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The role of circulating T cells
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Tissue-resident memory T cells (TRM) are long-lived memory lymphocytes that

persist in non-lymphoid tissues and provide the first line of defence against

invading pathogens. They adapt to their environment in a tissue-specific manner,

exerting effective pathogen control through a diverse T cell receptor (TCR)

repertoire and the expression of proinflammatory cytokines and cytolytic

proteins. More recently, several studies have indicated that TRM can egress

from the tissue into the blood as so-called “ex-TRM”, or “circulating cells with a

TRM phenotype”. The numerically small ex-TRM population can re-differentiate in

the circulation, giving rise to new memory and effector T cells. Following their

egress, ex-TRM in the blood and secondary lymphoid organs can be identified

based on their continued expression of the residency marker CD103, alongside

other TRM-like features. Currently, it is unclear whether exit is a stochastic

process, or is actively triggered in response to unknown factors. Also, it is not

known whether a subset or all TRM are able to egress. Ex-TRM may be beneficial in

health, as mobilisation of specialised TRM and their recruitment to both their site

of origin as well as distant tissues results in an efficient distribution of the immune

response. However, there is emerging evidence of a pathogenic role for ex-TRM,

with a suggestion that they may perpetuate both local and distant tissue

inflammation. Here, we review the evidence for the existence of ex-TRM and

examine their potential involvement in disease pathogenesis.
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1 Introduction

T cells are crucial for the generation of a successful adaptive immune response against

pathogens. Upon entry into barrier tissues, antigen presenting cells (APCs) capture antigen

from the invading pathogen and traffic it to the local draining lymph node, where naïve

antigen-specific T cells are then activated (1). This is followed by a period of rapid clonal

expansion and differentiation, following which newly generated effector T cells migrate to

the site of infection and participate in host defence through their production of cytokines
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and direct cytolytic activity (2–4). Most effector T cells die following

pathogen clearance, but a small fraction survives and is capable of

recirculating between non-lymphoid tissue and the blood (5).

Referred to as memory precursor effector cells (MPECs), this

population can differentiate into memory T cells, thus ensuring a

potent recall response against invading pathogens (2). Memory T

cells can be broadly divided into circulating and resident memory

populations, the latter of which was identified a little over a decade

ago (2, 6–8). The circulating memory population comprises central

memory T cells (TCM), which proliferate extensively upon

reactivation, giving rise to expanded effector cell populations, and

terminally differentiated effector memory T cells (TEM) which

rapidly differentiate into new effector cells upon antigen re-

encounter (2, 9). The tissue memory compartment comprises

resident memory T cells (TRM), which are localised in non-

lymphoid tissues and serve as a “frontline” defence against

recurring pathogens at barrier sites (6–8, 10). TRM are

phenotypically and transcriptionally distinct from other T cell

populations (11) but share features with circulating TEM and

effector T cells, including their expression of proinflammatory

cytokines and cytolytic proteins, meaning they are primed to

rapidly respond to infection. They can proliferate in situ, driving

autonomous expansion of their population (10, 12). To date, studies

on TRM have focused mostly on CD8+ cells in the mouse, but the

importance of CD4+ TRM is increasingly recognized (13) and

equivalent populations have been identified in humans. Until

recently it was assumed that once residency is established TRM do

not exit the tissue. However, several recent studies have suggested

that a fraction of TRM are capable of egress and can be found in
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draining secondary lymphoid organs (SLOs) and in the circulation

(Figure 1) (14–19). Here, we will review the evidence for the

existence of ex-TRM, discuss their properties, and highlight the

emerging evidence for their potential involvement in

inflammatory disease.
2 The origin and differentiation of TRM

Cells with the phenotype of TRM are present in most, if not all,

human tissues (20, 21), and studies in transplant patients have

directly demonstrated long term maintenance of donor-derived T

cells in the transplanted tissue (22–24). Despite their prevalence, the

origin and development of TRM is not fully understood. TRM are

present in both the human fetal and infant intestine, suggesting TRM

seeding and development can occur early in life in response to

ingested antigens, but the precise nature of the precursor population

giving rise to these cells is unclear (25–27).

