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Background: Preeclampsia (PE) poses significant diagnostic and therapeutic

challenges. This study aims to identify novel genes for potential diagnostic and

therapeutic targets, illuminating the immune mechanisms involved.

Methods: Three GEO datasets were analyzed, merging two for training set, and

using the third for external validation. Intersection analysis of differentially

expressed genes (DEGs) and WGCNA highlighted candidate genes. These were

further refined through LASSO, SVM-RFE, and RF algorithms to identify

diagnostic hub genes. Diagnostic efficacy was assessed using ROC curves. A

predictive nomogram and fully Connected Neural Network (FCNN) were

developed for PE prediction. ssGSEA and correlation analysis were employed

to investigate the immune landscape. Further validation was provided by qRT-

PCR on human placental samples.

Result: Five biomarkers were identified with validation AUCs: CGB5 (0.663, 95%

CI: 0.577-0.750), LEP (0.850, 95% CI: 0.792-0.908), LRRC1 (0.797, 95% CI: 0.728-

0.867), PAPPA2 (0.839, 95% CI: 0.775-0.902), and SLC20A1 (0.811, 95% CI: 0.742-

0.880), all of which are involved in key biological processes. The nomogram

showed strong predictive power (C-index 0.873), while FCNN achieved an

optimal AUC of 0.911 (95% CI: 0.732-1.000) in five-fold cross-validation.

Immune infiltration analysis revealed the importance of T cell subsets,

neutrophils, and NK cells in PE, linking these genes to immune mechanisms

underlying PE pathogenesis.

Conclusion: CGB5, LEP, LRRC1, PAPPA2, and SLC20A1 are validated as key

diagnostic biomarkers for PE. Nomogram and FCNN could credibly predict PE.

Their association with immune infiltration underscores the crucial role of

immune responses in PE pathogenesis.
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1 Introduction

Preeclampsia (PE) is a common gestational complication

characterized by the sudden onset of hypertension (≥140/90

mmHg) and proteinuria (≥0.3 g/24 h) after the 20th week of

gestation (1). PE poses a significant threat to maternal and fetal

health, accounting for over 70,000 maternal deaths and 500,000

fetal deaths globally each year (2).

Currently, treatment options for different types of PE remain

limited. The only definitive cure is to terminate the pregnancy, a

measure that can reduce maternal mortality but fails to improve long-

term outcomes. The limited effectiveness of current clinical treatments

stems from an incomplete understanding of the disease’s pathogenesis,

which hampers the development of personalized and precise

therapeutic approaches. Recent studies have leveraged sequencing

data and bioinformatics analyses to identify reliable key genes that

cause the onset of preeclampsia (3–6). Public databases offer vast data

for reanalysis and integration, enhancing resource use and increasing

sample sizes for more robust analyses (7). Moreover, machine learning

algorithms, particularly feature selection techniques, have proven

effective in uncovering key information from high-throughput

genomic data, identifying pivotal genes influencing disease

progression (8, 9). Despite these advances, the clinical practice still

lacks sensitive and specific biomarkers for PE, underscoring the need

for their identification and validation.

This study developed a pipeline to screen and analyze two Gene

Expression Omnibus (GEO) datasets as training sets. After

removing batch effects, we identified functionally differentially

expressed genes (DEGs) using Limma and Weighted Gene Co-

Expression Network Analysis (WGCNA) algorithms. The

intersection of these DEGs underwent feature selection through

machine learning, revealing five critical genes. Functional analysis,

including their relationship with immune cell infiltration and

validation with an external GEO dataset, highlighted their

importance. The constructed nomogram and FCNN prediction

models offer new potential for PE diagnosis and therapeutic

strategies. The analysis pipeline is depicted in Figure 1.
2 Methods

2.1 Data downloading and
study population

The datasets used in this study were downloaded as pre-

processed series_matrix.txt.gz files from the GEO, with inclusion

criteria being (1). sample origin from placental tissue; (2). gene

microarray data; and (3). clear grouping information. Samples

without a normal pregnancy control group and blood sample

data were excluded. Furthermore, to minimize biases introduced

by different gene microarray platforms, datasets originating from

the same GPL platform were statistically identified and selected.

Ultimately, two databases, GSE54618 and GSE60438, were used as

training cohorts and GSE75010 was used for external validation in

the study.
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The sequencing platform for GSE54618 is the GPL10558, Illumina

HumanHT-12 V4.0 expression beadchip, which includes 12 placenta

samples with normal blood pressure and 12 samples with

preeclampsia. The data from GSE60438 originate from two

sequencing platforms, the GPL6884 Illumina HumanWG-6 v3.0

expression beadchip and the GPL10558 Illumina HumanHT-12 V4.0

expression beadchip. To minimize biases, we ultimately selected 77

samples from the GPL10558 platform within GSE60438, comprising

37 samples with normal blood pressure and 40 preeclampsia samples.

Additionally, the GSE75010 dataset is based on the GPL6244,

Affymetrix Human Gene 1.0 ST Array platform, which includes a

total of 80 preeclamptic placentas and 77 non-preclamptic placentas. In

summary, this study analyzed a total of 258 samples, including 132

preeclampsia cases and 126 normal samples.
2.2 Data preprocessing

The GEOquery package and the ComBat algorithm were

employed for the downloading, merging, and preprocessing of the

databases. The ComBat algorithm is an empirical Bayes-based

method crucial in bioinformatics for correcting batch effects in

high-throughput data, particularly gene expression studies (10). It

adjusts for technical variations across datasets, ensuring more

reliable biological interpretations.

The preprocessing steps included (1). reading GeneIDs and

mapping gene probes; (2). removing null probes; (3). addressing

multi-probe correspondences; (4). merging samples from the two

databases; (5). processing and combining group information; and

(6). applying the ComBat algorithm to analyze samples from both

sources and remove batch effects.
2.3 Differential expression genes analysis

The “LmFit” function from the ‘Limma’ package was used to fit a

linear model to the expression dataset and experimental design matrix.

