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Introduction: Progressive Multifocal Leukoencephalopathy (PML) is a rare and

deadly demyelinating disease caused by JC virus (JCV) replication in the central

nervous system. PML occurs exclusively in patients with severe underlying immune

deficiencies, including AIDS and hematological malignancies. PML has also emerged

as a significant threat to patients on potent new immunosuppressive biologics,

including natalizumab in multiple sclerosis.

Methods: Here, we developed an IFN-g release assay (IGRA) that mainly detects

JCV-specific effector memory T cells and effectors T cells in the blood.

Results: This assay was frequently positive in patients with active PML (with a

positive JCV PCR in CSF) of various underlying immunosuppression causes (84%

sensitivity). Only 3% of healthy donors had a positive response (97% specificity).

The frequency of positivity also increased in multiple sclerosis patients according

to the time on natalizumab (up to 36% in patients treated for more than 48

months, who are considered at a higher risk of PML).

Discussion: The results show this assay’s frequent or increased positivity in

patients with PML or an increased risk of PML, respectively. The assay may help

to stratify the risk of PML.
KEYWORDS

JC virus, progressive multifocal leukoencephalopathy, AIDS, multiple sclerosis,
natalizumab, effector memory T cells, effector T cells, IFN-g release assay
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Introduction

Progressive multifocal leukoencephalopathy (PML) is a rare but

deadly demyelinating disease. It is caused by human JC

polyomavirus (JCV) replication in oligodendrocytes and

astrocytes, and almost exclusively affects immunosuppressed

patients (1–8). JCV is a ubiquitous virus that asymptomatically

infects a large proportion of the adult population worldwide (1–8).

Various situations associated with severe cellular immunodeficiency

allow JCV to replicate in the central nervous system (CNS), leading

to PML (1–8). Until recently, these situations consisted mainly of

AIDS and, to a lesser extent, hematological malignancies or chronic

inflammatory diseases and transplantation due to the heavy

therapeutic immunosuppression (1–10). The incidence and

severity of PML vary according to the predisposing underlying

disease (10). The overall incidence has been estimated at 0.5 per

100,000 person-years in the USA (10), 0.11 per 100,000 person-

years in France (9) and 0.029 per 100,000 person-years in Japan

(11). The overall mortality at one year was 38.2% in France (9).

Recently, PML has emerged as a severe adverse effect of potent

new immunosuppressive biotherapies used to treat autoimmune

diseases, allogeneic graft rejection, or hematological malignancies,

such as rituximab, natalizumab, efalizumab, belatacept,

alemtuzumab or daratumumab, and other immunomodulatory

agents such as belatacept, dimethyl fumarate, ocrelizumab and

fingolimod used in multiple sclerosis (1, 2, 12–24). Natalizumab,

an anti-a4 integrin that blocks T-cell trafficking through the blood-

brain barrier, has proven effective in relapsing-remitting multiple

sclerosis (25–27). Still, the risk of PML limits its long-term use (2, 5,

13, 14, 16, 24, 28, 29). Identification of patients at risk of developing

PML is thus an important challenge. Detection and quantification

of anti-JCV antibodies in sera of patients on natalizumab

represented a significant advance in the strategies to stratify the

risk of PML in patients on natalizumab (30–33). A high level of JCV

antibodies may indicate sustained virus activity and an increased

risk of PML in patients on natalizumab (34). Immunological

control of JCV infection depends primarily on the T-cell immune

response. Detection of JCV-specific T cells with effector functions

(effector and effector memory T cells) may point to ongoing JCV

replication in extra-renal sites (35). Those T cells rapidly release

cytokines such as gamma interferon (IFN-g) when re-exposed to

antigen (35, 36). Here, we developed a whole blood-specific IFN-g
release assay to detect effector/memory effector JCV-specific T-cell

response. We tested it in patients with PML or at risk of

developing PML.
Patients and methods

Patients

This study involved 33 healthy donors and 110 patients,

including 67 patients with remitting-relapsing MS. Patients with

MS were enrolled in the neurology departments of Pitié-Salpêtrière,

Tenon and Bicêtre hospitals (Paris, France). Some MS patients on

natalizumab were tested at 2 or 3 time points (a total of 98 samples
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were tested). The interval between samples ranged from 1 to 14

months. At the time of sampling, 57 MS patients had been on

natalizumab for 2 to 82 months, and 10 MS patients had stopped

receiving natalizumab 1 to 29 months previously. The study also

involved 19 patients with recent-onset PML (less than 1 year from

who had evidence of JCV replication in the CNS (positive JCV PCR

in the CSF) (active PML) and 12 PML survivors with no evidence of

CNS JCV replication (negative JCV PCR in the CSF). PML was

diagnosed on the basis of clinical and virological findings and

magnetic resonance imaging (MRI), as previously described (37).