TRM differentiation is induced by exposure to tissue-derived

factors following extravasation of precursors (5, 27, 28). It can be

influenced by pre-commitment to this fate prior to arrival in the

tissue (28); T cells clones have been identified within circulating

mouse T cells that already express TRM associated genes and have an

enhanced potential to establish residency in the skin (28). This pre-

commitment to a TRM fate occurs early in an immune response and

it can occur either within the naïve T cell population (29) or

following activation through the TCR, possibly as the result of

interaction with specific DC populations (5, 28–32). Regardless of

their origin, TRM precursor cells are thought to give rise to TRM by
A

B

C

D

FIGURE 1

The origins and properties of ex-TRM. (A) Memory precursor cells (MPEC) recruited into tissues can differentiate into TRM under the influence of local
tissue cues including cytokines; a subset of these circulating precursors may be pre-committed to a TRM fate (‘poised TRM’). (B) Residence is
associated with expression of CD69 and CD103 and downregulation of the transcriptional profile associated with tissue egress. (C) Under conditions
that are poorly defined, TRM can downregulate CD69, while retaining CD103 expression and undergo retrograde migration to the draining lymph
node or beyond into the blood. The ability to egress may be a property of a distinct subpopulation of cells (bracketed in figure). Circulating ex-TRM
are plastic cells that can undergo further differentiation to yield a variety of effector and memory T cells. (D) They can re-enter tissue, with a
propensity to return to the tissue of origin due to retained expression of tissue-specific trafficking molecules (red triangles in figure); these include
CLA and a4b7 for skin and intestine respectively.
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an induced differentiation programme (19, 33–36). The precise

signals resulting in the acquisition of a TRM phenotype are complex

and likely to be tissue-specific, but there is evidence to suggest that

interaction with the extracellular matrix, cytokines including IL-15

and TGFb, hypoxia, and persistent antigenic stimuli are important

for TRM generation in certain contexts (34–38). In response, a

number of transcription factors including Runx3, Notch, Hobit, and

Blimp-1, function together as a module to silence lymphocyte egress

pathways (39–41). These positive, tissue-derived developmental

cues result in phenotypic, transcriptional, and metabolic changes

to the cell enabling it to attain residency within the tissue.

The conversion of TRM precursor cells to TRM is coupled with

the upregulation of tissue retention molecules, including CD69 and

CD103 (aEb7 integrin). CD69 promotes residency by triggering

internalisation of sphingosine-1-phosphate receptor 1 (S1PR1)

which otherwise mediates migration from the tissue in response

to S1P gradients, whereas CD103 binds to E-cadherin and tethers

cells to the epithelium (11, 42, 43). TRM are also characterised by

reduced expression of the transcription factor KLF2, which

promotes S1PR1 expression and a number of additional cell

surface markers linked to lymph node-homing and tissue-egress

molecules, such as CCR7 and CD62L (11, 44, 45). CD69 and CD103

are often used as phenotypic markers of TRM. CD103 is typically

expressed by a subset of CD69+ cells, constituting a greater

proportion of CD8+ than of CD4+ TRM. CD103
+ and CD103-

TRM subsets have distinct functions during infection (46, 47). It

should be emphasized that the biology of TRM is complex and

caution should be exercised when extrapolating findings to different

cell subsets, tissues, or species.