A contrast matrix was applied to define comparisons between groups,

and the Empirical Bayes method was used to smooth standard errors,

improving statistical power in small sample datasets. The datasets used

in this study (GSE54618, GSE60438, and GSE75010), were assessed for

comparability in key clinical characteristics. Statistical analyses (e.g., t-

tests, chi-square tests) were performed to confirm that there were no

significant differences between groups for these variables, as mentioned

in the original articles. DEGs were identified using a significance

threshold of P < 0.05. The log fold change (logFC) threshold was

defined as mean(abs(logFC)) + 2*sd(abs(logFC)), where logFC was

computed using a base-2 logarithmic transformation. This approach

ensures that genes are filtered based on both statistical significance and

the magnitude of expression change, thereby improving the robustness

of DEG selection. The upregulated and downregulated genes were

included in the subsequent analyses because both types of gene

expression changes can provide valuable insights into the biological

processes and pathways involved. Heatmaps and volcano plots were

used to visualize the DEGs. In the volcano plot, p-values were displayed

on a log10 scale and logFC on a log2 scale. For this initial step,
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unadjusted p-values were used to maximize the number of candidate

genes, which were subjected to further analysis.
2.4 Weight co-expression network analysis

The WGCNA algorithm is another systems biology method

used to describe the correlation patterns among genes across

microarray samples (11). WGCNA can be used for finding

clusters of highly correlated genes, summarizing such clusters

using the module eigengene or an intramodular hub gene,

relating modules to one another and to external sample traits,

and calculating module membership measures.

In the application of WGCNA, the process begins by calculating

pairwise correlations between all genes in the dataset from the

expression matrix, focusing particularly on genes with variance in

the top 25%. This is followed by a rigorous quality control step

using the “goodSamplesGenes” function from the WGCNA

package. The analysis then involves the identification and

exclusion of any outlier samples to ensure the integrity of the

data. A crucial step in the process is the calculation and

determination of a soft threshold power, which serves to

emphasize strong correlations while penalizing weaker ones.

Subsequently, the gene-gene correlation matrix is transformed

into an adjacency matrix, which is then converted into a
Frontiers in Immunology 03
Topological Overlap Matrix (TOM) to enhance the robustness of

the network by considering not just direct correlations between

genes, but also their shared connections. Modules of highly

correlated genes are identified using hierarchical clustering

methods applied to the TOM. These modules are then correlated

with external sample traits to identify those that are associated with

specific traits. The final step involves selecting the most strongly

correlated gene modules for further in-depth analysis.
2.5 GO and KEGG functional
enrichment analysis

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (12) pathway enrichment analyses

were conducted to elucidate the primary biological characteristics of

the DEGs. A threshold of adjusted P-value < 0.05 was set for

statistical significance. The “Padjustedmethod” was set as “BH”. The

visualization of the GO enrichment maps, derived from the

annotation analysis, was achieved using the “ggplot2” and

“GOplot” packages in the R programming environment. To

summarize and visualize the enrichment results of the DEGs, we

utilized a Treemap (rectangular tree diagram) to display the GO

terms. The Treemap groups GO terms based on their parent

categories, where each term’s rectangle size is proportional to its
FIGURE 1

Flowchart of the study. WGCNA, weighted gene co-expression network analysis; DEGs, differentially expressed genes; LASSO, least absolute
shrinkage and selection operator; RF, random forest; SVM-RFE, support vector machine recursive feature elimination; ROC, receiver operating
characteristic; AUC, area under curve; FCNN, Fully Connected Neural Network; PE, preeclampsia.
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enrichment score. This visualization helps to highlight the most

significant biological processes by representing them in larger

rectangles. The Treemap was generated using the “rrvgo”

package, which automatically adjusts the size and color of each

rectangle to indicate the relative importance and functional

grouping of the terms. Furthermore, enrichment analyses for

disease ontology (DO) terms associated with DEGs were

performed utilizing the “clusterProfiler” and “DOSE” packages in

R (13), providing a comprehensive understanding of the disease-

related biological processes and pathways implicated by the DEGs.
2.6 Hub genes screening

The gene sets with strong correlations identified through

WGCNA were intersected with DEGs to identify candidate hub

genes. These candidate genes were then subjected to feature

selection using three distinct methods: the least absolute

shrinkage and selection operator (LASSO) (14) method, random

forest (RF) (15) and the support vector machine recursive feature

elimination (SVM-RFE) (16). Each method independently screened

for hub genes. The intersection of genes identified by LASSO, RF

and SVM-RFE was then taken to determine the final set of hub

genes. The specific code implementation process of these three

algorithms can be viewed in Supplementary Material. This refined

list of hub genes serves as the basis for subsequent downstream

analyses, ensuring a focused and precise approach to understanding

the genetic underpinnings of the study’s specific biological context.
2.7 Diagnostic value of the hub genes in
external validation cohort

Initially, box plots are created to compare the expression

differences of the selected hub genes between the preeclampsia

group and the control group in dataset GSE75010. This visual

representation provides an immediate and clear comparison of gene

expression levels across the two groups. Following this, the

predictive efficacy of the hub genes as diagnostic biomarkers for

preeclampsia is assessed using Receiver Operating Characteristic

(ROC) curves by using the pROC package. The Area Under the

Curve (AUC) value is employed as a quantitative standard to

evaluate the diagnostic performance of these genes. A higher

AUC value indicates a better diagnostic ability of the hub genes

to distinguish between preeclampsia and normal conditions,

thereby validating their potential as effective biomarkers in

preeclampsia screening.
2.8 Construction and verification of
diagnostic prediction models
for preeclampsia

Nomogram is a common method for visualizing logistic regression

prediction models. The ‘rms’ package was employed to develop a

logistic regression model, with five key genes as independent variables,
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aiming to predict the binary outcome of PE versus non-preeclampsia

(nonPE). To enhance the model’s reliability and adjust for potential

overfitting, a calibration curve was constructed using the bootstrap

resampling method with 1000 replications (B=1000) (17). The

concordance index (C-index), indicative of predictive accuracy, was

assessed both before and after calibration. Generally, a C-index from

0.50 to 0.70 denotes low accuracy, 0.71 to 0.90 indicates moderate

accuracy, and above 0.90 signifies high accuracy (18).

