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Background:Neuroblastoma (NB), characterized by itsmarked heterogeneity, is the

most common extracranial solid tumor in children. The status and functionality of

mitochondria are crucial in regulating NB cell behavior. While the significance of

mitochondria-related genes (MRGs) in NB is still missing in key knowledge.

Materials and methods: This study leverages consensus clustering and machine

learning algorithms to construct and validate an MRGs-related signature in NB.

Single-cell data analysis and experimental validation were employed to

characterize the pivotal role of FEN1 within NB cells.

Results:MRGs facilitated the classification of NB patients into 2 distinct clusters with

considerable differences. The constructed MRGs-related signature and its

quantitative indicators, mtScore and mtRisk, effectively characterize the MRGs-

related patient clusters. Notably, the MRGs-related signature outperformed MYCN

in predicting NB patient prognosis and was adept at representing the tumor

microenvironment (TME), tumor cell stemness, and sensitivity to the

chemotherapeutic agents Cisplatin, Topotecan, and Irinotecan. FEN1, identified as

the most contributory gene within the MRGs-related signature, was found to play a

crucial role in the communication between NB cells and the TME, and in the

developmental trajectory of NB cells. Experimental validations confirmed FEN1’s

significant influence on NB cell proliferation, apoptosis, cell cycle, and invasiveness.

Conclusion: The MRGs-related signature developed in this study offers a novel

predictive tool for assessing NB patient prognosis, immune infiltration, stemness,

and chemotherapeutic sensitivity. Our findings unveil the critical function of

FEN1 in NB, suggesting its potential as a therapeutic target.
KEYWORDS

neuroblastoma, mitochondria, signature, prognosis, tumor immune microenvironment,
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1 Introduction
Neuroblastoma (NB), the most common extracranial solid

tumor in children, originates from embryonic neural crest cells

and accounting for 15% of all childhood cancer deaths (1, 2).

Characterized by its marked heterogeneity, NB presents a varied

clinical spectrum. Patients with low to intermediate-risk NB exhibit

a survival rate exceeding 95%, with some cases even showing

spontaneous regression without the need for therapeutic

intervention; while the long-term survival rate for individuals

with high-risk NB remains dismal, falling below 50% (3). There is

also significant intratumor heterogeneity between cells within the

same individual NB patient, and a hallmark feature of high-risk NB

is the presence of multiple cell subsets (4). Therefore, individualized

precision treatment is particularly important in NB.

NB is traditionally classified as an immunosuppressive “cold”

tumor, characterized by low immunogenicity and a poor response

to immunotherapeutic interventions (5, 6). While recent

advancements in immunotherapy have significantly improved

survival rates for several highly immunogenic adult solid tumors,

the treatment efficacy for NB remains substantially challenged by its

immunosuppressive microenvironment, with the majority of

pediatric patients deriving minimal benefit from current

immunotherapeutic approaches (7, 8). Consequently, identifying

strategies to transform the immunosuppressive “cold” tumor into

an immunostimulatory “hot” tumor, conducive to tumor immune

microenvironment (TIME) activation, represents a critical and

urgent task for enhancing the efficacy of immunotherapy in the

clinical management of NB.

Mitochondria are increasingly recognized for their critical roles

in the etiology and advancement of malignant tumors, acting

through a plethora of mechanisms (9, 10). Their status and

functionality are crucial in regulating tumor cell apoptosis, cell

cycle progression, metabolic pathways, and so on (11, 12). The

interaction between tumor cells and the tumor microenvironment

(TME) is also modulated by mitochondrial dynamics, which

extends to affecting the efficacy of immune cells within the TME,

facilitating immune evasion, and contributing to the development

of resistance to treatments (13, 14). The significance of

mitochondria-related genes (MRGs) in malignancies, including

but not limited to NB, is evident through their substantial impact

on patient prognosis (15–17). Research into MRGs-related

prognostic signatures in cancers such as lung adenocarcinoma,

stomach adenocarcinoma, and breast cancer has shown

promising results (18–20). However, the exploration of such

prognostic models in NB is still absent, underscoring a critical

gap in current knowledge and presenting a clear opportunity for

groundbreaking contributions to personalized cancer therapy.

This study embarks on constructing a prognostic model for NB

using MRGs through a series of bioinformatics methods and

machine learning algorithms, aiming to categorize patients for

more targeted clinical management and therapeutic strategies.

This study delves into the application of the MRGs-related

signature to delineate the TIME of NB patients, assessing tumor

cell stemness, and evaluating chemotherapy drug sensitivity. This
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comprehensive approach seeks to enhance precision in patient

classification, thereby facilitating clinical benefits. Moreover,

through single-cell transcriptomic analysis and experimental

validation, this research explores the significant role of FEN1, the

most critical molecule within the MRGs-related signature, in NB,

suggesting FEN1 as a potential therapeutic target and offering new

avenues for treatment strategies.
2 Materials and methods

2.1 Data sources

The data of bulk RNA sequencing in GSE49710 (21) and single cell

RNA sequencing in GSE137804 (22) were acquired from Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). The

microarray data E-MTAB-8248 was obtained from ArrayExpress

database (https://www.ebi.ac.uk/biostudies/arrayexpress) (23). The

genomic data of NBL (neuroblastoma) project in TARGET

(Therapeutically Applicable Research to Generate Effective

Treatments) database was downloaded from the Genomic Data

Commons (GDC, https://portal.gdc.cancer.gov) (24). The

Supplementary Table 1 presents the clinical baseline characteristics of

the 4 datasets included in this study. The list of 2,030 MRGs was

derived from the study by J. Chang, et al. (19).
2.2 Screening of differentially
expressed genes

The “limma” package was used to screen differentially expressed

genes (DEGs) in this study (25). Linear models were fitted using the

lmFit function of the “limma” package and subsequently empirical

Bayesian methods were applied using the eBayes function to

stabilize the variance estimates. The P value < 0.05 and | log2

Fold change (FC) | > 1 were defined as the threshold for DEGs in

this study.
2.3 Unsupervised clustering

The consensus clustering method and “ConsensusClusterPlus”

package was performed to discover stable and consistent cluster

structures in this study (26). One to nine clustering iterations were

implemented in the datasets. In each iteration, the data are

randomly split into subsets and then the K-means clustering

algorithm is applied. Using the consistency matrix, the optimal

number of clusters was determined by evaluating the consistency

and stability of clusters under different cluster numbers (27).
2.4 Survival analysis

This study employed the “survival” package to conduct Kaplan-

Meier (K-M) survival analysis (28, 29), a non-parametric method

used to estimate the survival function from time-to-event data. And
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the “survminer” package was used to visualize survival estimates

and generate the survival curves in this study (30).
2.5 Construction of prognostic signature

Prior to constructing a prognostic signature, this study initially

employed K-M survival analysis and univariate Cox proportional

hazards regression, both with OS as the endpoint, to screen for

genes significantly associated with prognosis. In univariate COX

regression models, the criteria were: P value < 0.05, and the 95%

confidence interval (CI) of hazard ratio (HR) was consistently

distributed ipsilateral to 1. Following the preliminary survival

analysis, the machine learning algorithm Least Absolute

Shrinkage and Selection Operator (LASSO) regression was

utilized in GSE49710 dataset to determine the optimal number of

genes and their respective coefficients for the prognostic model. The

LASSOmethod was conducted using the “glmnet” package in R (31,

32). A score was obtained by linearly combining the mRNA

expression levels of selected genes, each weighted by their

respective coefficients derived from the LASSO regression

analysis, which is termed the mitochondria-related risk

score (mtScore).
2.6 Validation of prognostic signature

In order to evaluate the signature’s predictive capability across

diverse patient populations, the same statistical method was applied

to the GSE49710 dataset for internal validation and to two

independent datasets E-MTAB-8248 and TARGET-NBL for

external validation. K-M survival analysis, receiver operating

characteristic (ROC) curve analysis and correlation analysis of

key clinical features based on mtScore were all validated in the

above different datasets. The area under the curve (AUC) value of

ROC curves exceeded 0.70 was considered to be efficient

prediction (33).
2.7 Analysis of immune infiltration

For the comprehensive evaluation of the immune cell

infiltration within the TME, 4 prominent computational methods

were employed: ESTIMATE (Estimation of STromal and Immune

cells in MAlignant Tumour tissues using Expression data) (34),

EPIC (Estimating the Proportions of Immune and Cancer cells)