Once resident within the tissue, TRM respond rapidly to

infection owing to their diverse tissue-specific TCR repertoire,

and close proximity to the cellular targets of specific pathogens

(8, 48–52). Upon re-activation, they display immediate cytotoxic

potential, and can rapidly release proinflammatory cytokines such

as such as IFNg and TNFa (53, 54). The cytokines released by TRM

can render surrounding cells resistant to infection, even with

unrelated antigens, and can create tissue-wide anti-pathogen

responses via the upregulation of Type I IFN signalling pathway

factors and the enhanced recruitment of leucocytes (53, 54). In

addition, TRM are able to kill infected cells directly via production of

the cytolytic proteins perforin and granzyme B, enabling them to

induce the contact-mediated apoptosis of infected cells they

encounter (55, 56).
3 Experimental evidence for the
existence of ex-TRM

For years TRM were thought to be permanently resident within

the tissue without recirculating. However, it has recently been

observed that some TRM are capable of egressing into draining

SLOs (57, 58) or the blood (14, 15, 18, 19), a pattern of trafficking

that has been termed retrograde migration (15, 58). The cells in the

blood, herein termed ex-TRM, can be identified by their continued

expression of CD103 and other TRM-like phenotypic features (14,

19, 59). They are plastic cells that contribute to the circulating
Frontiers in Immunology 03
memory response by re-differentiating into other memory T cell

subsets and can enter tissue to re-establish residency (14, 15, 17, 19).

In a key study, a fraction of the CD4+CD103+ TRM population

present in human skin was found to be capable of downregulating

CD69 expression and migrating from the tissue. In an allograft

model these cells re-entered the circulation, and migrated to a

secondary skin site where they subsequently reassumed their TRM

phenotype (14). A corresponding population was detected at low

frequency in human blood based on continued expression of

CD103 in conjunction with the skin-specific trafficking molecule

CLA (cutaneous leucocyte antigen). These cells shared a

transcriptional and phenotypic profile with the skin resident

population, strengthening the argument that they were related to

a bona fide resident population. Importantly, TCRb sequencing

confirmed that both circulating CD4+CD103+ cells and TRM from

different skin sites were clonally related, thus highlighting their

ability to seed distant tissue locations (14). The continued

expression of CLA by the skin derived ex-TRM in the circulation

enables them to home preferentially back to their tissue of origin

(14). These cells may be related to recirculating T cells previously

described in human skin (60). Recent studies of patients undergoing

hematopoietic stem cell transplant (HSCT) have also provided

evidence for the existence of skin derived ex-TRM (16). In this

context the circulating T cell pool is rapidly replaced with donor T

cells, but host-derived skin TRM survive conditioning and are

maintained for at least ten years, during which time they can

egress and be found in the circulation (16, 61). The recipient-

derived circulating T cells were identified transcriptionally based on

their high expression of ITGAE (encoding CD103) and SEPLG (the

gene encoding the protein backbone of CLA). The data discussed

above on healthy human skin would suggest that this is not a

phenomenon restricted to the unique situation of HSCT.

A mouse study supports the concept that TRM can also exit the

intestine and has highlighted the plasticity of TRM during this

process. Murine intestinal TRM were shown to undergo retrograde

migration (15) and whilst circulating, the ex-TRM population

exhibited developmental plasticity and differentiated into TCM or

TEM in the circulating pool (15). Interestingly, the circulatory

intestinal ex-TRM retained a preference to home back to their

tissue of origin, in this case the intestine, and reacquired a stable

TRM differentiation programme in response to local cytokine cues

(15, 19). The preference of ex-TRM to return to their original tissue

was seen even following tertiary reinfection with LCMV, suggesting

the maintenance of a stable TRM profile over time (15). Although

the phenomenon of ex-TRM is a relatively recent discovery, the

presence of these cells may have first been reported several years

ago. Jiang et al. (55) first described a population of vaccinia virus-

specific CD8+ TRM in mice that could be found at skin sites distant

to the site of initial infection. This remote population was highly

effective at rapidly eliminating virus and was able to reduce viral

loads to those seen at primary sites of infection (55). At the time it

was believed this population derived from circulating TEM cells that

randomly distributed into skin sites where they differentiated into

TRM (55). However, this may be one of the first reports of skin ex-

TRM egressing from the initial site of infection and seeding

secondary sites to enhance local immunity. This phenomenon
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was more recently reported following the use of a murine human

skin xenograft model (14).
4 Ex-TRM in health and disease

There is considerable evidence that the egress of TRM from

tissue occurs in health, generating TCR clonotypes shared between

barrier sites, such as the skin or intestine, and the circulation (62,

63). In this context, the ability of TRM to redistribute and contribute

to the circulating memory pool is likely to be beneficial. This

‘outside-in’ immune response (15) brings several benefits to the

host in the context of infection (Figure 2). Firstly, should an

infection overwhelm the local TRM response, there are cells within

the circulating compartment which retain a preference to home

back to the infected tissue and can re-establish local immunity (15).