Moreover, the FCNN, also known asMultilayer Perceptron (MLP),

is an artificial neural network architecture. The model was constructed

using Python packages, primarily TensorFlow and Keras, along with

Scikit-learn for data handling and evaluation. Five-fold cross-validation

was employed to assess model performance on a standardized training

dataset. The model architecture included a hidden layer with 64

neurons using the ReLU activation function and L2 regularization,

followed by an output layer with one neuron utilizing the sigmoid

activation function for binary classification. The model was compiled

with the Adam optimizer (learning rate set to 0.0001) and binary

crossentropy as the loss function. Training occurred over 100 epochs,

incorporating early stopping to mitigate overfitting. Model

performance was evaluated using ROC curve for both training and

validation sets, with AUC values recorded for each fold.
2.9 Immune cell infiltration analysis

ssGSEA (Single Sample Gene Set Enrichment Analysis) and

GSVA (Gene Set Variation Analysis) were used to analysis immune

infiltration in the context of gene expression data (19). The

“geneSet.csv” which contains markers for 28 common immune cell

types was downloaded online. First, the gene expression data is

prepared and normalized. The GSVA package’s ‘gsva’ function can

be used in the ‘ssGSEA’mode to calculate enrichment scores for each

immune cell type in each sample, reflecting the relative presence and

activity of these cells. The output from both analyses provides a

comprehensive view of the immune landscape, revealing the immune

cell composition and activity within the samples.
2.10 Tissue collection and quantitative
real-time PCR analysis

Placental tissues were immediately collected after delivery or

cesarean section, and subsequently rinsed with sterile PBS

(HyClone) for a brief period. Total RNA extraction was

performed using TRIzol reagent (Life Technologies), followed by

cDNA synthesis with the PrimeScript RT reagent kit (Takara).

Quantitative real-time PCR (qRT-PCR) analyses were conducted

utilizing an SYBR Green Kit (Takara), with ACTIN serving as the

internal control. The relative mRNA expression levels were

quantified employing the 2−DDCT method. Each sample’s qRT-

PCR was replicated across three independent experiments. The

metadata of all samples are summarized in Table 1, including

factors such as maternal age, body mass index (BMI), gravidity,

parity, systolic blood pressure (SBP), diastolic blood pressure

(DBP), fetal birth weight (FBW), and gestational week (GW). The
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primer sequences employed are delineated in Supplementary

Table 1. Statistical comparisons between groups were conducted

using Student’s t-test for continuous variables and the chi-square

test for categorical variables. Results were expressed as mean ±

standard error of the mean (SEM) for continuous variables and as

percentages for categorical variables. A significance threshold of P <

0.05 was established for determining significant differences.
3 Results

3.1 Batch effect processing

Initially, we employed PCA plots to inspect the presence of

batch effects in the two training datasets (Figure 2A). A clear batch

effect was indeed observed, necessitating the use of the “sva”

package to mitigate this bias. After the application of the ComBat

algorithm to remove the batch effects, no significant differences

were apparent (Figure 2B).
3.2 DEGs and functional analysis

A total of 506 DEGs were identified with statistical significance

(P<0.05) and a fold change greater than 0.168, comprising 272 up-

regulated genes and 234 down-regulated genes (Figure 3A and

Supplementary Table S2). DEGs heatmap also displayed (Figure 3B).

Subsequently, GO enrichment analysis and KEGG pathway

enrichment analysis were conducted to elucidate the functional roles

of these DEGs. The results of GO analysis revealed that the DEGs are

predominantly associated with T-cell activation, leukocyte adhesion,

ficolin-1-rich granule, and MHC (Major Histocompatibility Complex)

protein complex binding (Figures 3C, D). To further simplify the

enrichment results, the simplified results were displayed with a

rectangular tree diagram (Figure 3E). In this diagram, GO terms are

grouped by their parent categories, with the size of each rectangle

indicating the enrichment score for that term. Larger rectangles
Frontiers in Immunology 05
correspond to GO terms associated with a higher number of DEGs

or greater statistical significance.

The results of the KEGG analysis were visualized using a bar plot

and bubble chart, while key genes were illustrated through a chord

diagram (Figures 4A–C). This visualization indicated that the KEGG

pathways related to PE predominantly involve hematopoietic cell

lineage, rheumatoid arthritis, Th17 cell differentiation, Th1 and Th2

cell differentiation, asthma, and inflammatory bowel disease.

Furthermore, a comprehensive GSEA was conducted on the entire

gene set, revealing that the most significantly upregulated pathways

include GnRH secretion, N-Glycan biosynthesis, ovarian

steroidogenesis, protein processing in the endoplasmic reticulum,

and various types of N-glycan biosynthesis. In contrast, the pathways

experiencing the most pronounced downregulation were asthma,

chemokine signaling pathway, leishmaniasis, rheumatoid arthritis,

and tuberculosis (Figure 4D).
FIGURE 2

PCA cluster diagrams visualize the effects before and after adjusting for batch differences. (A) Raw data before removing batch effect; (B) After
removing batch effect by ComBat algorithm.
TABLE 1 Metadata of samples in qRT-PCR analysis.