(35), MCPcounter (Microenvironment Cell Populations-counter)

(36), and CIBERSORT (Cell-type Identification By Estimating

Relative Subsets Of RNA Transcripts) (37). In addition, we also

evaluated the infiltration of 28 kinds of immune cells provided by

the study from Q. Jia, et al. (38). The infiltration abundance in TME

of 28 different types of immune cells was calculated using the single-

sample Gene Set Enrichment Analysis (ssGSEA) algorithm as

described by D. A. Barbie, et al. (39).
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2.8 Calculation of mRNA expression-based
stemness index

To quantify the degree of NB cellular dedifferentiation, which is

indicative of stemness characteristics within tumor samples, we

employed the mRNA expression-based stemness index (mRNAsi).

This index was calculated following the methodology developed by

T. M. Malta, et al., leveraging a machine learning model predicated

on the one-class logistic regression (OCLR) algorithm (40). The

gene expression profile of GSE49710 used in this study was mapped

against the stemness signature to calculate the mRNAsi score for

each sample. The mRNAsi scores range from 0 to 1, with higher

values indicating a closer resemblance to the pluripotent state,

thereby suggesting higher tumor cell stemness.
2.9 Assessment of
chemotherapeutic response

To evaluate the predictive value of mtRisk for drug sensitivity,

the Genomics of Drug Sensitivity in Cancer (GDSC, https://

www.cancerrxgene.org/) database was utilized to analyze the drug

response of patients with varying mtRisk levels to 3 commonly used

clinical drugs for NB patients (Cisplatin, Topotecan, and

Irinotecan) (41). The half-maximal inhibitory concentration

(IC50) serving as a gauge for drug potency computed by the he

“DrugResponse” package (42).
2.10 Single-cell data pre-processing and
single-cell communication analysis

In this study, single-cell RNA sequencing data from 16 samples,

comprising 160,847 cells, were utilized for single-cell analysis.

Initial data processing included quality control measures, notably

the exclusion of cells characterized by an exceptionally low number

of detected genes or elevated mitochondrial gene expression,

followed by normalization and mitigation of batch effects.

Subsequent data analysis involved dimensionality reduction using

the Uniform Manifold Approximation and Projection (UMAP)

algorithm, as implemented in the “Seurat” package in R (43). Cell

types were annotated based on the cell markers recommended

within the GSE137804 dataset.

To investigate the expression patterns of the FEN1 gene within

tumor cells, all tumor cells were categorized into two groups based

on the median expression level of FEN1: FEN1 high expression

group (FEN1-High) and FEN1 low expression group (FEN1-Low).

Inter-cellular communication was analyzed separately for FEN1-

High and FEN1-Low tumor cells in relation to other cells within the

TME. This analysis was facilitated using CellPhoneDB software

(version 2.0; Wellcome Sanger Institute, Hinxton, Cambridge,

UK) (44).
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2.11 Single-cell pseudotime
trajectory analysis

This study further explored the dynamic expression of FEN1

within the developmental trajectory of NB tumor cells. This study

employed pseudotime trajectory analysis to simulate the continuum

of cell differentiation states and to chart the progression of tumor

cells from their origin to mature states. For this analysis, the

“Monocle” package in R was utilized (45). Cells were ordered in a

pseudotime sequence, an inferred temporal continuum that

represents the maturation or progression of cells through a

developmental pathway, based on their gene expression profiles.

FEN1 expression levels were then quantitatively assessed across the

pseudotime to elucidate the gene’s dynamic expression patterns

during the development and differentiation of tumor cells. This

differential expression analysis across pseudotime states aimed to

identify significant changes in FEN1 expression, employing

methods incorporated within the Monocle framework.
2.12 Overexpression and knockdown of
FEN1 in NB cell

Human NB cell SH-SY5Y purchased from Meisen Chinese

Tissue Culture Collections were cultured in Minimum Essential

Medium/Ham’s F12 (MEM/F12) medium supplemented with 10%

fetal bovine serum (FBS) and 1% penicillin-streptomycin (PS),

under a humidified atmosphere containing 5% CO2 at 37°C to

ensure healthy cell growth.

The overexpression (OE) and knockdown (KD) of FEN1 were

achieved through infection procedure. Five distinct groups were

structured in this study: Vector, FEN1, Scramble, sh-FEN1#1, and

sh-FEN1#2. The pCDH-puro-FEN1 plasmid encoding human

FEN1 was defined as OE of FEN1 and named “FEN1”. The

empty pCDH-CMV-MCS-EF1-puro plasmid was defined as a

negative control (NC) for OE (named “Vector”). Two short

hairpin RNAs (shRNAs) targeting FEN1 was synthesized and

inserted into the plasmid to generate the FEN1 KD vectors

defines plsi-puro-FEN1–1 and plsi-puro-FEN1–2 (named “sh-

FEN1#1” and “sh-FEN1#2”). The shRNAs sequences are shown

in Supplementary Table 2. The NC for KD was constructed from a

scrambled shRNA inserted into plsi-ctrl-puro plasmid named

“Scramble”. The cloned plasmids and packaging plasmids

(psPAX2 and pMD2-VSVG) were transfected into 293 T cells to

synthesize the lentiviral particles. The NB cells were infected with

the collected lentiviral particles. The total RNA and total protein of

the infected NB cells were collected, and the efficiency of FEN1 OE

and KD was verified by quantitative real-time PCR (qRT-PCR) and

Western blot analysis.
2.13 Cell counting kit-8 assay

The NB cells were seeded in 96-well plates and cultured at 5%

CO2, 37°C atmospheres. The incubation was continued for 3 hours
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after adding 10 mL of cell counting kit-8 (CCK-8) solution (CA1210,
Solarbio, China) to each well. The absorbance at 450 nm was

measured at four distinct time points: 0-, 24-, 48-, and 72-hours

post-adherence, using a microplate reader. The relative cell

proliferation activity was calculated according to the following

formula:

Relative proliferation = (ODOE or KD
450mm − ODblank

450mm)=(OD
NC
450mm − ODblank

450mm)
2.14 Plate cloning assay

The single-cell suspensions were prepared using 0.25% trypsin-

EDTA solution. The NB cells were seeded in 6-well plates at a

density of 1,000 cells per well. After one week of culture, colonies

were fixed with 4% paraformaldehyde for 15 minutes at room

temperature and subsequently stained with 0.1% crystal violet for 15

minutes. Excess stain was removed by washing the plates with

distilled water, and the plates were allowed to air dry. Colonies

consisting of more than 50 cells were counted manually under a

light microscope.
2.15 Mitochondrial membrane potential
DYm assay with JC-1

The mitochondrial membrane potential (MMP) is a critical

parameter in the regulation of cell apoptosis, serving as a key

indicator of cell health (46). The decline of MMP is a hallmark

event in the early stage of apoptosis. The JC-1, an ideal fluorescent

probe widely used to detect the MMP DYm (47), was applied as an

indicator of apoptosis in this study (C2003, Beyotime, China). In

detail, each of the 5 groups of NB cells were trypsinized, collected,

and washed twice with cold phosphate-buffered saline (PBS). Cells

were resuspended in 500 μL of PBS and subsequently mixed with

500 μL of JC-1 staining solution. The mixture was then incubated

for 20 minutes at 37°C in the dark to allow for staining. After

incubation, cells were washed twice with dye buffer and

immediately analyzed by flow cytometry. For the detection of JC-

1 monomers, the analysis conducted through the FITC channel.

