 5

ACAA2 promotes colorectal cancer progression. (A, B) Comparison of the expression levels of ACAA2, DDR2, SLC22A5, PPP1R13L, AADAT and
ACSF2 between NCM460 cells, HCT116 cells, and CACO2 cells. (C) The knockdown efficiency of ACAA2 in HCT116 cells and CACO2. (D)
Representative western blots examined the expression of ACAA2 protein levels after the downregulation of ACAA2 of HCT116 and CACO2 cell lines.
(E, F) The CCK8 assay detected cell viability after decreased ACAA2 expression in HCT116 (E) and CACO2 (F) cell lines. (G) Knockdown of ACAA2
significantly reduced the number of clones in HCT116 and CACO2 cell lines. (H) The transwell assay detected the migration ability of HCT116 and
CACO2 cells after decreased ACAA2 expression. (I-J) Quantification results of numbers of relative migration rates in transwell assay in HCT116 (I)
and CACO2 (J) cells. *** p < 0.001, ns, not significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1416443
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2024.1416443
K, N). Interestingly, in the Braun cohort, patients with high

FeFAMscores demonstrated the potential for benefit from anti-PD-1

therapy (Figures 7I, L, O). As expected, patients with renal cell

carcinoma and high FeFAMscore had significantly improved survival

probability and were likely to respond to anti-PD-1 therapy. The results

were shown in PRJNA23709 when patients with high FeFAMscore
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received combined anti-PD-1 and anti-CTLA4 therapy (Figures 7J, M,

P). They not only greatly improved survival prognosis, but also acquired

a remarkable response rate to immune therapy. These results suggest

that individuals with a low FeFAMscore may benefit from

immunotherapy, but that individuals with a high FeFAMscore obtain

excellent response rates and survival with specific immunotherapies.
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FIGURE 6

The FeFAMscore related to the tumor mutation status. (A, B) Visual summary showing common genetic alterations in low (A) and high (B)
FeFAMscore groups. (C, D) Interaction effect of genes mutating in the low (C) and high (D) FeFAMscore groups. (E) Forest plot gene mutations in the
CRC patients. (F) The TMB in low and high FeFAMscore groups. (G) Survival analysis for CRC patients measured by both FeFAMscore and TMB using
Kaplan-Meier curves. * p < 0.05, ns, not significant. FeFAM, ferroptosis and fatty acid metabolism regulators.
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FIGURE 7

FeFAMscore predicts the response of colorectal to immunotherapy. (A-F) Box plots showed the significant difference in TIDE (A), CTL.score (B),
Dyfunction (C), Exclusion (D), MDSC (E), PD-L1 (F). (G) The submap algorithm predicts the probability of anti-PD1 and anti-CTLA4 immunotherapy
response in high and low FeFAMscore groups. (H-J) The Kaplan–Meier curve exhibited a significant difference in survival rate between the high and
low FeFAMscore groups in the IMVgior210 cohort (H), Braun (I), and PRJNA23709 (J). (K-M) The Wilcoxon rank-sum test of FeFAMscore variation in
the IMVgior210 cohort (K), Braun (L), and PRJNA23709 (M). (N-P) The stacked histogram shows the difference in immunotherapy responsiveness
between the high and low FeFAMscore groups in the IMVgior210 cohort (N), Braun (O), and PRJNA23709 (P). FeFAM, ferroptosis and fatty acid
metabolism regulators. * p < 0.05, ** p < 0.01, *** p < 0.001, ns: not significant.
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3.12 FeFAMscore predicts CRC sensitivity
to chemotherapeutic response analysis

To assess potentially effective drugs associated with the

FeFAMscore, we investigated chemotherapeutic agents using the

“oncoPredict” package. With the compared differences between two

risk FeFAM groups by the Wilcoxion test with p<0.05, we

significantly filtered 316 (total: 545) and 95 (total: 224)

compounds in the CTRP and GDSC, respectively. Next, we

investigated the drug intersections in the two databases

(Supplementary Figure S6A). Spearman’s method was used to

measure the correlation between FeFAM genes and drug

sensitivity. Some genes and drugs, such as KIF20A and AADAT,

interacted antagonistically (Supplementary Figures S6B, C).