The PML patients had a variety of immunodeficiencies including

AIDS, natalizumab treatment, sarcoidosis, lymphoma/leukemia, or

allogeneic bone marrow transplantation. The patients with active

PML had been diagnosed less than 1 year before sampling [median:

3.5 months; range: 0.4 -11.2 months] and all were PCR-positive for

JCV in CSF. All the PML survivors had been diagnosed more than 1

year previously (median: 53.15 months; range: 14.3 to 188 months)

and were PCR-negative for JCV in CSF at the time of blood

sampling. Blood samples from PML patients were obtained in

several French clinical centers (USR, Department of Internal

medicine, Bicêtre Hospital; Departments of Neurology of Dijon,

Tenon and Saint-Antoine Hospitals). Controls were 12 AIDS

patients with neurological diseases other than PML, including

cerebral toxoplasmosis, HIV encephalitis and CNS lymphoma,

who were recruited at the USR, Department of Internal Medicine,

Bicêtre Hospital. Samples from 33 healthy donors were also tested.

Written informed consent was obtained from each patient (or next-

of-kin if decision-making was impaired) and each healthy donor.

The study was approved by the CPP IDF VII ethics committee

(Comité pour la Protection des Personnes Ile-de-France VII, Pitié-

Salpêtrière hospital, France).
IFN-g release assay

A pool of 46 peptides, each composed of 25 amino acids (0.25

mg/mL each), overlapping by 10 amino acids and spanning the

entire VP1 and VP2 proteins of JCV (American Peptide Company,

Sunnyvale, CA), was added to 1 mL of whole blood for 16 h at 37°C.

A positive control (activation with PHA 0.5 µg/mL) and a negative

control were used. After peptide activation, plasma was harvested

and IFN-g release was measured by ELISA (Qiagen, Gaithersburg,

MD, USA). The results are provided in IU/mL [one IU

approximately corresponds to 40 pg/mL (38)].
Sorting of T cell subsets

CD4+ T cells were enriched from PBMC by using magnetic beads

(CD4 Microbeads, Miltenyi Biotec). CD4-enriched and CD4-

depleted cells (containing CD8+ T cells) were stained with the

following antibodies: CD3-FITC, CD8-Alexa Fluor700, CD4-V500,

CCR7-PE-CF594, CD95-APC, CD62L-V450 (BD Biosciences),

CD45RO-PE-Vio770, CD45RA-PerCP-Vio700, CD27-APC-Vio770

(Miltenyi Biotec). Central memory (CD45RA-, CD45RO+, CCR7+,

CD62L+, CD27+), effector memory (CD45RA-, CD45RO+, CCR7-,
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CD62L-, CD27+), stem cell memory (CD45RA+, CD45RO-, CCR7+,

CD62L+, CD27+, CD95+), and naive CD4+ and CD8 T cells

(CD45RA+, CD45RO-, CD62L+, CCR7+, CD27+, CD95-) were

then sorted from CD4-enriched and CD4-depleted PMBC (BD

FacsAria). Non-T cells were also sorted (CD3-negative cells within

the lymphocyte gate) for coculture experiments.
Cell activation and detection of IFN-g
production by flow cytometry

Sorted CD4+ or CD8+ T cells were cocultured for 16 hours with

non-T cells in the presence of the VP1 and VP2 peptide pool (0.25

µg/ml each peptide). The cells were washed, stained with the same

antibodies as those used for cell sorting, then fixed and

permeabilized (BD Cytofix/Cytoperm, BD Biosciences) before

staining for intracellular IFN-g (anti-IFN-g PE, clone B27, BD

Biosciences) and flow cytometric analysis (BD LSR Fortessa).

Data were analyzed with FlowJo software.