Conversely, the assessment of JC-1 aggregates, was performed with

the PE channel for detection. A minimum of 20,000 events were

recorded for each sample.
2.16 Cell cycle analysis

The NB cells in 5 groups were harvested and washed twice with

cold PBS. Cells were then fixed in 70% ethanol at 4°C overnight.

After fixation, cells were washed with PBS and then resuspended in

100 μL of RNase A solution (CA1510, Solarbio, China) and

incubated at 37°C for 30 minutes. The cells were stained with

propidium iodide (PI) (CA1510, Solarbio, China) for 30 minutes at

4°C in the dark. For the analysis of DNA content, the emitted

fluorescence of PI-stained cells was detected in the PE channel using
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a flow cytometer. Data acquisition was performed for at least 20,000

cells per sample to ensure statistical relevance. The Dean-Jett-Fox

model, a built-in algorithm within FlowJo, was employed to fit the

DNA content histogram and quantitatively assess the proportions

of cells in G0/G1, S, and G2/M phases of the cell cycle (48).
2.17 Transwell invasion assay

The invasive potential of the NB cells was assessed using

Transwell permeable supports with 8.0 μm pore polystyrene

membrane inserts. The upper surface of the insert was coated

with 50 μL of Matrigel at a concentration of 2 mg/mL and

allowed to solidify at 37°C incubator for 1 hour to form a thin

layer of matrix barrier mimicking the extracellular matrix. Then,

1x105 cells in 200 μL of serum-free medium were placed into the

upper chamber, and 600 μL of medium containing 10% FBS was

added to the lower chamber as a chemoattractant. After 48 hours of

incubation at 37°C, non-invading cells on the upper surface of the

membrane were gently removed with a cotton swab. Cells that had

invaded through the Matrigel and reached the lower surface of the

membrane were fixed with 4% paraformaldehyde, stained with 0.1%

crystal violet, and counted under a light microscope in five

randomly selected fields per well.
2.18 Statistical analysis

Continuous variables were expressed as mean ± standard

deviation (SD). For comparisons between two groups, the Student’s

t-test was employed. Categorical variables were presented as numbers

(percentages) and analyzed using the Chi-square test. Correlations

between continuous variables were evaluated using Pearson’s

correlation coefficient. The P value < 0.05 was considered

statistically significant for all tests. All experiment were performed

in triplicate.

The bioinformatics analysis was carried out using R software

(version 4.3.3; R Foundation for Statistical Computing, Vienna,

Austria). Post-acquisition flow cytometry data processing was

conducted using FlowJo (version 10.8.1; BD Biosciences, San Jose,

California USA). Part of the statistical analysis and the generation of

corresponding figures were performed with GraphPad Prism

(version 9.0; GraphPad Software, San Diego, California USA).

Image processing and assembly tasks were accomplished using

Adobe Photoshop 2023 and Adobe Illustrator 2023 (Adobe

Systems Incorporated, San Jose, California USA).
3 Results

3.1 MRGs-based clustering of NB patients
into 2 distinct clusters with
unique differences

In this study, we identified 1,694 DEGs between NB patients

with and without MYCN amplification in GSE49710 dataset,
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employing a threshold of P value < 0.05 and |log2FC| > 1, with

730 up-regulated genes and 964 down-regulated genes (Figure 1A).

Intersection of these 1,694 MYCN status DEGs with 2,030 MRGs

yielded 105 MRGs specifically relevant to NB (Figure 1B).

Unsupervised consensus clustering based on the expression

profiles of 105 MRGs in the GSE49710 dataset stratified 498 NB

patients. The consensus cumulative distribution function (CDF)

plot suggested that the optimal k value was 2 (Figure 1C).

Consequently, 498 NB patients were categorized into 2 clusters:

Cluster A with 361 patients and Cluster B with 137

patients (Figure 1D).

Significant disparities were observed between patients in Clusters

A and B in terms of survival, clinical characteristics, and immune cell

infiltration. Principal component analysis (PCA) distinctly separated

the 2 clusters, validating the classification robustness (Figure 2A). The

expression heatmap of the 105 MRGs in Clusters A and B was

showed in Supplementary Figure 1. The K-M survival analysis

indicated that NB patients in Cluster B had significantly worse

overall survival (OS) compared to those in Cluster A (P < 0.001)

(Figure 2B). Further analysis of clinical features showed substantial

statistical differences between the 2 clusters in key clinical indicators

(Figure 2C). Patients for progression and INSS stage 4 (an

independent risk factor for NB) (49) were predominantly found in

Cluster B (P < 0.0001 for both). Similarly, patients with clinical risk

factors, MYCN amplification, and age below 18 months (a factor

associated with poorer prognosis) were significantly concentrated in

Cluster B (P < 0.0001 for all comparisons). Detailed relations between

each clinical characteristic and distribution across Clusters A and B

are depicted using Sankey diagrams in Supplementary Figure 2.

Additionally, a marked difference in the TME between Clusters A

and B was uncovered through 4 distinct immune infiltration analysis

algorithms. The ESTIMATE algorithm suggested that patients in

Cluster A had higher scores overall in terms of ESTIMATE, immune,

and stromal scores compared to Cluster B (Figure 2D). Results from

the EPIC algorithm revealed significant statistical differences in cell

proportions of all 7 cell types between the two clusters (Figure 2E). In

parallel, the analysis using MCPcounter indicated that the cell

abundance of T cells, Cytotoxic lymphocytes, B lineage, NK cells,

Monocytic lineage, and Myeloid dendritic cells in Cluster A was

statistically higher compared to Cluster B (Figure 2F). Finally, the

CIBERSORT analysis also reflected that Cluster A patients exhibited

higher cell proportions for various immune cells compared to

Cluster B (Figure 2G).

To further validate the broad applicability of the clustering

based on MRGs, the same cluster analysis was conducted on the E-

MTAB-8248 dataset. The consensus CDF plot suggested an optimal

number of clusters k = 2 (Figure 3A), subdividing the 223 NB

children in the dataset into 138 in Cluster A and 85 in Cluster B

(Figure 3B). The heatmap of the expression of 105 MRGs for

Clusters A and B within the E-MTAB-8248 dataset is presented

in Supplementary Figure 3. The PCA confirmed robust separation

between the clusters (Figure 3C). Echoing the results from the

GSE49710 dataset, K-M survival analysis within E-MTAB-8248 also

demonstrated poorer OS for patients in Cluster B (P<0.001)

(Figure 3D). Substantial differences were also observed between

clusters A and B in important clinical characteristics within E-
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MTAB-8248 (Figure 3E). Chromosome 1p aberrations, recognized

as markers of poor prognosis in NB patients (49), were more

frequently observed in patients of Cluster B (P<0.0001). Similarly,

patients associated with poor prognostic factors such as INSS stage

4, MYCN amplification, and age under 18 months were

predominantly found in Cluster B (all comparisons P<0.0001).