However, the ACSF2 and FABP1 interacted synergistically. To

validate the irreplaceable role of FeFAM molecules in

chemotherapy, we appl ied the FeFAMscore to guide

chemotherapeutic selection for CRC in clinical practice. Exploring

in the CRC related chemotherapy drugs, the osimertinib,

oxaliplatin, gefitinib, eriotinib, navitoclax, and cyclophosphamide

are beneficial for the patients with high FeFAMscore, unlike

irinotecan, niraparib, gemcitabine, niraparib, dabrafenib, and

selumetinib (Supplementary Figures S6D–O). These findings

underscore the availability of diverse chemotherapy modalities

tailored to specific patients with CRC, thereby paving the way for

precision chemotherapy and personalized treatment approaches.
4 Discussion

Several therapeutic modal i t ies , including surgery,

chemotherapy, immunotherapy, radiotherapy, and targeted

therapy have emerged as key strategies in CRC research (3, 5, 45,

46). These diverse treatment approaches represent a profound

advancement in CRC management, reflecting the multifaceted

approach necessitated by disease complexity (47). Among these,

immunotherapy is a promising frontier that exploits the intricate

interplay between the immune system and malignant cells to elicit

therapeutic responses (48). However, a subset of patients with CRC

exhibiting deficient mismatch repair or microsatellite instability-

high (dMMR/MSI-H) represents a relatively small fraction,

comprising approximately 15% and 4% patients with CRC and

metastatic colorectal cancer (mCRC), respectively; a proportion of

these patients swiftly progress to a state of immune resistance (38,

39). The AJCC staging system is a widely accepted criterion for

clinical management and encompasses therapeutic decision-

making and surveillance strategies for CRC. The utility of the

AJCC staging system is constrained by the variability in clinical

outcomes observed among patients classified within the same stage

(49). This may not only result in overtreatment and

undertreatment, but also make it difficult to reflect the sensitivity

of immunotherapy and chemotherapy because it does not reflect the

TME. To bridge this gap, identifying novel prognostic and

therapeutic targets for CRC is vital.

Cell death is a regulated process in cells and may be related to

metabolism during tumor progression, metastasis, and drug
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resistance. Ferroptosis is an iron-related cell death pathway

characterized by lipid peroxide accumulation (50, 51). Fatty acid

metabolism plays a pivotal role in tumorigenesis, disease

progression, and treatment resistance by facilitating augmented

lipid synthesis, storage, and catabolism (52). Numerous studies

have demonstrated that ferroptosis is significantly correlated with

metabolism, particularly lipid metabolism (50–53). For instance,

ASL4, a fatty acid metabolism-related gene, is induced by the T cell-

derived interferon (IFN)-g to change the tumor lipid pattern, which

increased arachidonic acid (AA) production to promote ferroptosis

(32). SLC47A1, which regulates lipid remodeling and survival

during ferroptosis, inhibits the anticancer activity of ferroptosis

inducers (54). Moreover, they interact to modulate drug sensitivity

(32, 55). Consequently, the influence of ferroptosis regulators and

fatty acid molecules on the TME as well as their predictive capacity

for prognosis and response to immunotherapy in CRC,

remain unclear.

This study elucidated the genetic and transcriptomic diversity of

FeFAMs across 33 cancer species using a multi-omics approach.

Similar frequencies observed among the ferroptosis and fatty acid

metabolism regulators indicate their interconnectedness.

Spearman’s rank correlation coefficient further demonstrated a

strong correlation of ferroptosis and fatty acid metabolism

regulators between 33 cancer species, especially in CRC (R= -0.93;

p<0.001). Furthermore, after screening 50 genes using the “limma”

package and univariate Cox regression analysis, the patients were

stratified into three distinct phenotypes, each exhibiting significant

disparities in genetic profiles and immune infiltration within

the clusters.

We then distinguished three ferroptosis- and fatty acid

metabolism-related patterns, named FeFAM clusters A/B/C. The

TME characteristics in the three patterns indicated differential

immune cell compositions. FeFAM clusters A and C were

correlated with immune cell abundance; however, they displayed

disparate prognostic outcomes. The FeFAM cluster A processed

with high immune activate, StromaSocre, PD-L1 expression, CAF

expression, and high activation of TGF-b signaling pathway proved

a strong relation with immune-exclude subtypes, while the FeFAM

cluster C associated with excellent prognosis and abundant immune

cell was regarded as an immune-inflamed phenotype. Interestingly,

FeFAM cluster C exhibited the same levels of dysfunction and

CTL.score and high metabolism levels, such as the ROS and fatty

acids, than FeFAM cluster A, which indicated that the interaction of

ferroptosis and fatty acid metabolism may coordinate with T cell

dysfunction (32). MDSC density was the highest in FeFAM cluster

B, which is defined as the immune desert subtype. These results

demonstrate that FeFAMmolecules play a vital role in the TME and

may trigger extrinsic immune escape.