In some experiments, PBMC were directly activated with JCV

peptides then stained with anti-CD3, anti-CD4, anti-CD8, anti-

CD45RO, anti-CD45RA, anti-CCR7 and for intracellular IFN-g
production (same antibodies as above) prior to flow cytometry.
Statistical analysis

Data were analyzed with Prism software (GraphPad).

Differences between groups were analyzed using the Mann-

Whitney test for unpaired continuous variables. Chi-square test

was used for categorical variables and the Spearman rank test for

correlation studies.
Results

Study design

This work aimed to develop a whole-blood JCV-specific IFN-g
release assay (see Methods) following activation for a short period,

16 h, with a pool of overlapping peptides spanning the entire JCV

proteins VP1 and VP2. IFN-g released by T cells was measured in

the plasma. The assay was tested in patients with relapsing-

remitting multiple sclerosis (MS) who had been on natalizumab

for various periods; patients with recent-onset PML (active PML

<1 year since diagnosis and PCR positivity for JCV in CSF at the

time of sampling); and PML survivors (“inactive PML”: >1 year

since diagnosis, PCR-positive for JCV in CSF at diagnosis but

negative at the time of sampling). PML patients had various

underlying immunosuppressive disorders (HIV infection,

treatment with natalizumab, lymphoma, or sarcoidosis). As HIV

infection was a frequent cause of immunosuppression among PML

patients, we also tested a control group of patients with AIDS-

related opportunistic neurological diseases other than PML

(cerebral toxoplasmosis, HIV encephalitis, and CNS lymphoma).

CD4 T cell counts in the latter patients were similar to those in the
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AIDS patients with active PML, suggesting a similar degree of

immunodeficiency (195 cells/mm3 [28–979] in active PML, 201

cells/mm3 [24–898] in neuro-AIDS; median [range], p=0.746,

Mann-Whitney test).
TEM and TEMRA cells accounted for the bulk
of IFN-g-producing CD4 and CD8 T cells
after short activation with JCV peptides

We first analyzed the phenotype of IFN-g producing cells after a
short-term activation (16h) with VP1 and VP2 peptides. As shown

in Figure 1A, the peptides activated both JCV-specific CD4 and

CD8 T cells. The majority of IFN-g-producing T cells had a

CD45RO+ CCR7- or a CD45RO- CCR7- phenotype (Figure 1B).

Those phenotypes are characteristic of effector memory T cells

(TEM), and terminally differentiated effector T cells (called TEFF or

TEMRA), respectively (39). Most TEM and TEMRA were also CD45RA -

and CD45RA+, respectively (not shown). In vivo, specific TEM and

TEMRA may decline once the cognate antigen has been cleared, and

their significant presence may, therefore, point to ongoing pathogen

replication (35, 40–42). TEM/TEMRA rapidly release cytokines such as

IFN-gwhen re-exposed to antigen (35, 40–42). By contrast, long-term
antigen activation for several days may allow long-term quiescent T

cell memory cells (mainly central memory T cells) to be reactivated

and expand (35, 40–42), meaning that a positive response following

prolonged antigen activation does not necessarily signify an ongoing

immune response.

To rule out that a short-term activation may have induced

differentiation to TEM or TEMRA from less differentiated memory T

cells, we sorted CD4+ and CD8+ stem cell memory T cells (TSCM),

central memory T cells (TCM), and effector memory T cells (TEM)

from AIDS-associated PML patients and MS patients on

natalizumab (see Methods). Healthy donors were not tested as

most of them had no reactivity in terms of IFN-g production

following short-term activation with JCV peptides (35). Naive T

cells were sorted as controls. Because of a high rate of cell death

following sorting, terminally differentiated effector T cells could not

be tested (TEMRA are highly susceptible to apoptosis (43)). Sorted

naive and memory T-cell subsets mixed with T-cell-depleted PBMC

were activated with JCV peptides for 16 h. Intracellular IFN-g was
analyzed by flow cytometry. Figure 1C shows the percentages of