Supplementary Figure 4 employs Sankey diagrams to detail the

distribution of these significant clinical features between clusters A

and B in the E-MTAB-8248 dataset.
3.2 Construction and internal validation of
the MRGs-related signature

In an effort to delineate the 2 clusters formed by MRG

expression, this study constructed an MRGs-related signature to

quantify the distinction through a scoring mechanism. Initially,

1,497 DEGs (618 up-regulated genes and 879 down-regulated

genes) between Clusters A and B in the GSE49710 dataset

(Figure 4A), and 830 DEGs (369 up-regulated genes and 461
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down-regulated genes) between Clusters A and B in the E-

MTAB-8248 dataset (Figure 4B) were identified (using a

threshold of P < 0.05 and |log2FC| > 1). A Venn diagram depicts

the 33 intersecting genes found between the 1,497 DEGs in

GSE49710, the 830 DEGs in E-MTAB-8248, and the 105 MRGs

specific to NB (Figure 4C). Further, the prognostic implications of

the 33 intersecting genes were validated in both the GSE49710 and

E-MTAB-8248 datasets, using K-M analysis with OS as the

endpoint, categorized by the gene median expression. In

GSE49710, K-M analysis revealed statistical survival differences

between patients with high and low expression of each of the 33

genes (Supplementary Figure 5). Similarly, in the E-MTAB-8248

dataset, 31 of the 33 genes showed statistically significant survival

correlations in K-M analysis (Supplementary Figure 6). Subsequent

analysis involved univariate Cox regression to further screen for

genes significantly associated with prognosis. Each of the 31 genes

underwent univariate Cox regression analysis with OS as the

endpoint in both GSE49710 and E-MTAB-8248 (Figure 4D), with

only one gene (marked in red in Figure 4D) not showing statistical

significance in E-MTAB-8248. Consequently, the remaining 30 genes
A B

D
C

FIGURE 1

Consensus clustering in GSE49710 based on MRGs associated with NB. (A) Volcano plot displaying DEGs between MYCN-amplified and non-
amplified NB patients in GSE49710 (Genes with P value < 0.05 and |log2FC| > 1 are highlighted). (B) Venn diagram illustrating the intersection of
MYCN status DEGs with MRGs, identifying 105 MRGs specifically associated with neuroblastoma. (C, D) Consensus clustering of NB patients into
clusters A and B based on the expression of 105 MRGs, with k=2 as the optimal cluster number. MRGs, mitochondria-related genes; NB,
neuroblastoma; DEGs, differentially expressed genes; FC, fold change; CDF, cumulative distribution function.
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proceeded to the next phase of analysis. The LASSO regression

analysis was applied in GSE49710 to refine the selection to 10

genes, assigning coefficients to each (Figures 4E, F). The mtScore

was defined as the linear combination of the mRNA expression

levels of the 10 genes, weighted by their respective coefficients
Frontiers in Immunology 07
provided by LASSO analysis within GSE49710. The formula is as

follows: mtScore = (-0.243142218 × the expression of DNM3) +

(-0.173523906 × the expression of AGBL4) + (-0.156591746 ×

the expression of CROT) + (-0.155479922 × the expression

of SLC22A4) + (-0.074329063 × the expression of TP63) +
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C

FIGURE 2

Significant disparities between Cluster A and B in GSE49710. (A) The PCA scatter plot demonstrating the segregation of NB patients into 2 clusters,
Cluster A (blue) and B (red), based on MRG expression profiles. (B) The Kaplan-Meier survival curves depicting the OS probability for patients in
clusters A and B. (C) The heatmap displaying the distribution of progression status, INSS stage, clinical risk, MYCN amplification status, and age in
patients within Clusters A and B. (D) Box plots representing the ESTIMATE scores in Clusters A and B. (E) Box plots illustrating the proportion of
various immune cells as analyzed by the EPIC algorithm in Clusters A and B. (F) Box plots depicting the cell abundance of different immune cell
types as analyzed by the MCPcounter algorithm. (G) Box plots detailing the cell proportion of various immune cells as analyzed by the CIBERSORT
algorithm in Cluster A and B. PCA, principal component analysis; NB, neuroblastoma; MRG, mitochondria-related genes; OS, overall survival;
ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumour tissues using Expression data; EPIC, Estimating the Proportions of Immune
and Cancer cells; MCPcounter, Microenvironment Cell Populations-counter; CIBERSORT, Cell-type Identification By Estimating Relative Subsets Of
RNA Transcripts. (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001).
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(-0.001579582 × the expression of PID1) + (0.029877545 ×

the expression of HK2) + (0.072465418 × the expression of

DLGAP5) + (0.196643607 × the expression of TERT) +

(0.570707127 × the expression of FEN1).

The mtScore for all 498 patient samples in the GSE49710

dataset was calculated in this study. Following the computation of

mtScores, patients were dichotomized into two risk categories, low

and high mtRisk, based on the median mtScore value. Internal

validation of the predictive value of mtScore and mtRisk was

conducted in the GSE49710 dataset. Initially, Figures 5A and B

demonstrated that mtScore and mtRisk could effectively
Frontiers in Immunology 08
discriminate between Clusters A and B, with Cluster B patients

exhibiting higher mtScores. The PCA indicated a clear distinction

between high and lowmtRisk groups (Figure 5C). A bipartite plot of

mtScore distribution revealed a concentration of dead patients

within the high mtScore group (Figure 5D). The K-M analysis

with endpoints of OS (Figure 5E) and Event-Free Survival (EFS)

(Figure 5F) showed that high mtRisk NB patients faring worse in

both OS and EFS compared to their low mtRisk counterparts. The

heatmap in Figure 5G displayed the expression patterns of the 10

genes used in mtScore calculation, with TERT, HK2, DLGAP5, and

FEN1 being overexpressed in high mtRisk patients, while PID1,
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FIGURE 3

Consensus clustering of E-MTAB-8248 dataset into 2 distinct clusters. (A) The consensus CDF plot identifying the optimal cluster number (k=2).
(B) Consensus matrix heatmap at k=2, displaying the robust bifurcation of the dataset into Clusters A and B. (C) The PCA demonstrating a clear
separation between the two clusters, validating the clustering approach. (D) Kaplan-Meier survival analysis revealing a significant survival
disadvantage for Cluster B compared to Cluster A (p<0.001). (E) The clinical characteristic heatmap exhibiting distinct profiles between Cluster A and
B, with chromosome 1p status, INSS stage, MYCN amplification status, and age at diagnosis, underscoring the clinical relevance of the clustering.
Chr: chromosome; CDF, cumulative distribution function; PCA, principal component analysis. (***P<0.001, ****P<0.0001).
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TP63, DNM3, AGBL4, CROT, and SLC22A4 showed lower

expression in the high mtRisk group. The ROC curve illustrated

the prognostic prediction capability and accuracy of mtScore. The

AUCs of the ROC curve for OS at 3, 5, and 10 years were 0.910,

0.911, and 0.907, respectively (Figure 5H), while for EFS, they were

0.824, 0.819, and 0.843 (Figure 5I). In contrast, the AUCs of the
Frontiers in Immunology 09
MYCN, a well-established biological indicator of poor prognosis in

NB, prediction for OS at 3, 5, and 10 years were only 0.769, 0.692,

and 0.672 (Figure 5J). Furthermore, the high and low mtRisk

patient groups correlated well with key clinical features

(Figure 5K), with significantly more patients with progression,

INSS stage 4, clinical risk, MYCN amplification, and age under 18
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FIGURE 4

Construction of the MRGs-related signature. (A) Volcano plot displaying DEGs between Cluster A and B in GSE49710 (Genes with P value < 0.05 and |
log2FC| > 1 are highlighted). (B) Volcano plot illustrating DEGs between Cluster A and B in E-MTAB-8248 (Genes with P value < 0.05 and |log2FC| > 1
are highlighted). (C) Venn diagram demonstrating the 33 intersecting genes found between the 1,497 DEGs in GSE49710, the 830 DEGs in E-MTAB-
8248, and the 105 MRGs specific to NB. (D) Forest plots of HR for the 33 intersecting genes from GSE49710 and E-MTAB-8248 datasets, indicating their
association with OS. P value < 0.05, and the 95% CI of HR was consistently distributed ipsilateral to 1 was considered statistically significant. (E) LASSO
coefficient profiles of the 30 candidate genes. (F) Cross-validation for tuning parameter selection in the LASSO model used in (E). MRGs, mitochondria-
related genes; DEGs, differentially expressed genes; FC, fold change; NB, neuroblastoma; HR, hazard ratio; OS, overall survival; CI, confidence interval;
LASSO, Least Absolute Shrinkage and Selection Operator.
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months in the high mtRisk group (P < 0.0001 for all 5 comparisons).