Patient
characteristicsa

PE Control
P

valueb

Age, mean (SD) 33.8±3.6 31.9±3.6 0.217

BMI, mean (SD) 23.2±3.9 22.1±2.4 0.421

Gravidity, n (%)
multi- 5 (41.7) 8 (61.5)

0.553
primi- 7 (58.3) 5 (38.5)

Parity, n (%)
multi- 6 (50.0) 6 (46.2)

1.000
primi- 6 (50.0) 7 (53.8)

Gestational Week,
mean (SD)

36.2±1.4 38.8±0.8 <0.001

SBP, mean (SD) 143.8±17.0 116.9±14.8 <0.001

DBP, mean (SD) 94.4±10.5 70.6±6.9 <0.001

Fetal Birth Weight,
mean (SD)

2603.3±713.4 3373.8±340.1 0.004
fro
aData are presented as mean ± SEM or n (%).
bStudent’s t-test or chi-square test was used for comparisons, with bold values indicating
statistical significance (p < 0.05).
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3.3 Results of WGCNA analysis

Additionally, apart from analyzing differential expression genes,

this study employed WGCNA. Using the soft-thresholding

approach, a co-expression network was constructed. The

parameter b played a crucial role in ensuring that co-expression

networks maintained a scale-free topology. A fit index greater than

0.85 was deemed indicative of a scale-free topology, and in this

study, b was set at 14 (Figure 5A) Furthermore, Figure 5B illustrates

the hierarchical clustering constructed using the TOM

dissimilarity measure.

In the end, a total of 5 co-expression modules were obtained

(Figure 5C and Supplementary Tables S3–S7). Among them, the

modules with a statistical significance of P<0.05 were considered

key modules. It is noteworthy that the “MEbrown” module

(correlation coefficient 0.23, p=0.02) and the “MEyellow” module
Frontiers in Immunology 06
(correlation coefficient 0.22, p=0.03) displayed strong correlations

with both positive and negative values. The “MEbrown” module

comprised 337 genes, while the “MEyellow” module consisted of

147 genes. In total, 484 genes were collectively utilized for

subsequent analysis.
3.4 Potential diagnostic genes
identification based on machine
learning methods

The intersection of 506 DEGs identified using the limma

method and 484 genes obtained through WGCNA resulted in 163

overlapping genes (Figure 6A). Subsequently, these 163 genes were

subjected to feature selection and selection using three distinct

algorithms: the SVM-RFE, LASSO, and RF. In the SVM-RFE
FIGURE 3

GO analysis of DEGs. (A) Volcano plot; (B) DEGs heatmap; (C) DEGs were represented by bar plots displaying GO enrichment analysis; (D) DEGs
were represented by dot plots displaying GO enrichment analysis; (E) Rectangular tree diagram displayed simplified GO enrichment analysis results.
PE, preeclampsia; nonPE, healthy control; GO, Gene Ontology; DEGs, different expressed genes.
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FIGURE 5

WGCNA analysis. (A) Determination of soft-threshold power; (B) Cluster dendrogram of highly connected genes in key modules.; (C) Relationships
between modules and traits in PE. Correlations and P values are included in each cell; PE, preeclampsia; nonPE, healthy control.
FIGURE 4

KEGG pathway analysis and GSEA of DEGs. (A) DEGs were represented by bar plots displaying results of KEGG pathway analysis; (B) DEGs were
represented by dot plots displaying results of KEGG pathway analysis; (C) Chord diagram displays the key genes; (D) 5 most notable upregulation
and 5 most notable downregulation pathways enriched by GSEA. KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set
enrichment analysis.
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model, all genes were included for computation, ultimately

identifying 16 genes with the lowest 10-fold cross-validation (CV)

Root Mean Square Error (RMSE) (Figure 6B). Meanwhile, in the

LASSO model, with a lambda (l) value of 0.0499, five genes were
identified with non-zero coefficients (Figures 6C, D). On the other

hand, the RF algorithm effectively identified 10 signature genes by

selecting the smallest cross-validation error (Figures 6E, F). The

intersection of genes post-feature selection by these three methods

yielded 5 hub genes: CGB5, LEP, LRRC1, PAPPA2, and

SLC20A1 (Figure 6G).

Enrichment analyses utilizing GO and Kyoto Encyclopedia of

Genes and Genomes KEGG frameworks have yielded a deeper

insight into the biological processes and pathways implicated by

these five signature biomarkers. The GO analysis indicates that

these genes predominantly participate in processes such as the

determination of adult lifespan, leukocyte tethering or rolling,

ovulation, ovulation cycle process, phosphate ion transport,

positive regulation of T cell proliferation, regulation of brown fat

cell differentiation, regulation of leukocyte-mediated cytotoxicity,

regulation of lipoprotein metabolic process, regulation of natural

killer cell-mediated cytotoxicity, regulation of nitric oxide synthase

activity, and response to salt stress (Figure 6H). Concurrently, the

KEGG analysis identified six pathways significantly enriched by

these genes, namely the LEP, Adipocytokine signaling pathway,

AMPK signaling pathway, Cytokine-cytokine receptor interaction,

JAK-STAT signaling pathway, Neuroactive ligand-receptor

interaction, and Non-alcoholic fatty liver disease (Figure 6I).
3.5 Diagnostic value and external validation
of 5 hub genes in preeclampsia

Subsequently, the diagnostic value of these 5 hub genes was

screened. Initially, their expression levels in the training cohort were

calculated and displayed using box plots. It was observed that CGB5,

LEP, LRRC1, PAPPA2 showed a significant increase in expression in

the PE group (P<0.0001), while the expression of SLC20A1

significantly decreased in the PE group (P<0.01) (Figures 7A–E).

Next, to assess the specificity and sensitivity of these genes for

the diagnosis of preeclampsia, ROC curves were conducted for each

of the 5 genes. These genes demonstrated commendable diagnostic

efficacy in both training and external validation cohorts. In the

training cohort, AUC values were as follows: CGB5 (AUC=0.773,

95%CI: 0.683-0.864), LEP (AUC=0.769, 95%CI: 0.675-0.863),

LRRC1 (AUC=0.796, 95%CI: 0.707-0.884), PAPPA2 (AUC=0.788,

95%CI: 0.701-0.875), and SLC20A1 (AUC=0.672, 95%CI: 0.565-

0.78) (Figures 7F–J). In the external validation cohort, AUC values

were as follows: CGB5 (AUC=0.663, 95%CI: 0.577-0.750), LEP

(AUC=0.850, 95%CI: 0.792-0.908), LRRC1 (AUC=0.797, 95%CI:

0.728-0.867), PAPPA2 (AUC=0.839, 95%CI:0.775-0.902), and

SLC20A1 (AUC=0.811, 95%CI: 0.742-0.880) (Figures 7K–O).