IFN-g-producing cells among each T-cell subset. Figure 1D

summarizes the contribution of each sorted naive and memory

subset to the pool of IFN-g-producing T cells after JCV peptide

activation. The modeling considered the percentage of IFN-g
producing cells among each cell subset and the abundance of

each cell subset in whole blood (see legends). In both AIDS-

related PML patients and MS patients, the main T cell subset that

produced IFN-g in response to JCV peptides was the TEM subset

(Figure 1D). In AIDS–related PML patients, the ratio of CD4 TEM to

CD8 TEM among IFN-g-producing T cells was very low (ratio of

0.03 in our whole-blood model in Figure 1D). This ratio was much

higher in MS patients on natalizumab (1.18) (Figure 1D). The

overrepresentation of CD8 T cells among IFN-g-producing TEM in

AIDS-related PML was due to the CD4 lymphopenia. Indeed, as
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FIGURE 1

After short-term PBMC activation with JCV peptides, TEM and TEMRA are the main IFN-g-producing cell subset. (A, B) PBMC from an MS patient on
natalizumab were activated with JCV peptides for 16 (h) In (A) Intracellular IFN-g production by CD4 and CD8 T cells, gated among PBMCs, was
analyzed by flow cytometry. Panel (B) shows the phenotype of IFN-g-producing and non-producing cells among CD4+ T cells (top) and CD8+ T
cells (bottom). (C, D) Naive (TN), stem cell memory (TSCM), central memory (TCM), and effector memory (TEM) CD4 and CD8 T cells were sorted from
PBMC from patients with AIDS-associated PML and PML-free MS patients on natalizumab. Terminally differentiated effector T cells (TEMRA) which are
highly susceptible to apoptosis could not be tested. Those highly purified cells were activated with JCV peptides for 16 h in the presence of T-cell-
depleted autologous PBMC. Intracellular IFN-g production by CD4 and CD8 T cells was analyzed by flow cytometry. In (C), the mean percentages of
IFN-g positive cells within each sorted CD4+ or CD8+ T cell subset are shown. The surface areas of the discs are proportional to the percentages of
IFN-g-positive cells in each sorted T cell subset. The area corresponding to the percentage of IFN-g cells in CD8 TEM in AIDS-associated PML
patients was determined arbitrarily. The other surfaces were determined proportionally. Panel (D) represents the importance of each subset in 100
IFN-g producing CD4 and CD8 sorted T cells from MS patients (left) and patients with AIDS-associated PML (right). Results were calculated from the
mean percentage of IFN-g-producing cells in each sorted CD4 or CD8 T-cell subset (see C) and the mean absolute number of each CD4 or CD8 T-
cell subset in 1 mm3 of blood. The same procedure has been performed for IFN-g negative cells in each sorted CD4 or CD8 T-cell subset. Statistical
analysis was performed using a Chi-square test. In (C, D), means were calculated from values obtained in 6 PML patients and 4 MS patients with
positive IFN-g response after activation with JCV peptides.
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shown in Figure 1C, similar percentages of CD4 and CD8 T cells

produced IFN-g in response to JCV peptides in AIDS-related PML

patients. As shown in Figure 1D, naive cells contributed

significantly to the pool of IFN-g non-producing T cells after JCV

peptide activation (40% for MS patients on natalizumab and 28.5%

for AIDS-PML patients).
Frequent positivity of the JCV-specific
IGRA test in patients with active PML

We then tested our IFN-g assay on whole blood. The results of

the IFN-g release assay were expressed as delta IFN-g international
units (DIU = result (IU) in the activated tube – result (IU) in the

non-activated tube). The positivity cutoff was set at 0.15,

corresponding to the mean IU obtained for negative controls

(untreated blood tubes) from healthy donors + 2 SD. The DIU of

positive controls (blood tubes activated with PHA) ranged from 2

to >10 in the patients and healthy controls. As shown in Figure 2A,

one of the 33 healthy donors (3%) had a positive IFN-g response to
JCV peptides. Sixteen of the 19 active PML patients (84%)

responded positively. Two negative patients had AIDS-

associated PML and were among the AIDS patients with the

lowest CD4 T cell counts and CD4/CD8 ratios. Those two

patients died within 3 months after the blood testing

(Figure 2B). The third negative patient had lymphoma treated

with rituximab (216 CD4 T cells and 196 CD8 T cells per mm3 but

no B cells). The peptides (25 amino acids) used in the assay may be

substantially presented by B cells (that express both MHC class II

and MHC class I molecules) to CD4 T cells and CD8 T cells,

respectively. CD4 T cells represent a significant fraction of cells

that produce IFN-g in response to JCV peptides (Figures 1A–D),

and both CD4 T cells and B cells (45) may also provide helping

signals for CD8 T cell functionality. The virtual absence of CD4 T

cells in some AIDS patients or the loss of B cells in patients on

rituximab may, therefore, impact the test. Only 33% of patients

with inactive PML (PML survivors) had a positive response.