The detailed distribution of mtScores across different clinical

features is presented as violin plots in Supplementary Figure 7.
3.3 External validation of the MRGs-
related signature

To ascertain the general applicability of the MRGs-related

signature and its quantitative indices, mtScore and mtRisk,

further external validation was undertaken in the E-MTAB-8248

and TARGET-NBL datasets. Within the E-MTAB-8248 dataset,
Frontiers in Immunology 10
mtScore corresponded well with the identified Cluster A and B.

Both the Figures 6A and B effectively demonstrated that mtScore

and mtRisk could distinguish between Clusters A and B, with

Cluster B associated with higher mtScores and mtRisk. the PCA

underscored that patients in the E-MTAB-8248 dataset could be

well-separated into high and low mtRisk groups (Figure 6C). The

bipartite distribution plot revealed that dead patients

predominantly occupied the high mtScore sector (Figure 6D). K-

M analysis for OS (Figure 6E) and EFS (Figure 6F) were performed

in E-MTAB-8248, demonstrating that high mtRisk patients had

poorer prognoses compared to their low mtRisk counterparts (P <

0.01 for both). The heatmap in Figure 6G illustrates the expression
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FIGURE 5

Internal validation of the MRGs-related signature in GSE49710. (A) Combined violin and box plot with overlaid scatter plot illustrating the distribution
of mtScores across clusters A and B. (B) Sankey diagram demonstrating the effective discrimination of Clusters A and B using mtRisk. (C) PCA plot
showing the clear separation between the patients of high and low mtRisk groups. (D) Bipartite plot of mtScore against OS time, highlighting the
survival status (Alive or Dead) of patients. (E) Kaplan-Meier survival curve for OS, between the high and low mtRisk groups. (F) Kaplan-Meier survival
curve for EFS, between the high and low mtRisk groups. (G) Heatmap showing the gene expression profiles of the 10 genes constituting the
mtScore across the mtRisk stratified patient groups. (H) ROC curve of mtScore for OS. (I) ROC curve of mtScore for EFS. (J) ROC curve of MYCN for
OS. (K) Heatmap displaying the association of clinical features with the mtRisk groups. MRGs, mitochondria-related genes; PCA, principal
component analysis; OS, overall survival; EFS, event-free survival; ROC, receiver operating characteristic; AUC, area under the curve. (****P<0.0001).
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of the 10 genes comprising the mtScore in high and low mtRisk

patients within the E-MTAB-8248 dataset. The ROC curves

displayed the predictive capacity of mtScore, with AUC values for

OS at 3 years (0.837), 5 years (0.857), and 10 years (0.864)

(Figure 6H), and for EFS at 3 years (0.765), 5 years (0.775), and

10 years (0.783) (Figure 6I). In comparison, the AUCs of the MYCN

prediction for OS were only 0.705, 0.674, and 0.566 at the same time

points (Figure 6J). The mtRisk also showed significant statistical

correlation with key clinical features in the E-MTAB-8248 dataset

(Figure 6K), where more malign clinical features such as

chromosome 1p aberration, INSS stage 4, MYCN amplification,

and age <18 months were significantly more prevalent in the high

mtRisk group (P<0.0001 for all comparisons). The distribution of

mtScores across different clinical feature groups is presented as

violin plots in Supplementary Figure 8.

External validation of mtScore and mtRisk in the TARGET-

NBL dataset reiterated the robust predictive power of the MRGs-

related signature. PCA delineated a clear distinction between high

and low mtRisk groups in the TARGET-NBL dataset (Figure 6L).

K-M survival analysis confirmed the consistent predictive power of

mtRisk for prognosis, with high mtRisk patients exhibiting worse

outcomes in both OS (Figure 6M) and EFS (Figure 6N) endpoints

(P<0.001 and P<0.01, respectively). Beyond prognosis, mtRisk was

also correlated with important clinical features in the TARGET-

NBL dataset (Supplementary Figure 9A). High-risk COG risk

group, unfavorable histology, high MKI, MYCN amplification,

INSS stage 4, and age <18 months were statistically more

frequent in high mtRisk patients. Supplementary Figures 9B–G

display the mtScore distributions for different clinical feature

groups as violin plots.
3.4 Predictive efficacy of MRGs-related
signature for TIME, stemness,
and chemosensitivity

The MRGs-related signature and its quantitative markers,

mtScore and mtRisk, developed in this study, not only predict the

prognosis of NB patients but also show significant relevance to

immune infiltration in the TME. Various algorithms were applied

to assess the indication of mtScore and mtRisk towards immune

infiltration within the GSE49710 dataset. The ESTIMATE

algorithm indicated that patients with low mtRisk had higher

scores, with higher total ESTIMATE score, immune score, and

stromal score compared to patients with high mtRisk (Figure 7A).

According to the EPIC algorithm, the proportion of immune cells

such as CD4+ T cells, CD8+ T cells, and macrophages was

statistically higher in the TIME of patients with low mtRisk

compared to those with high mtRisk (Figure 7B). The

MCPcounter algorithm suggested that the cell abundance of T

cells, CD8+ T cells, cytotoxic lymphocytes, NK cells, monocytic

lineage, myeloid dendritic cells, endothelial cells, and fibroblasts was

higher in the low mtRisk patient group than in the high mtRisk

group (Figure 7C). CIBERSORT analysis revealed statistically

significant differences in the cell proportions of naive B cells,

memory B cells, plasma cells, resting memory CD4+ T cells,
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follicular helper T cells, resting NK cells, activated NK cells,

monocytes, M0 macrophages, M2 macrophages, resting mast

cells, and activated mast cells between the high and low mtRisk

groups (Figure 7D). Additionally, a heatmap displayed the

correlation between mtScore, the 10 genes constituting mtScore,

and 28 types of immune cells (Figure 7E).

Furthermore, results demonstrated that mtScore is significantly

positively correlated with tumor cell stemness. A scatter plot in

Figure 7F exhibited the relationship between mtScore and mRNAsi

values in the GSE49710 dataset. The scatter plot revealed a strong

positive correlation, with an R value of 0.77 (P < 0.0001). A trend

line drawn through the data points further emphasized this positive

linear relationship.

Moreover, mtRisk may also predict the sensitivity to 3

commonly used drugs in NB patients. Results showed that

patients in the low mtRisk group had statistically significantly

higher IC50 values for Cisplatin (Figure 7G), Topotecan

(Figure 7H), and Irinotecan (Figure 7I) compared to the high

mtRisk group, suggesting increased sensitivity to these 3 drugs in

the high mtRisk patients (P < 0.001 for 3 comparison).
3.5 Analysis of FEN1’s essential role
through single-cell transcriptome
sequencing data

This study further validated the significant function and role of

FEN1 in NB, the gene with the highest contribution in the MRGs-

related signature. Quality control, normalization, and batch effect

removal were initially applied to single-cell transcriptomic

sequencing data from 160,847 cells of 16 NB patients sourced

from GSE137804. Subsequent dimensionality reduction via

UMAP clustered the cells into 30 clusters (Figure 8A), and cell

type annotation using known markers identified 8 cell types similar

to the original GSE137804 study (22), including tumor cells, T cells,

B cells, endothelium, plasmacytoid dendritic cell (pDC), Schwann

cells, fibroblasts, and myeloid cells (Figure 8B). The markers used

for cell annotation are presented in Supplementary Figure 10A.