The nomogram, incorporating the expression profiles of five

pivotal hub genes, serves as an intuitive graphical representation that

converts gene expression data into a predictive probability of

developing PE (Figure 8A). Calibration plots derived from the
Frontiers in Immunology 08
nomogram model demonstrate a remarkable alignment, signifying

an excellent concordance between the nomogram’s predicted

probabilities and the observed outcomes (Figure 8B). The model

exhibits a C-index of 0.887, indicative of moderate predictive

accuracy. After bias correction through calibration, the C-index

stands at 0.873, reinforcing the model’s robust predictive performance.

Considering that genes often do not function in isolation but

interact extensively, a simple linear model may not adequately

represent these interactions. Therefore, the use of neural networks

for constructing predictive models is considered, and their efficiency

is compared with that of nomograms. A FCNN model, comprising

one hidden layer with 64 neurons, was constructed using the five

hub genes. Furthermore, to reduce overfitting, we employed five-

fold cross-validation. ROC curves were used to evaluate the overall

diagnostic efficacy of the FCNN model. The mean AUC for the

training set was 0.770, and for the validation set, it was 0.741

(Figures 8C, D).
3.6 Immune infiltration analysis of 5
hub genes

A boxplot analysis was conducted on the expression levels of 28

immune cell types (Figure 9A). The findings indicated a decrease in

the expression of Myeloid-derived suppressor cells (MDSC), gd T

cells, and NKT cells. In contrast, CD4+ T cells, CD8+ T cells, and

Th17 cells, showed an increase in expression. Additionally, the

expression of Th17 cells was upregulated while that of Treg cells

decreased. These observations underscore the importance of the

Th17/Treg balance in the development and progression of

preeclampsia. Notably, NK cells, including CD56dim NK and

CD56bright NK, did not exhibit significant statistical changes.

Furthermore, the relationship between the five hub genes and

28 types of immune cells was analyzed (Figure 9B). CGB5 was

primarily associated with an increased expression of “Central

memory CD8 T cells,” “Plasmacytoid dendritic cells,” and

“Effector memory CD4 T cells,” while it was linked to a decreased

expression of “Treg” and “Myeloid-derived suppressor cells.” LEP

mainly exhibited a decreased expression of “Macrophages” and

“Myeloid-derived suppressor cells.” LRRC1 showed a primary

connection with an increased expression of “NK cells” and

various effector memory cells, along with a decreased expression

of “Myeloid-derived suppressor cells.” PAPPA2 was primarily

associated with an increased expression of various effector

memory cells (Figures 10A–E). Furthermore, correlation analysis

of the 28 types of immune cells revealed intriguing results. Activated

B cells, immature B cells, mast cells, monocytes, type 17 T helper

cells, and eosinophils demonstrated weak or negligible correlations

with other immune cell types. In contrast, the majority of T cell

subsets, neutrophils, and NK cells exhibited strong positive

correlations with other immune cell types, highlighting their

significant roles in the pathogenesis of PE. Notably, only

neutrophils were found to have a negative correlation with the

rest of the immune cell types, suggesting a unique function for this

specific immune cell population in the context of PE (Figure 9C).
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FIGURE 6

Screening of Hub Genes. (A) Crosstalk genes identified from two WGCNA models and DEGs; (B) Sixteen genes selected by SVM-RFE with the lowest
5xCV error; (C, D) Coefficient profile plot of the LASSO model for PE, showing the final parameter selection l (lambda), with the upper x-axis
representing the number of feature genes; (E) Error plot displaying the error rates for different numbers of trees; (F) Ten genes selected by RF with
the lowest 5xCV error; (G) Crosstalk genes identified by LASSO, SVM-RFE, and RF; (H) Heatmap showing the results of GO enrichment analysis for
five hub genes; (I) Six KEGG pathways enriched by LEP. PE, preeclampsia; LASSO, Least Absolute Shrinkage and Selection Operator; SVM-RFE,
Support Vector Machine-Recursive Feature Elimination; RF, Random Forest; KEGG, Kyoto Encyclopedia of Genes and Genomes; LEP, Leptin.
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3.7 Experimental validation of 5 hub genes
by qRT-PCR

The qRT-PCR validation of five hub genes utilizing placental

mRNA from 13 healthy controls and 12 PE subjects revealed

distinct expression patterns among the tested genes. Significantly

elevated expression levels of CGB5, LEP, PAPPA2, LRRC1, and

SLC20A1 were observed in the PE group compared to the non-PE

group, underscoring their potential roles in the pathogenesis of PE.

(Figures 11A–E).
4 Discussion

Currently, there is no effective treatment for preeclampsia;

symptoms generally alleviate only after the delivery of the

placenta. Therefore, the prediction and prevention of

preeclampsia are of paramount importance (20). In this study, the

significant correlation of five key genes (CGB5, LEP, PAPPA2,

LRRC1, SLC20A1) with PE was established using LASSO,

Random Forest, and SVM-RFE techniques. A nomogram

incorporating these genes showed strong predictive accuracy for

LOPE, while a deep learning model based on them demonstrated

superior diagnostic efficacy. qRT-PCR analysis on clinical placenta

samples indicated notable expression differences for CGB5, LEP,

PAPPA2, LRRC1, and SLC20A1 between PE patients and healthy

controls, underscoring their potential role in PE pathogenesis.
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Multiple studies have employed the GEO database to investigate

genes involved in the development and diagnosis of PE (21–24).