Survivors of AIDS-associated PML had higher CD4 cell counts

than patients with active PML, indicating some degree of immune

recovery on antiretroviral treatment (Figure 2C). The AIDS

patients with neurological diseases other than PML were

positive in 25% of cases despite a similar degree of immune

deficiency, based on their CD4 T cell counts, to that of patients

with active PML (Figure 2C). None of these neuro-AIDS patients

and none of the patients with inactive PML were PCR-positive for

JCV in CSF at the time of testing. In contrast, all the patients with

active PML were positive. Thus, active JCV replication in the brain

was associated with a positive response in the IFN-g release assay.
The frequency of positivity also increased
in MS patients according to the time
on natalizumab

Among the patients with multiple sclerosis treated with

natalizumab, the assay was positive in 15.3% of the samples
Frontiers in Immunology 05
tested (Figure 2A). The risk of PML is known to increase with

time on natalizumab (7, 8). We found a positive correlation

between the time on natalizumab and positivity in our IFN-g
release assay (Figure 2D). Among patients who had been on

natalizumab for less than 24 months, the proportion of those

with positive IFN-g responses was similar to that of the healthy

donors (7.8% and 3%, respectively, p=0.36, Chi-square test).

Interestingly, the proportion was 13% among patients who had

been on natalizumab for 24 to 48 months and 36% among patients

who had been on natalizumab for more than 48 months

(Figure 2D). Among patients who had stopped taking

natalizumab, we found a negative relationship between IFN-g
positivity and the time since drug withdrawal (Figure 2E). Thus,

among MS patients, positivity in the IFN-g release assay tends to

become more likely with the time on natalizumab and, thus, with

the risk of PML.
Discussion

Our results suggest that PML, and therefore active JCV

replication in the CNS based on a positive JCV PCR in CSF, is

strongly associated with the positivity of our JCV-specific IGRA

test, which detects the presence of JCV-specific TEM and TEMRA in

peripheral blood. The detection frequency of those cells decreased

in PML survivors who cleared JCV from CSF. The observed anti-

JCV T cell response may not necessarily be able to control JCV

replication in the CNS. Indeed, there are several examples of

chronic viral infections, including HIV infection, in which specific

CD4 and CD8 T cells have lost several critical antiviral functions,

including cytotoxicity, but remain able to produce IFN-g (46).

Several mechanisms may be possibly involved in this poor

functionality, including a lack of CD4 help, overexpression of

inhibitory receptors, T cell anergy, or increased Treg responses

(19, 46–50). The immune recovery that occurs in AIDS patients on

effective ART, following the suppression of HIV replication, may

improve the functionality of anti-JCV TEM and TEMRA, enabling

them to control virus replication in the CNS. This virus clearance

and, therefore, the decrease of antigen activation by dendritic cells

migrating from the brain may lead to a drop of JCV-specific TEM

and TEMRA in the blood that may become undetectable by the JCV-

specific IGRA test.

We also found that the positivity of the JCV-specific IGRA

increased in MS patients with the time on natalizumab, which

correlates with the risk of PML. In MS patients, while there is no

evidence that natalizumab impairs JCV-specific T-cell functions,

this therapeutic monoclonal antibody prevents T-cell trafficking to

the brain through the blood-brain barrier, creating local CNS

immunosuppression. Detecting JCV-specific TEM and TEFF cells

in some patients’ blood on natalizumab suggests two points.