Tumor cells were segregated into FEN1-high and FEN1-low

groups based on the median expression of FEN1. Cell-cell

communication analysis further investigated differences between

FEN1-high and FEN1-low tumor cells in their interactions with the

TME. Compared to FEN1-high tumor cells, FEN1-low tumor cells

exhibited increased and stronger communication with surrounding

cells. Figures 8C, D respectively show the communication counts of

tumor cells (FEN1-high) and tumor cells (FEN1-low) with adjacent

cells. Supplementary Figures 10B, C display the communication

weights of tumor cells (FEN1-high) and tumor cells (FEN1-low),

respectively. Additionally, the exploration of interacting pairs in cell

communication revealed that tumor cells primarily interact with

other cells via the MIF-(CD74+CXCR4) axis; conversely, other cells

predominantly communicate with tumor cells through the PTN-

NCL axis (Figures 8E, F).

Pseudotime trajectory analysis illustrated the temporal

expression changes of FEN1 in the development of NB tumor
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FIGURE 6

External validation of MRGs-related signature in the E-MTAB-8248 and TARGET-NBL datasets. (A) Combined violin, box, and scatter plot
demonstrating mtScore distribution across Clusters A and B in the E-MTAB-8248 dataset. (B) Sankey diagram demonstrating the correlation
between mtRisk stratification and Cluster A and B designation in E-MTAB-8248. (C) PCA plot distinctly separating high and low mtRisk patient
groups in the E-MTAB-8248 dataset. (D) Scatter plot of mtScore against OS time in E-MTAB-8248, distinguishing patients by survival status.
(E) Kaplan-Meier survival curve for OS in E-MTAB-8248 stratified by mtRisk. (F) Kaplan-Meier survival curve for EFS in E-MTAB-8248stratified by
mtRisk. (G) Heatmap of the expression of 10 genes constituting the mtScore in E-MTAB-8248, differentiated by mtRisk groups. (H) ROC curve of
mtScore predictive capacity for OS in E-MTAB-8248. (I) ROC curve of mtScore predictive capacity for EFS in E-MTAB-8248. (J) ROC curve of MYCN
predictive capacity for OS in E-MTAB-8248. (K) Heatmap correlating mtRisk with key clinical features in E-MTAB-8248. (L) PCA plot distinctly
separating high and low mtRisk patient groups in the TARGET-NBL dataset. (M) Kaplan-Meier survival curve for OS in TARGET-NBL categorized by
mtRisk. (N) Kaplan-Meier survival curve for EFS in TARGET-NBL categorized by mtRisk. MRGs, mitochondria-related genes; PCA, principal
component analysis; OS, overall survival; EFS, event-free survival; ROC, receiver operating characteristic; AUC, area under the curve; Chr,
chromosome. (****P<0.0001).
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FIGURE 7

Immune profile, stemness, and drug Sensitivity analysis related to MRGs-related signature in GSE49710. (A) Box plots representing the ESTIMATE
scores stratified by mtRisk groups. (B) Box plots illustrating the proportion of various immune cells as analyzed by the EPIC algorithm, stratified by
mtRisk groups. (C) Box plots depicting the cell abundance of different immune cell types as analyzed by the MCPcounter algorithm. (D) Box plots
detailing the cell proportion of various immune cells as analyzed by the CIBERSORT algorithm stratified by mtRisk groups. (E) Heatmap displaying
the correlation between the mtScore, the ten genes comprising mtScore, and 28 immune cell types. (F) Scatter plot demonstrating a positive
association between mtScore and mRNAsi. (G–I) Violin plots illustrating the estimated IC50 values for Cisplatin (G), Topotecan (H), and Irinotecan
(I), comparing high and low mtRisk groups. MRGs, mitochondria-related genes; ESTIMATE, Estimation of STromal and Immune cells in MAlignant
Tumour tissues using Expression data; EPIC, Estimating the Proportions of Immune and Cancer cells; MCPcounter, Microenvironment Cell
Populations-counter; CIBERSORT, Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts; IC50, half-maximal inhibitory
concentration. (*P<0.05, **P<0.01, ***P<0.001).
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cells. Figure 8G depicts the pseudotime trajectory of NB tumor cells,

with the cell developmental trajectory divided into 3 states in

Figure 8H. The gene expression trend of FEN1 over pseudotime

is shown in Figure 8I, indicating that FEN1 expression is higher in

the early stages of NB tumor cell development than in later stages.
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3.6 Functional validation of FEN1 in NB
cell lines

The current study further investigated the important role of

FEN1 in NB cell by modulating its expression through lentiviral-
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FIGURE 8

Single-cell transcriptomic data analysis revealing the role of FEN1 in NB tumor cells. (A) UMAP dimensionality reduction and clustering of 160,847
cells from 16 neuroblastoma patient samples. (B) Annotated UMAP Clustering of Cell Types. (C) Cell-cell communication counts network of FEN1-
high tumor cells with the surrounding microenvironment. (D) Cell-cell communication counts network of FEN1-low tumor cells with the
surrounding microenvironment. (E) Heatmap illustrating significant ligand-receptor pairs between FEN1-high tumor cells and other cell types.
(F) Heatmap illustrating significant ligand-receptor pairs between FEN1-low tumor cells and other cell types. (G) Pseudotime trajectory analysis of NB
tumor cells, with color gradient indicating progression through pseudotime. (H) Cells are categorized into 3 developmental states along the
pseudotime trajectory. (I) Trend of FEN1 gene expression across pseudotime, demonstrating its dynamic changes during tumor cell development.
NB, neuroblastoma; UMAP, uniform manifold approximation and projection; pDC, plasmacytoid dendritic cell; Commun Prob,
communication probability.
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mediated OE or KD in human NB cells. Successful modulation of

FEN1 at both RNA and protein levels was confirmed by qRT-PCR

(Figure 9A) and Western blot (Figure 9B), achieving the desired OE

and KD effects.

The impact of FEN1 on NB cell proliferation was assessed using

the CCK-8 assay (Figure 9C). Cells with FEN1 OE showed

significantly higher proliferation rates compared to the vector

group (P<0.0001). Cells with FEN1 KD (sh-FEN1#1 and sh-

FEN1#2), demonstrated significantly reduced proliferation

compared to the scramble group (P<0.0001 for both

comparisons). Plate clonogenic assays corroborated these findings

(Figure 9D), where FEN1 OE increased colony formation in NB

cells compared to NC (P<0.01), and KD led to a significant decrease

in colony numbers (P<0.01 for both sh#1 and sh#2).

To explore changes in apoptosis following FEN1 modulation,

we quantified DYm using the JC-1 dye. An increase in red/green

fluorescence ratio, indicating higher J-aggregates formation, reflects

higher MMP and thus, a lower level of apoptosis. Figure 9E shows

that cells with FEN1 OE had a significantly higher Aggregates/

Monomer ratio compared to NC (P<0.001), whereas FEN1 KD cells

displayed a significant reduction, indicating increased apoptosis

(P<0.01 for both sh#1 and sh#2).

Cell cycle analysis also yielded positive findings (Figure 10A),

with FEN1 KD cells showing an increased proportion in the G2/M

phase, suggesting G2/M arrest compared to the NC (P<0.0001 for

sh#1, P<0.001 for sh#2). Cells OE FEN1 exhibited a significant

increase in the S phase proportion compared to NC (P<0.0001),

indicative of heightened DNA synthesis and replication activity.