Merging data from various GEO datasets can enhance sample size

cost-effectively, but it requires meticulous attention to

methodological details (e.g., the probe intensity algorithms) to

avoid compromising results. In this study, training data from

similar platforms, specifically GPL10558, were merged to ensure

consistency in gene expression analysis. The research highlights the

importance of adequate sample size and external validation with

clinical samples to maintain the biological relevance of gene

expression data, emphasizing the integration of prior knowledge

to ensure scientific robustness and clinical relevance of the findings.

Using qRT-PCR, we detected differential mRNA expression

levels of five hub genes across samples from 13 control and 12 PE-

affected placentas. CGB5, a gene encoding a subunit of human

chorionic gonadotropin (hCG), has been implicated in the

pathogenesis of preeclampsia (25, 26). hCG plays a multifaceted

role in pregnancy, influencing both immune regulation and

angiogenesis. At the maternal-fetal interface, hCG contributes to

immune tolerance by attracting Tregs to areas of hCG production,

thus maintaining fetal protection against inflammatory responses

(27). Tregs, which increase early in pregnancy and peak during the

second trimester, are critical for this immune modulation.

Dysregulation of hCG may impair this immune tolerance,

potentially contributing to pregnancy complications such as PE.

In addition to its role in immune regulation, hCG is recognized as

an angiogenic factor, impacting endovascular interactions between

trophoblasts, endothelial cells, and NK cells (28). NK cells are
FIGURE 7

Boxplot and ROC of 5 hub genes. (A–E) Gene expression levels of CGB5, LEP, LRRC1, PAPPA2, and SLC20A1 respectively; (F–J) ROC curves of
CGB5, LEP, LRRC1, PAPPA2, and SLC20A1 in training cohorts; (K–O) ROC curves of CGB5, LEP, LRRC1, PAPPA2, and SLC20A1 in validation cohort;
PE, preeclampsia; nonPE, healthy control;. *** p < 0.001, **** p < 0.0001.
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essential for spiral artery remodeling and trophoblast invasion, and

their angiogenic activity is supported by hCG. Studies have shown

that hCG stimulates uNK cell proliferation through the mannose

receptor, enhancing their non-cytotoxic activity and promoting

endovascular processes (29). Disruption in hCG’s regulatory

functions could therefore impact both immune tolerance and

vascular remodeling, potentially contributing to the development

of preeclampsia. Previous research delineated a significant

downregulation of Metastasis-associated protein 3 (MTA3) in the

placenta affected by preeclampsia, in contrast to the upregulation of

both CGB5 and Snail. These findings suggest a critical role for

MTA3 in the repression of hCG and Snail within the placental

trophoblast, with its dysregulation being associated with the onset

of preeclampsia. Further advancements in this field were made by a

recent study, which identified an inhibitory YAP-TEAD4 complex

containing the histone methyltransferase EZH2 within the genomic

regions of CGB5 and CGB7 in the syncytiotrophoblast (STB). This

complex is instrumental in the maintenance of the human placental

trophoblast epithelium. The study underscored the pivotal role of

Yes-associated protein (YAP) not only in activating stemness

factors but also in directly repressing genes that facilitate

trophoblast cell fusion.

The gene LEP encodes leptin, a hormone pivotal in regulating

proliferation, protein synthesis, invasion, and apoptosis of placental

cells. It plays a crucial role in the early stages of pregnancy. One research

has shown that leptin expression is notably increased in the placenta of

preeclamptic patients, suggesting its contribution to the disease’s

pathogenesis (21). Systematic reviews also have confirmed that

preeclampsia is linked to elevated levels of leptin and other

adipokines throughout all pregnancy trimesters (22). In obese

pregnant women, low serum concentrations of adiponectin and leptin
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in the first trimester have been associated with preeclampsia, indicating

a potential role of adipokine dysregulation in its development (30, 31).

Experimental models have further demonstrated that leptin infusion

can induce characteristics of clinical preeclampsia in mice, which can be

mitigated by specific receptor deletions (32). Chen et al. found that

elevated LEP levels correlate positively with gamma delta T cells, M0

macrophages, memory B cells, and regulatory T cells, indicating its

involvement in immune modulation. Conversely, LEP shows negative

correlations with resting CD4 memory T cells and activated NK cells

(33). These associations suggest that LEP contributes to the immune cell

imbalance seen in PE, influencing disease mechanisms. LEP’s role in

angiogenesis and its impact on PE is complex and appears to be context

dependent. While leptin is generally recognized as a pro-angiogenic

factor, promoting VSMC proliferation through pathways such as

phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-

mammalian target of rapamycin (mTOR), the evidence is not entirely

consistent (34). Some research indicates potential anti-angiogenic effects

(35). This discrepancy highlights the need for further research to clarify

leptin’s dual effects during pregnancy. Direct experiments focusing on

leptin’s impact on angiogenesis specifically within the context of PE are

essential to better understand its role in placentation and the

development of this condition.

Recent researches on PAPPA2, Pregnancy-Associated Plasma

Protein A2, have provided new insights into its role in preeclampsia.

PAPPA2 has shown promise as a potential biomarker for predicting

preeclampsia, with good classification performance in identifying

women at risk. This protein, localized to differentiated trophoblasts,

impairs trophoblast migration, invasion, and network formation in

vitro by inhibiting epithelial–mesenchymal transition through the

downregulation of the Hedgehog signaling pathway (36). Further,

hypoxia, a common feature in PE, significantly increases PAPPA2
FIGURE 8

Predictive Performance of the Nomogram and FCNN Model for Preeclampsia. (A) Nomogram for predicting preeclampsia; (B) Calibration curves
assessing the predictive accuracy of the nomogram; (C) ROC curve and AUC for the FCNN model on the 5-fold cross-validated training set;
(D) ROC curve and AUC for the FCNN model on the 5-fold cross-validated validation set. ROC, receiver operating characteristic; AUC, area under
the curve; FCNN, fully connected neural network.
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expression, which could contribute to poor placentation and

impaired angiogenesis. By restraining trophoblast cell functions

and affecting placental development, elevated PAPPA2 may

exacerbate inadequate vascular remodeling, leading to the

development of PE (37). Interestingly, PAPPA2 deficiency in

mouse models did not exacerbate intrauterine growth restriction,

suggesting its upregulation in preeclampsia might not be a
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compensatory mechanism for impaired fetal growth (38). These

findings highlight the multifaceted role of PAPPA2 in pregnancy

and its potential utility in diagnosing and understanding the

pathophysiology of preeclampsia.