Secondly, in the case of a large barrier organ such as the gut or skin,

infection could occur at any location within the organ and not

necessarily at a previous site of infection (19). Thus, the ability of

specialised TRM to be mobilised from one site and recruited back

from the circulation to other sites results in an efficient distribution

of the immune response (19).

However, the presence of ex-TRM may be detrimental in the

setting of an immune-mediated disease, and it is conceivable that the

redistribution of potentially pathogenic TRM populations may

perpetuate both local and distant tissue inflammation. There are

currently limited data about ex-TRM in immunological disease but in

HSCT, the recipient skin-derived ex-TRM population discussed above

induce keratinocyte cell death and tissue damage through their

expression of Th2 and Th17-associated cytokines such as IL-13 and

IL-17 (16). In addition to skin trafficking molecules, they expressed

ITGA4 and ITGB7, encoding the integrin a4b7 which facilitates entry
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to the intestine, and were localised in gastrointestinal graft versus host

disease (GVHD) lesions. These findings not only highlight a

potentially pathogenic role for ex-TRM, but also suggest their

involvement in the propagation of inflammation to distant organs

(16, 61). Potential evidence linking the aberrant trafficking of ex-TRM

to distant tissue inflammation has also been found in ankylosing

spondylarthritis (AS), a disease characterised by chronic

inflammation of the axial skeleton (62). Proteomics and

transcriptomic analysis revealed the presence of a specific

population of mature CD8+ T cells elevated in both the blood and

synovial fluid of AS patients, which were enriched for the cell-surface

expression of gut-associated trafficking molecules, including b7
integrin, CD103, and CD49a (64). These cells also exhibited a dual

cytotoxic and regulatory profile, with the release of TNFa, perforin,
and IL-10 (64). Bulk RNA-sequencing of the CD8+ T cell population

revealed a core transcriptional signature reminiscent of TRM, with the

upregulation of residency-associated molecules ITGAE (CD103) and

CXCR6, and a downregulation of tissue egress factors including SELL

(CD62L) and S1PR1 (64). The expression pattern of these molecules

was similar to that of intestinal intraepithelial lymphocytes (IELs),

leading the authors to hypothesise that the CD8+ T cell population in

the blood and synovial fluid may have mucosal origin, potentially

having been trafficked from the gut to the joint (64). Interestingly, AS

often co-exists with inflammatory bowel disease (IBD), a disease with

which it shares many clinical, genetic, and immunological overlaps

(64, 65). Given the gut-homing integrin a4b7 is also expressed by

immune cells in the synovial tissue, a potential explanation for the co-

existence of these conditions may be that inflammation in the gut is

transferred to the joint through the aberrant trafficking of ex-TRM

cells (64).

There is also recent evidence to suggest that the frequency of ex-

TRM may be increased in inflammation, possibly indicating a role
FIGURE 2

The potential contribution of ex-TRM to protective immunity and inflammatory disease. Here, potentially beneficial and detrimental contributions of
ex-TRM are illustrated with refence to the intestine. The plasticity of ex-TRM enables them to generate a variety of effector and memory cells T cells
as well as re-establish tissue residency. In the context of infection, these properties may form part of an early warning system responsive in initial
stages of colonization (‘outside in’ immunity), provide cellular reinforcements to the site of infection and provide enhanced protection at remote
sites that might be vulnerable to the pathogen (left side of figure). However, in chronic infmmatory disease, the same properties may enhance the
local deleterious response and spread the inflammation to distant sites within the same tissue or even to other organ systems (right side of figure).
MLN: mesenteric lymph node.
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for inflammatory signals in the egress of TRM from tissue. In

inflammatory bowel disease (IBD; Crohn’s disease and ulcerative

colitis), intestinal TRM have been implicated in the inflammatory

process (66). Single-cell RNA sequencing (scRNA-seq) analysis of

blood and intestinal tissue from ulcerative colitis patients revealed a

marked increase in TCR clonotypes shared between a CD8+ T cell

cluster derived from intestinal tissue and a cluster derived from

peripheral blood, suggesting a migration of clonally related cells

between the two compartments (62). Interestingly, the proportion

of shared clonotypes was significantly higher in ulcerative colitis

patients compared with healthy controls; potentially indicating

more frequent or increased TRM egress in a disease setting (62).