Furthermore, FEN1 may influenced the invasive capacity of NB

cells. Transwell assays revealed changes in NB cell invasion

following FEN1 OE and KD (Figure 10B). Compared to NC,

FEN1 OE enhanced the invasiveness of NB cells, with increased

cell numbers traversing the membrane (P<0.01). Conversely, FEN1

KD reduced NB cell invasion, with fewer cells penetrating the

membrane (P<0.01 for both sh#1 and sh#2).
4 Discussion

Our study has successfully constructed a prognostic signature

based on MRGs and developed quantitative indices, namely

mtScore and mtRisk. Through extensive internal and external

validation, the MRGs-related signature exhibited superior

prognostic predictive effect and value over the traditional

molecular marker MYCN in NB patients. Furthermore, it

demonstrated predictive capability for immune infiltration in the

TME, tumor cell stemness, and sensitivity to specific

chemotherapeutic agents. Furthermore, through single-cell

transcriptomic analysis, we underscored the pivotal role played by

FEN1, the most contributive molecule in the MRGs-related

signature, in the molecular crosstalk and developmental trajectory

of NB cells. The experimental validation results underscored that

FEN1 expression significantly affects processes such as cell

proliferation, apoptosis, cell cycle progression, and invasiveness in

NB cells.
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In this study, MRGs effectively stratified NB patients into 2

distinct groups with significant differences in prognosis and

immune infiltration characteristics. An MRGs-related signature

and its quantitative metrics, mtScore and mtRisk, were developed

to characterize these 2 patient groups, revealing that lower mtScore

and mtRisk are associated with significantly better prognoses.

Similar works have been reported in colorectal cancer,

hepatocellular carcinoma, and other cancers (50, 51), but this is

the first time an MRGs-related signature has been identified and

explored in NB, to our knowledge. It’s noteworthy that the

predictive efficiency of this MRGs-related signature for NB

patients surpasses that of MYCN, traditionally recognized as the

best genetic marker for forecasting outcomes in NB (52, 53). This

highlights the potential of MRGs-related signature to provide a

more comprehensive understanding of NB prognosis beyond

conventional markers.

In line with the above results, MRGs-related signature not only

predicts prognosis, but also identifies key clinical features to a

certain extent. MYCN amplification, which is closely related to the

poor prognosis of high-risk NB patients (54), was found to be

significantly correlated with high mtRisk in this study. INSS4 stage,

as an independent risk factor for NB (49), was found to be

significantly associated with high mtRisk in this study. Similarly,

high mtRisk was profoundly associated with a spectrum of adverse

clinical features, including clinical risk, progression, chromosomal

1p aberration, high MKI, unfavorable histology, and high COG risk.

The congruence of the MRGs-related signature’s predictive capacity

for both prognosis and key clinical features in NB patients

underscores its utility beyond mere prognostic estimation.

The Further analysis of immune infiltration implies that

patients with lower mtScore and mtRisk tend to have a more

active immune environment within their tumors. This heightened

immune activity is hypothesized to be a key factor contributing to

their better prognosis, suggesting a link between mitochondrial

function, immune engagement, and cancer outcome. Exploring the

TIME and transitioning from “cold” to “hot” tumors could

significantly enhance therapeutic efficacy in NB, a tumor

traditionally marked by immune suppression and modest

responses to immunotherapy (5). The establishment of the

MRGs-related signature provides a promising avenue for

identifying and modulating the TME. By targeting specific MRGs

to activate the immune landscape within NB, it may be possible to

convert these traditionally “cold” tumors into “hot” tumors,

potentially making them more amenable to immunotherapeutic

interventions. This approach, aligning with findings in other

cancers, underscores the critical interplay between mitochondrial

dynamics and immune responsiveness in determining cancer

prognosis and treatment outcomes (14, 55). The results of this

study may provide a new target for immunotherapy of NB and

other tumors (56–59).

In addition, the significant linear correlation between mtScore

and mRNAsi underscores the potential of our developed MRGs-

related signature to effectively indicate the stemness of tumor cells

in patients. Our team’s previous work has developed an mRNAsi-

based risk score for NB, which demonstrated excellent performance
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in predicting patient prognosis, immune infiltration, and treatment

response (60). This study extends the prognostic utility of mtScore

as a marker of stemness, potentially impacting the clinical

management of NB significantly. Patients with elevated mtScores

might be identified as harboring a higher burden of tumor stem

cells, likely to undergo aggressive disease progression and exhibit

poor responses to standard therapies. This observation aligns with

the outcomes of poor prognosis and reduced sensitivity to certain
Frontiers in Immunology 16
chemotherapies among patients with high mtScores. Such insights

potentially could facilitate the stratification of patients into more

personalized treatment regimens.

In the realm of clinical pharmacotherapy, our findings highlight

a significant role of mtRisk in shaping therapeutic responses. At first

glance, patients categorized under high mtRisk appear to present a

formidable challenge in treatment management due to their poor

prognosis, immune-suppressive TME, and pronounced tumor cell
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FIGURE 9

Functional validation of FEN1 OE and KD in NB cell lines. (A) qRT-PCR Validation of FEN1 OE and KD Efficiency at RNA Level in NB Cells. (B) Western
Blot Confirmation of FEN1 OE and KD at Protein Level in NB Cells. (C) Line graph depicting the relative proliferation of NB cells, measured by CCK-8
assay. (D) Representative images and quantification of colony formation assay results. (E) Flow cytometry analysis of JC-1 staining to assess MMP
(DYm), with the Aggregates/Monomers ratio indicating changes of apoptosis. OE, overexpression; KD, knockdown; NB, neuroblastoma; MMP,
mitochondrial membrane potential. (**P<0.01, ***P<0.001, ****P<0.0001).
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stemness. However, a pivotal discovery of our study is the

heightened sensitivity of high mtRisk patients to 3 clinically

prevalent drugs for NB: Cisplatin, Topotecan, and Irinotecan. All

3 drugs are internationally recognized for the treatment of NB

patients (61–63). This enhanced drug responsiveness, surpassing

that of low mtRisk patients, uncovers a nuanced aspect of mtRisk’s

clinical implications. This holds some promise for the therapeutic

management of patients with high mtRisk, and also re-emphasizes

the importance of precise individualized treatment in highly

heterogeneous NB patients.

The MRGs-related signature in NB is composed of ten genes:

FEN1, TERT, DLGAP5, HK2, PID1, TP63, SLC22A4, CROT,

AGBL4, DNM3. FEN1 (Flap endonuclease 1) is crucial in DNA

replication and repair, and its overexpression is linked to poor

prognosis in various cancers, indicating its potential as a target for

cancer therapy (64). TERT (Telomerase reverse transcriptase), the

catalytic subunit of telomerase, affects telomere length by affecting
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telomerase activity, and considered to be a useful marker in

diagnosis and prognosis of various cancers and a new therapy

approach (65). DLGAP5 (Discs large homolog associated protein 5)

is involved in mitotic spindle assembly, and its overexpression is

associated with tumor progression and adverse outcomes in cancer

patients, highlighting its role in cell division and potential as a

therapeutic target (66, 67). HK2 (Hexokinase 2) catalyzes the first

step of glycolysis and its upregulation in tumors is linked to

enhanced glycolytic metabolism typical of cancer cells, suggesting

its involvement in the Warburg effect and as a target for metabolic

therapy (68). The role of PID1 (Phosphotyrosine interaction

domain-containing protein 1) in cancer involves modulating lipid

metabolism and mitochondrial function, indicating its potential

impact on tumor metabolic reprogramming and its association with

cancer progression (69, 70). A member of the p53 family, TP63 is

implicated in the development and progression of several cancers,

where it can influence cell cycle regulation, apoptosis, and the
A

B

FIGURE 10

Impact of FEN1 modulation on NB cell cycle progression and invasiveness. (A) Flow cytometry cell cycle analysis presenting the situation of NB cells
in 5 group. (B) Transwell invasion assays with representative images and quantitative analysis displaying the invasive capacity of NB cells in 5 groups.
NB, neuroblastoma; ns, not significant. (**P<0.01, ***P<0.001, ****P<0.0001).
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immune response in the TME (71, 72). SLC22A4, a solute carrier

protein, has been associated with drug disposition and response in

cancer therapy, reflecting its role in modulating chemotherapeutic

efficacy and resistance mechanisms in tumors (73). CROT is

involved in fatty acid metabolism, and alterations in its

expression are linked to changes in cancer cell metabolism and

potential effects on tumor growth and patient prognosis (74).