Recent research on SLC20A1 (the phosphate transporter PiT1)

has illuminated its complex role in various biological processes, yet

its direct connection to preeclampsia has not been fully explored
FIGURE 9

Immune infiltration analysis of 5 hub genes. (A). Evident difference in immune cell types shown by boxplot; (B). Relationship between the expression
of 5 hub genes and immunity in PE patients; (C). Correlation map revealed the relationship of the 28 immune cell types; PE, preeclampsia; nonPE,
healthy control;. * p < 0.05, *** p < 0.001.
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(39). PiT1 is known for its involvement in the transport of inorganic

phosphate, along with additional roles in regulating TNFa-induced
apoptosis, erythropoiesis, cell proliferation, and insulin signaling

(40). Its critical function in maintaining endoplasmic reticulum

homeostasis and chondrocyte survival during skeletal development

has been documented, as well as its significance in sustaining

physiological phosphate balance, particularly in kidney function

and soft tissue calcification (41). Importantly, PiT1 is crucial for

chorioallantois placental morphogenesis, facilitating phosphate

symport into syncytiotrophoblast cells, which is essential for their

differentiation and function at the maternal-fetal interface (42).

Previous study found that SLC20A2 deficiency in mice lead to fetal

growth restriction and pregnancy complications, highlighting its

crucial role in placental function. Abnormalities such as altered

vascular structure, increased basement membrane deposition, and

calcification in SLC20A2-deficient placentas suggest impaired

angiogenesis and placental development. Similarly, reduced levels

of SLC20A1 and SLC20A2 in human placentas have been linked to

early-onset preeclampsia, indicating that disruptions in these

proteins can affect immune regulation and angiogenesis (43). The

association between preterm placental calcification and poor

pregnancy outcomes further supports the involvement of

SLC20A1 in the pathogenesis of PE through its effects on

vascular remodeling.

LRRC1, as a constituent of the LAP protein family, plays an

essential role in the establishment and maintenance of apical-basal

cell polarity (44, 45). Alterations in cell adhesion and polarity are

crucial for the transformation of the trophoblast layer, a process

integral to placental formation (46). This transformation facilitates

the proper invasion of trophoblast cells into the maternal
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endometrium, a critical step for successful implantation and

placental development. Such processes are especially significant in

conditions like preeclampsia, where there is a notable reduction in

the invasive capability of trophoblast cells (47). Consequently, elevated

expression levels of LRRC1 may impede the cellular rearrangements

necessary for modulating polarity, thereby influencing the pathogenesis

of preeclampsia. Further studies are needed to elucidate LRRC1 ‘s

precise role and therapeutic potential in preeclampsia.

Immune cells are crucial for supporting embryo implantation

and forming the maternal-fetal interface, with immune dysfunction

and inflammation being key factors in the development of PE (48,

49). Disruptions in the complex immune environment of pregnancy

can lead to pro-inflammatory reactions, oxidative stress, and

endothelial dysfunction, potentially contributing to preeclampsia

and adverse outcomes (48, 50). Our study expands on previous

research by analyzing 28 immune cell types using ssGSEA, revealing

notable changes in 23 types in the decidua of PE patients. We

observed a strong correlation between five hub genes and regulatory

T cells, NK cells, and MDSCs, underscoring their roles in

preeclampsia’s pathogenesis (51). We observed a significant

reduction in the infiltration of innate immune cells, particularly

MDSC, in PE. This observation is consistent with previous studies

that suggest MDSC depletion may contribute to pregnancy loss by

increasing the cytotoxicity of dNK (decidual natural killer) cells

(52). However, the mechanism underlying the connection between

MDSC depletion and preeclampsia remains to be fully elucidated.

The correlation map reveals a negative association between MDSC

and all types of NK cells, hinting at a potential mechanism. These

findings suggest that the identified genes play a crucial role in the

immune dysfunction associated with PE.
FIGURE 10

Immune infiltration analysis of 5 hub genes. (A–E) Correlation analysis between feature genes and immune cells.
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Spiral artery (SA) remodeling is essential for establishing and

maintaining a healthy pregnancy, and recent findings highlight the

role of NK cells in this process. NK cells, which are more prevalent

in the first trimester compared to term pregnancy, play a pivotal

role in both promoting SA remodeling and regulating trophoblast

invasion through regulating the production of growth factors and

cytokines (53). NK cells interact directly or indirectly with EVTs,

facilitating the induction and maintenance of immune tolerance,

protecting the placenta from infections, and supporting SA

remodeling (54). Robson et al. demonstrated that NK cells from

early human pregnancies can induce morphological changes in

vascular smooth muscle cells (VSMCs) and the breakdown of

extracellular matrix components, which are critical for effective

remodeling (55). Disruptions in these processes, potentially caused

by abnormalities in NK cell function, could contribute to impaired

SA remodeling and subsequently lead to the development

of preeclampsia.

T cells, including regulatory T cells (Tregs) and effector T cells,

are crucial for maintaining immune tolerance and supporting

trophoblast function during pregnancy. In preeclampsia, an

imbalance between pro-inflammatory T cells and Tregs can

disrupt trophoblast function and lead to abnormal placentation.