Further FeFAM molecule characterization in CRC is

imperative. Developing features associated with FeFAM molecules

will facilitate prognosis prediction and immune response evaluation

in CRC. To avoid model selection bias and confirm model accuracy,

we randomly combined 10 classical algorithms and eventually

obtained 117 combined algorithms. Subsequently, we developed

FeFAMscore, a machine-learning-based FeFAM-related model,

which exhibited the best performance among the 117 signatures.
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Recognizing the heterogeneity often observed in the patients with

CRC, we externally validated the FeFAMscore using four additional

CRC databases. The highest C-index among the validations not

only confirmed the selection of the optimal model, CoxBoost

combined with stepwise Cox (backward direction), but also

underscored the accuracy and generalizability of the model.

Moreover, a comparison of 69 published CRC signatures showed

improved accuracy, exhibiting robustness. To validate model

accuracy, we identified ACAA2 as a key FeFAMscore regulator

and conducted cellular experiments, which revealed that ACAA2

promotes CRC proliferation and migration.

Furthermore, FeFAMscore demonstrated a robust association

with survival outcomes. The adverse prognosis observed in the high

FeFAMscore group may be attributed to improved activation of

anti-immune components, potentially fostering a TME conducive

to immune evasion. Interestingly, the FeFAMscore and tumor

immune infiltration extent in CRC is positively correlated.

Moreover, mutations leading to tumor neoantigens, along with a

high tumor mutational burden (TMB), increase tumor

immunogenic neoantigen abundance (56). The patients with high

TMB may benefit from immunotherapy, but many patients do not

achieve the desired results (42). Similar results were observed in this

study. Tide, a computational method developed by Peng Jiang,

models T cell dysfunction and exclusion mechanisms of tumor

immune evasion by infiltration of cytotoxic T lymphocytes (CTL),

showed the same results (42). However, owing to the variances in

immune-related pathways between the two cohorts and the primary

mechanism of immune evasion being dysfunction, it is plausible

that there may be specific therapeutic benefits for the high

FeFAMscore group. The Submap algorithm further supported

these results, showing that the high FeFAMscore group processes

were more sensitive to anti-PD-1 and anti-CTLA4 therapies.

According to the results of previous studies, the predominant

mechanism suggests that both high and low fatty acid metabolism

can affect the expression level of iron death, consequently affecting

the mode of action of CTLs (30, 32). The high FeFAMscore group

exhibited diminished fatty acid metabolism, potentially regulating

ferroptosis to augment CTL sensitivity. To validate these results, we

analyzed the FeFAMscores in immunotherapy cohorts receiving

anti-PD-L1 therapy, anti-PD-1 therapy, and anti-PD-1 combined

with anti-CTLA4 therapy. Similar results were observed in these

cohorts, further demonstrating the limitations of TMB and TIDE.

Furthermore, regarding chemotherapeutic agents, the FeFAMscore

exhibited promising predictive capabilities. Collectively, these

findings indicate that FeFAMscore holds promise as a valuable

tool for formulating efficacious CRC treatment strategies.

This study had some limitations. First, the intricate regulatory

mechanisms governing ferroptosis and fatty acid metabolism

remain unclear. Moreover, retrospective cohorts sourced from

publicly available online databases were used. Large multicenter

prospective clinical investigations are warranted to corroborate

these findings. Finally, to validate the predictive utility of the

FeFAMscore in immunotherapy response, additional indicators

are required, along with prospective cohorts of patients with

glioma undergoing immunotherapeutic interventions.
Frontiers in Immunology 16
In conclusion, through a comprehensive approach integrating

multicenter analysis and machine learning algorithms, we

d e v e l o p e d a s t a b l e a n d r e l i a b l e p r o g n o s t i c a n d

immunotherapeutic response predictor, the FeFAMscore, for

CRC. Notably, the high FeFAMscore group demonstrated an

increased sensitivity to anti-PD-1 and anti-CTLA4 therapies. The

FeFAMscore holds promise as a valuable tool for tailoring

efficacious treatment regimens for CRC.
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