AGBL4 (ATP/GTP binding protein-like 4), as a neuronal

differentiation marker, participates in neuronal differentiation by

promoting mitochondrial axonal growth and axonal transport (75).

DNM3 (Dynamin 3), involved in exosomes, endocytosis, and tumor

metastasis, is considered as a tumor suppressor gene in a variety of

cancers such as non-small-cell lung cancer (NSCLC), hepatocellular

carcinoma, papillary thyroid carcinoma, and colon cancer (76–79).

Therefore, the MRGs-related signature developed in this study

encompasses a range of factors related to patient prognosis, the

TIME, apoptosis, cell cycle progression, mitochondrial function,

neuronal differentiation, and resistance mechanisms in NB. This

comprehensive signature holds potential for guiding therapeutic

strategies and prognosis assessment in NB patients.

The single-cell transcriptomics data analysis further explored

the role of the most important gene in the MRGs-related signature,

FEN1, providing profound insights into this gene’s multifaceted

functions in NB. The enhanced communication between FEN1-low

tumor cells and the surrounding cells, as revealed through our

analysis, suggests a more dynamic interplay within the TME. Taken

together with the results of bulk sequencing data analysis (FEN1 is

an oncogene associated with poor prognosis in NB patients and

positively contributes to mtScore), we may be able to make an

important hypothesis. High FEN1 expression could lead to a

reduced need for external support from the TME, suggesting that

these cells might have developed autonomous signaling pathways

that promote proliferation, resist apoptosis, and enhance invasion

capabilities without the extensive need for stromal or immune cell

interactions. This autonomy could be a factor in their increased

progression and aggressiveness. The differential communication

patterns, particularly through the MIF-(CD74+CXCR4) and

PTN-NCL axes, may underscore specific pathways amenable to

therapeutic intervention. Furthermore, pseudotime trajectory

analysis elucidating the temporal changes in FEN1 expression

across the developmental trajectory of NB tumor cells

underscores its significance. The observation that FEN1

expression is higher in the early stages of tumor cell development

suggests a role in the initial phases of tumorigenesis or in

maintaining a stem-like state of the tumor cells. This finding is

supported by research from Z. Peng, et al., which confirmed FEN1’s

capability to promote stemness in tumor cells (80).

FEN1 is an enzyme characterized by its multifunctional

enzymatic activities, playing a pivotal role in the processes of

DNA replication and repair (81). The exonuclease activity of

FEN1 is critical for the maturation of lagging strand Okazaki

fragments during DNA replication. This activity facilitates the

removal of RNA primers at the termini of these fragments, as

well as the trimming of damaged ends during DNA repair

mechanisms (82, 83). As an endonuclease, FEN1 recognizes and

cleaves flap structures, which are intermediates formed during
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DNA replication. The precise excision of these flap structures by

FEN1 ensures the continuity and fidelity of DNA synthesis. This

endonuclease activity is particularly crucial for genomic stability, as

it aids in the accurate resolution of structural anomalies

encountered during DNA replication and repair processes (84).

FEN1 has been implicated in the malignancy progression of various

cancers, including gastric cancer, NSCLC, and cholangiocarcinoma

(85–87). This study extends the understanding of FEN1’s oncogenic

role by exploring its functional significance in NB cell lines through

OE and KD experiments. Our findings illustrate the multifaceted

role of FEN1 in modulating NB cell behaviors, emphasizing its

critical involvement in cell proliferation, apoptosis, cell cycle

progression, and invasiveness. The pivotal role of FEN1 in

supporting NB cell proliferation and colony formation

underscores its important contribution to the proliferation and

growth of NB. This aligns with FEN1’s established roles in DNA

replication and repair mechanisms (88). Furthermore, the

regulation of FEN1 significantly impacts NB cell apoptosis and

cell cycle dynamics. Increased apoptosis in FEN1 KD cells

highlights a potential vulnerability that could be therapeutically

exploited to induce cell death in NB cells. This observation aligns

with existing research indicating FEN1’s capacity to inhibit tumor

cell apoptosis (89). Cell cycle analysis revealed G2/M phase arrest in

FEN1 KD cells and an increase in the proportion of cells in the S

phase following FEN1 OE, further evidencing FEN1’s regulatory

role in cell cycle progression. Such findings suggest that FEN1 is not

only indispensable for the replication process but also crucial for the

proper progression of the cell cycle, likely by ensuring the fidelity of

DNA replication and repair prior to mitotic entry. Alterations in the

invasive capacity of NB cells post-FEN1 modulation underscore the

gene’s role in tumor metastasis. Enhanced invasiveness in FEN1 OE

cells could reflect an increased ability to facilitate tumor spread.

Coupled with resistance to apoptosis and increased proliferation,

these capabilities position FEN1 as a key driver of NB

aggressiveness and metastatic potential. In summary, our findings

advocate for FEN1’s important role in NB cell proliferation,

survival, and invasiveness, and emphasize that FEN1 may serve as

a potential therapeutic target for NB.

This study presents a pioneering effort in constructing an

MRGs-related signature for NB, revealing potential avenues for

further research and clinical application. However, there are

limitations to consider. Of the ten genes comprising the

constructed MRGs-related signature, only one was confirmed in

subsequent single-cell data analysis and experimental validation. It

is imperative to highlight that the validated gene, FEN1, is not only

a part of the signature but its most crucial and significantly

contributory element, underscoring its pivotal role within the

MRGs-related signature for NB. The roles of the remaining nine

genes in NB require further exploration through more extensive

data analysis and experimental investigation. Additionally, the

validation of the signature and its associated genes would benefit

from a broader array of NB cell lines, animal models, and clinical

patient samples to confirm their function and impact more

definitively. This approach underscores the importance of

comprehensive validation to strengthen the findings and potential

clinical applications of genomic signatures in cancer research.
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In conclusion, this study shows for the first time that MRGs can

divide NB patients into two clusters that differ significantly in terms

of survival prognosis, clinical features, and TIME. On this basis, this

study developed MRGs-related signature and its quantitative

indicators mtScore and mtRisk to characterize the above two

clusters. The MRGs-related signature constructed in this study

can successfully distinguish heterogeneous NB patients in

different clusters, which is of great significance for the targeted

and precise treatment of NB patients with different characteristics.

Notably, the MRGs-related signature can predict the prognosis of

NB patients, and the predictive performance is better than that of

MYCN. The MRGs-related signature is significantly associated with

malignant clinical features including MYCN amplification status.

Besides, the MRGs-related signature may indicate the immune

infiltration in TIME of NB patients to a certain extent, which

may be of great significance for distinguishing “hot” tumors from

“cold” tumors and predicting the response of immunotherapy. The

MRGs-related signature was also adept at representing tumor cell

stemness, and sensitivity to the chemotherapeutic agents Cisplatin,

Topotecan, and Irinotecan. Furthermore, the important role of

FEN1, the most important gene in MRGs-related signature, in NB

was demonstrated by single-cell data analysis and experimental

validation in this study. The development of mtScore and mtRisk

provides a new perspective and evidence for the precise treatment,

prognosis prediction, the conversion of “cold” and “hot” tumors,

and the activation of TIME of NB patients. The important role of

FEN1 demonstrated in this study also provides a potential new

target for the treatment of NB.
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