Tregs, essential for pregnancy tolerance, are often compromised in

PE, with their insufficiency observed before symptom onset. Studies

indicate that sufficient Treg numbers are necessary for proper

maternal vascular adaptation and prevention of placental

inflammation (56). Imbalances favoring pro-inflammatory CD4+

T cells contribute to inadequate spiral artery remodeling and
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oxidative stress, which trigger PE symptoms. Immunomodulatory

therapies targeting these T cells, such as monoclonal antibodies

against TNF-a, IL-17, and IL-6, and adoptive Treg therapy, show

promise. These treatments may reduce inflammation, stimulate

Tregs, and improve vascular remodeling and placentation,

offering potential strategies to prevent or manage preeclampsia

effectively (57). To validate the roles of NK and T cells in

preeclampsia, further experimental studies are recommended.

Flow cytometry can be employed to directly analyze immune cell

subsets in blood samples and placentas from preeclamptic patients.

Additionally, exploring these mechanisms in animal models and

using advanced techniques such single-cell RNA sequencing and

spatial multi-omics will provide more detailed insights into the

immune dysregulation observed in preeclampsia.

Current predictive models for PE typically integrate clinical

characteristics with biomarkers indicative of placental trophoblast

cell dysfunction and vascular endothelial damage, including vascular

endothelial growth factor (VEGF), soluble tyrosine kinase 1 (sFlt-1),

soluble endoglin (sEng), and placental growth factor (PLGF) (58–60).

These models are often enhanced with ultrasound measurements of

uterine artery blood flow resistance (61, 62). A large study conducted

across two maternity hospitals in the UK combined first-trimester

maternal demographic characteristics, medical history, and

biomarkers using an artificial neural network (ANN), achieving an

AUC of 0.770 when using maternal factors alone, and 0.817 when

biomarkers were included (62). Moreover, a recent study employed

plasma cell-free RNA (cfRNA) signatures to achieve noninvasive PE

prediction (63). The preterm PE prediction model achieved an AUC
FIGURE 11

Experimental Validation of 5 Hub Genes by qRT-PCR. (A–E) mRNA expressions of 5 hub genes in PE patients (n=12) versus healthy controls (n=13);
PE, preeclampsia. * p < 0.05, ** p < 0.01.
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of 0.81 in an independent validation cohort (preterm, n=46; control,

n=151). The early-onset PE prediction model had an AUC of 0.88 in

an external validation cohort (early-onset PE, n=28; control, n=234).

cfRNA holds significant promise for clinical translation due to its

noninvasive nature and potential for widespread application in

prenatal screening.

Thus, another limitation of the study is the challenge of

translating placental-derived biomarkers into early pregnancy

screening tools. The potential of using liquid biopsy techniques to

analyze circulating cell-free RNA (cfRNA) and DNA (cfDNA) for

early prediction of preeclampsia has garnered significant interest.

The biomarkers CGB5, LEP, LRRC1, PAPPA2, and SLC20A1 offer

varying prospects for predicting preeclampsia. CGB5, a component

of hCG, is already used in standard pregnancy tests, making its

detection in cfRNA or cfDNA feasible (64). Leptin, involved in

metabolic regulation, has been implicated in pregnancy

complications. Elevated leptin levels have been observed in some

preeclampsia cases, suggesting its potential as a predictive marker

(65). PAPPA2, a member of the PAPPA family, has established roles

in pregnancy and is associated with various pregnancy-related

conditions. Kramer et al. found that elevated levels of PAPPA2

are observed in both maternal serum and placental tissue in

pregnancies affected by preeclampsia (66). Conversely, the roles

of LRRC1 and SLC20A1 in preeclampsia remain unclear,

necessitating further research. Investigating their expression in

cfRNA or cfDNA during early pregnancy is essential to determine

their potential viability as screening markers. Developing liquid

biopsy assays for these biomarkers poses technical challenges,

including the low abundance of cfRNA and cfDNA, the need for

highly sensitive and specific detection methods, and the ability to

accurately quantify biomarker levels. While techniques such as

digital PCR and next-generation sequencing (NGS) are

advancing, further optimization is required before they can be

implemented in routine prenatal care. In conclusion, while

promising, future studies must explore the feasibility of detecting

these placental-derived biomarkers in maternal blood during early

pregnancy. This would provide a minimally invasive screening tool

for preeclampsia, allowing for earlier intervention and better

management of the condition.

Another limitation of our study is the inability to strictly

differentiate between EOPE and LOPE. Based on the timing of

onset, preeclampsia is classified into early-onset PE (EOPE),

occurring before 34 weeks of gestation, and late-onset PE

(LOPE), which manifests after 34 weeks. Clinically, there is

considerable heterogeneity among PE patients, with variations

in clinical presentation, pathophysiological mechanisms, and

drug responsiveness. EOPE is typically associated with more

severe clinical manifestations, and significant progress has been

made in recent years regarding its underlying mechanisms (67).

However, LOPE is more prevalent than EOPE, and few

biomarkers for its early diagnosis have been identified. In our

study, we were unable to find a public database with a large

sample size and unified sequencing platform that specifically

claims to detect LOPE. Expanding our study to include such

datasets in the future could potentially address this limitation and
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further improve our understanding of PE, potentially providing

more tailored and accurate predictive tools for these distinct

clinical phenotypes.

A further shortcoming of our study is that the methods used to

identify key genes through machine learning and deep learning could

be further refined. With advancements in deep learning algorithms,

the analysis of large-scale multi-omics data has become feasible (68–

71). In multi-omics, entities are often interconnected, as seen in

genomics, where genes typically function within networks. Graph

data, which represent complex relationships and logical rules between

nodes, can be analyzed using bioinformatics approaches such as

WGCNA and Protein-Protein Interaction (PPI) networks (72, 73).

Integrating these approaches with deep learning methods, such as

Graph Convolutional Networks (GCN) and Graph Attention

Networks (GAT), could offer promising insights. While these deep

learning frameworks have shown effectiveness in other diseases, their

application in PE prediction remains underexplored and warrants

further investigation.
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