Further, the presence of a small subset of peripheral blood CD4+ T

cells with similar characteristics to synovial CD4+ T cells is

correlated with both disease activity and resistance to therapy in

juvenile idiopathic arthritis (JIA) (67). Both blood and synovial

CD4+ populations exhibited a high degree of clonal overlap,

alongside phenotypic similarities including increased IL-17, IFNg,
and TNFa production, thus suggesting the retention of an active

TRM proinflammatory profile in the circulation (67). The host-

derived ex-TRM population is also increased in the blood of HSCT

patients with active GVHD, potentially providing a further link

between inflammatory factors and TRM egress (16).

Much of the limited data currently available on the role of ex-

TRM in disease is associated with skin and gut conditions, perhaps

reflecting the large size of these organs and their greater

contribution to the ex-TRM pool. Ex-TRM may also contribute to

other autoimmune and inflammatory disease, but this possibility

largely remains unexplored.
5 Discussion

Whilst the above-mentioned recent work has identified

populations of ex-TRM in both murine and human peripheral

blood, we are still left with a number of unanswered questions.

Firstly, although there is strong evidence that these cells are tissue-

derived and share many features with the resident population, the

possibility that they are derived from cells distinct from the fully

committed TRM population (35) has not been definitively excluded.

Further fate mapping in mice or analysis of ex-TRM derived from

transplanted human tissue may help resolve this issue. Secondly, it

is still unclear whether only a small proportion of the TRM

population can egress, or whether all TRM are capable of re-

entering the circulation. Given the rarity of ex-TRM in peripheral

blood - where they represent less than 1% of the total PBMC

compartment – it is perhaps likely that only a small proportion of

the vast TRM population are equipped to egress as ex-TRM (16). The

ex-TRM so-far identified in blood are from skin and intestine and

this may reflect the size of these organs, with the large number of

immune cells they contain making rare exit events detectable.

Analysis following separation of parabiotic mice show a gradual

accumulation of blood ex-TRM over time (18). It is possible that

retrograde migration as far as SLOs is a relatively common event

but further progress into the circulation occurs only infrequently.

Alternatively, the small number of ex-TRM identified in peripheral
Frontiers in Immunology 05
blood by phenotyping approaches may be explained by a change in

phenotype following exit from the tissue. CD103 expression,

alongside that of tissue-specific homing markers, is currently the

best-defined method by which to identify ex-TRM populations (14–

16). Therefore, should ex-TRM rapidly downregulate CD103

following their egress from tissue, they would go largely

undetected with significant numbers of cells being missed. Future

work should thus aim to identify additional transcriptional or

phenotypic characteristics of this population. Finally, studies are

also required to address whether the mobilization of resident cells is

a stochastic process, or whether it is triggered by as-yet undefined

factors. It is possible that there is a consistently low level of TRM

egress when the tissue is at steady-state, but this may increase in the

presence of inflammation, potentially as a result of increased

signaling or antigen re-encounter. In some experimental systems

egress of CD103+ TRM has not been seen to occur (47), perhaps

suggesting that particular exit signals are lacking in these contexts.

Given the potential involvement of ex-TRM in disease pathogenesis,

it is important that future studies aim to address these pertinent

questions in a range of conditions.
6 Concluding remarks

Recent experimental evidence in mice and humans suggests a

fraction of TRM are capable of egressing from the tissue to become

ex-TRM which are able support protective immune responses but

may also be able to perpetuate local and distant tissue inflammation.

Understanding the mechanisms underlying the generation and

egress of ex-TRM may provide new therapeutic targets for disease.
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