Firstly, direct and indirect evidence of ongoing JCV replication

in the CNS of some patients on natalizumab has already been

reported (16, 35, 51, 52). JCV replication might initially be

intermittent and low, subsequently intensifying progressively to

cause substantial demyelination and lead to PML. We have

previously shown that the presence of JCV-specific TEM in the
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FIGURE 2

Patients with PML or a high PML risk have a positive JCV IFN-g release test. (A) Healthy donors, MS patients on natalizumab for various times, neuro-
AIDS patients without PML, and PML patients with various underlying immunosuppressive conditions were tested in the IFN-g release assay
described in Methods. PML patients were divided into PML survivors (> one year from diagnosis and no evidence of ongoing JCV replication in the
CNS, based on a JCV PCR in CSF that became negative) and patients with active PML (< one year since diagnosis and evidence of virus replication in
the CNS, based on a positive JCV PCR in CSF). The numbers and percentages of test-positive healthy donors or patients in each group are indicated.
IFN-g production values obtained in peptide-activated blood tubes are corrected by subtracting the values obtained in non-activated blood tubes.
The positivity cutoff was 0.15 (corresponding to the mean + 2 SD of values obtained in non-activated blood tubes in 33 healthy donors). Results
were analyzed with Chi-square test. Significances are indicated: * p<0.05; ** p<0.01; **** p<0.0001. The values obtained in non-activated tubes did
not vary significantly between the groups of healthy donors and patients (Healthy donors: 0.07 [0.04] (mean [SD]); Multiple Sclerosis patients: 0.09
(0.06); Neuro-AIDS patients: 0.08 (0.04); Active PML patients: 0.09 (0.04); PML survivors: 0.06 (0.02) and active PML patients: 0.09 (0.04)). Panel (B)
shows CD4 T cell counts and CD4/CD8 T cell ratios in AIDS-related PML patients according to the results of the IFN-g release assay. Panel (C)
shows the CD4 T cell counts in the different groups of AIDS patients. The CD4 T cell count was not measured in our group of healthy donors.
However, a previous representative study has shown that in HIV-seronegative adult patients, the CD4 cell count ranges between 582 and 2628 cells/
mm3 (median: 1119 cells/mm3) (44). Results were analyzed with Mann-Whitney test. In (D), the time on natalizumab by MS patients shown in (A) was
plotted against corrected IFN g values. The Spearman rank test was used to analyze the correlation. The Chi-square test was used to analyze the rate
of IFN-g positivity after 0-24 months, 24-48 months, and >48 months on natalizumab. Panel (E) plots the results of the IFN-g release assay against
the time since natalizumab withdrawal among MS patients who had stopped receiving natalizumab. Pink circles represent patients who previously
tested positive for IFN-g release. The Spearman rank test was used to analyze the correlation.
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blood is unrelated to JCV replication in renal epithelial cells, which

is responsible for the viruria frequently observed in the general

population (35). By contrast, a high proportion of PML patients

with a positive JCV PCR in CSF showed detectable anti-JCV TEM

and TEFF in blood. The frequency of detection of those cells

decreased in AIDS-associated PML survivors who cleared JCV

from CSF following effective ART treatment.

Secondly, the increased positivity of the JCV-specific IGRA test

in MS patients on prolonged natalizumab suggests that this

therapeutic monoclonal antibody does not prevent peripheral T

cell activation by JCV antigens present in the CNS. Further

investigations are necessary to determine the impact of

natalizumab on antigen-presenting-cell trafficking from the brain

to peripheral locations such as brain-draining cervical lymph nodes,

which may involve newly identified CNS lymphatic vessels (53). In

PML patients, the influx of activated T cells following natalizumab

withdrawal and plasma exchange triggers an immune

reconstitution inflammatory syndrome (IRIS) (29, 54, 55). Cells

that enter the CNS are likely to include JCV-specific T cells. Our

finding that JCV-specific effector memory T cells accumulate in the

blood of natalizumab-treated MS patients who have PML or are at a

high risk of PML supports the involvement of JCV-specific T cells in

this inflammatory syndrome.

Together, our results suggest that the positivity of the JCV-specific

IGRA test correlates with virus replication in the CNS, as shown in

patients with active PML patients, and may suggest some levels of virus

replication in patients on prolonged natalizumab that may lead to

PML. Therefore, this assay may help in the current strategies to better

mitigate the risk of PML in patients on natalizumab and possibly on

other immunosuppressive biotherapies.
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The authors thank F Deverité, V Bedu and all the nurses of the

departments of Neurology of Tenon Hospital, Paris, France; Bicêtre

Hospital, Le Kremlin-Bicêtre, France; Pitié-Salpêtrière hospital,
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